Hydrolight Technical Note 5 Conversion of Spectra to Color

Total Page:16

File Type:pdf, Size:1020Kb

Hydrolight Technical Note 5 Conversion of Spectra to Color hydrolight technical note 5 Conversion of spectra to color Curtis Mobley January 2007 These notes discuss the conversion of radiance or irradiance spectra into various measures of “color” as perceived by the human eye. See Light and Water Chapter 2 for the background information needed to understand CIE chromaticity coordinates, which is where this discussion begins. For further details and some very nice applets and spreadsheets, see the excellent color science web site maintained by Bruce Lindbloom at www.brucelindbloom.com. A web search will reveal many more useful sites. First, keep in mind that the color you see—or the reflected radiance spectrum that an instrument records—depends both on the material being observed and on the spectrum of the light that is illuminating the scene. Simply put, if I shine a “white” light onto a “white” wall, the wall looks white. But if I shine a red light onto a white wall, the wall looks red. Thus we start by noting that various standard illuminants or reference whites are used for various purposes (human vision studies, computer displays, graphic arts, etc.). For example, standard illuminant E has the same power at every wavelength and is implicitly assumed to be the illuminant when converting a spectrum to CIE (x, y) chromaticity coordinates. Thus illuminant E has (x, y) = (0.333, 0.333), which is the white point of the CIE chromaticity diagram (Fig. 3 below). Standard illuminant D65 is similar to daylight on a clear day and has much the same general shape for wavelengths greater than 450 nm as a black-body spectrum for a temperature of 6,500 K. Although the extraterrestrial solar spectrum corresponds more closely to a temperature of about 5,800 K, the addition of scattered blue sky light makes the overall daylight spectrum a bit bluer than direct sunlight. Thus the correlated color temperature—the temperature of a black body radiator that most closely matches a given spectrum—is higher than the sun’s surface temperature. D50, which is widely used in graphic arts, is a bit redder than sunlight and corresponds roughly to a black body curve for 5,000 K. Illuminant A mimics incandescent light sources—a very red spectrum corresponding to a temperature of 2,856 K, which is about the temperature of the tungsten filament in a 100 W light bulb at 120 V. Illuminant F2 corresponds to a “cool white” fluorescent light, and so on. Figure 1 shows the shapes of the D65, E, and blackbody(6500 K) functions. The figure also shows a spectrum that is metameric to D65, which means that it has exactly the same (x, y) = (0.313, 0.329) coordinates as D65. This particular spectrum is non-zero at only 450, 550, and 650 nm. The human eye-brain system perceives the the continuous D65 spectrum and this three-wavelength spectrum as having exactly the same color. Each spectrum in Fig. 1 is normalized to 1 at its maximum value. 1 Fig. 1. Standard illuminant E, red; D65, purple; a 3-wavelength spectrum that is metameric to D65, green; and a blackbody spectrum for 6,500K, black. Each spectrum is normalized to 1 at its maximum value. The reason a “daylight” color film photograph made under incandescent lighting looks sickly yellow is that a typical daylight film assumes that the illumination is close to D65. To get good color reproduction under incandescent lights, you need to switch to a film designed for illuminant A, or add an appropriate filter to the lens to “transform” the daylight into incandescent light before the light reaches the film. Digital cameras let you select the assumed illuminant before taking a picture (generally called “white balance”). In most digital cameras you pick “daylight,” “cloudy,” “fluorescent,” etc. from a menu, but you’re really selecting the standard illuminant to be used in generating the RGB values in the image. Alternatively, you can “re- balance” a digital photo afterwards using software such as PhotoShop. The message for the moment is simply that when quantifying the “color”of something, it is also necessary to specify the illuminant used. Also keep in mind that the color as perceived by the human eye-brain system is affected by the field of view, the colors of adjacent areas, the overall brightness, and even the spatial pattern and motion of the object being viewed. There are many “optical illusions” involving perceived colors. See the web site www.michaelbach.de/ot/ for some excellent examples. 2 Computation of CIE XYZ and xyY Color Coordinates Let F(ë) represent any spectrum. This could be the downwelling irradiance, the water- leaving radiance, or the radiance emitted by a computer screen. Then the color components of F are given by (L&W Eq. 2.10) (1) (2) (3) -1 Here are the tristimulus functions shown in Fig. 2, and Km = 683 lm W . (Note that L&W has a typo on page 49, where it gives Km = 638.) The [X, Y, Z] triple of numbers defines both the color and the brightness of the spectrum. The tristimulus function is the photopic luminosity function. Thus Y is the luminance in lm m-2 sr-1 if F is a radiance in W m-2 sr-1 nm-1, and Y is the illuminance in lm m-2 if F is an irradiance in W m-2 nm-1. Fig. 2. The CIE 1931 tristimulus functions for use in Eq. (1). is red, is green, and is blue. 3 The color of a spectrum as seen by an “average” human eye, without consideration of the brightness, is usually expressed by the chromaticity coordinates (x, y), where x = X/(X+Y+Z) and y = Y/(X+Y+Z). (4) The brightness is expressed by the luminance Y, computed by Eq. (2). Thus the (x, y, Y) triplet of numbers specifies both the color and brightness, as does the [X, Y, Z] triplet. The color (x, y) is usually plotted on a chromaticity diagram, as seen in Fig. 3. The colors in Fig. 3 were captured from a computer monitor and do not correspond exactly to the actual colors seen in nature, and will be even more unrealistic if printed out, for reasons discussed in the next section. Figure 4 shows two spectra for water-leaving radiances Lw as generated by HydroLight for Case 1 water with very low (Chl = 0.02 mg m-3) and very high (Chl = 50 mg m-3) chlorophyll values, along with the E and D65 standard illuminants. The corresponding (x, y) points for these four spectra are indicated by the symbols in Fig.3. Fig. 3. The CIE 1931 chromaticity diagram; the colors are only approximate. The symbols correspond to the spectra seen in Fig. 4. The white point, corresponding to standard illuminant E is the circle at (x, y) = (0.333, 0.333). The square is D65; the diamond is Lw(Chl=0.02), and the triangle is Lw(Chl=50). 4 Fig. 4. Spectra illustrated in Fig. 3. Standard illuminant E is red; D65 is purple; Lw(Chl=0.02) is blue, and Lw(Chl=50) is green. Each spectrum is normalized to 1 at its maximum value. In summary, there are two great virtues of the CIE (x, y, Y) coordinates: (1) any spectrum has corresponding (x, y, Y) values and, (2) the (x, y, Y) values are device independent, i.e., they don’t depend on a particular display device such as a computer monitor or color printer. Computation of RGB values Computer monitors and TVs have three different light sources grouped together in small pixels. One source generates red light, one green, and one blue—as perceived by the human eye. Each source can generate various levels of brightness for each color. Computer monitors thus use a triplet of Red, Green, and Blue (RGB) values to define how much of each primary color is used to generate a desired color. In most monitors, each value of R, G, or B ranges from 0 (no light of that color emitted; the pixel is turned off) to 28-1 = 255 (maximum brightness). This is usually called “8 bit/channel” or “24 bit,” i.e. 3x8, color. These 256 brightness levels for each primary color give a total of 2563 = 16,777,216 different colors and levels of brightness that can be displayed, even though the human eye can perceive differences in far fewer colors and brightness levels. Digital cameras likewise store images in terms of RGB values. Converting a spectrum F(ë) into [X, Y, Z] and then into [x, y, Y] values is easy, as seen above in Eqs. (1)-(4). Converting between [X, Y, Z] and [R, G, B] values is complicated. 5 The gamut, or range, of colors detectable by the human eye is the colored (x, y) region of the CIE chromaticity diagram seen in Fig. 3. This gamut is generated, in a manner of speaking, by various mixtures of all of the pure colors found on the curved spectrum locus. There is no way that only three colors can be combined to generate all of the colors seen by the eye. For example, if my computer monitor had small lasers emitting light at 473, 532, and 670 nm (diode lasers are available at these wavelengths), rather than three LCDs (liquid crystal diodes), then these pure colors could be combined to represent any color within the large dashed-line triangle seen in Fig. 5. This hypothetical “diode laser RGB” gamut covers much, but not all, of the gamut of colors detectable by the eye.
Recommended publications
  • Understanding Color and Gamut Poster
    Understanding Colors and Gamut www.tektronix.com/video Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria* 00800 2255 4835 Understanding High Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Definition Video Poster Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 This poster provides graphical Canada 1 (800) 833-9200 reference to understanding Central East Europe and the Baltics +41 52 675 3777 high definition video. Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 To order your free copy of this poster, please visit: Germany* 00800 2255 4835 www.tek.com/poster/understanding-hd-and-3g-sdi-video-poster Hong Kong 400-820-5835 India 000-800-650-1835 Italy* 00800 2255 4835 Japan 81 (3) 6714-3010 Luxembourg +41 52 675 3777 MPEG-2 Transport Stream Advanced Television Systems Committee (ATSC) Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 ISO/IEC 13818-1 International Standard Program and System Information Protocol (PSIP) for Terrestrial Broadcast and cable (Doc. A//65B and A/69) System Time Table (STT) Rating Region Table (RRT) Direct Channel Change Table (DCCT) ISO/IEC 13818-2 Video Levels and Profiles MPEG Poster ISO/IEC 13818-1 Transport Packet PES PACKET SYNTAX DIAGRAM 24 bits 8 bits 16 bits Syntax Bits Format Syntax Bits Format Syntax Bits Format 4:2:0 4:2:2 4:2:0, 4:2:2 1920x1152 1920x1088 1920x1152 Packet PES Optional system_time_table_section(){ rating_region_table_section(){ directed_channel_change_table_section(){ High Syntax
    [Show full text]
  • Accurately Reproducing Pantone Colors on Digital Presses
    Accurately Reproducing Pantone Colors on Digital Presses By Anne Howard Graphic Communication Department College of Liberal Arts California Polytechnic State University June 2012 Abstract Anne Howard Graphic Communication Department, June 2012 Advisor: Dr. Xiaoying Rong The purpose of this study was to find out how accurately digital presses reproduce Pantone spot colors. The Pantone Matching System is a printing industry standard for spot colors. Because digital printing is becoming more popular, this study was intended to help designers decide on whether they should print Pantone colors on digital presses and expect to see similar colors on paper as they do on a computer monitor. This study investigated how a Xerox DocuColor 2060, Ricoh Pro C900s, and a Konica Minolta bizhub Press C8000 with default settings could print 45 Pantone colors from the Uncoated Solid color book with only the use of cyan, magenta, yellow and black toner. After creating a profile with a GRACoL target sheet, the 45 colors were printed again, measured and compared to the original Pantone Swatch book. Results from this study showed that the profile helped correct the DocuColor color output, however, the Konica Minolta and Ricoh color outputs generally produced the same as they did without the profile. The Konica Minolta and Ricoh have much newer versions of the EFI Fiery RIPs than the DocuColor so they are more likely to interpret Pantone colors the same way as when a profile is used. If printers are using newer presses, they should expect to see consistent color output of Pantone colors with or without profiles when using default settings.
    [Show full text]
  • Iec 61966-2-4
    This is a preview - click here to buy the full publication IEC 61966-2-4 Edition 1.0 2006-01 INTERNATIONAL STANDARD Multimedia systems and equipment – Colour measurement and management – Part 2-4: Colour management – Extended-gamut YCC colour space for video applications – xvYCC INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE R ICS 33.160.40 ISBN 2-8318-8426-8 This is a preview - click here to buy the full publication – 2 – 61966-2-4 IEC:2006(E) CONTENTS FOREWORD...........................................................................................................................3 INTRODUCTION.....................................................................................................................5 1 Scope...............................................................................................................................6 2 Normative references .......................................................................................................6 3 Terms and definitions.........................................................................................................6 4 Colorimetric parameters and related characteristics .........................................................7 4.1 Primary colours and reference white........................................................................7 4.2 Opto-electronic transfer characteristics ...................................................................7 4.3 YCC (luma-chroma-chroma) encoding methods.......................................................8
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • 246E9QSB/00 Philips LCD Monitor with Ultra Wide-Color
    Philips LCD monitor with Ultra Wide-Color E Line 24 (23.8" / 60.5 cm diag.) Full HD (1920 x 1080) 246E9QSB Stunning color, stylish design The Philips E line monitor features stylish design with extraordinary picture performance. A narrow border Full HD display with Ultra Wide-Color brings you to real true-to-life visuals. Enjoy superior viewing in a stylish design. Superb Picture Quality • Ultra Wide-Color wider range of colors for a vivid picture • IPS LED wide view technology for image and color accuracy • 16:9 Full HD display for crisp detailed images Features designed for you • Narrow border display for a seamless appearance • Less eye fatigue with Flicker-free technology • LowBlue Mode for easy on-the-eyes productivity • EasyRead mode for a paper-like reading experience Greener everyday • Eco-friendly materials meet major international standards • Low power consumption saves energy bills LCD monitor with Ultra Wide-Color 246E9QSB/00 E Line 24 (23.8" / 60.5 cm diag.), Full HD (1920 x 1080) Highlights Ultra Wide-Color Technology 16:9 Full HD display a new solution to regulate brightness and reduce flicker for more comfortable viewing. LowBlue Mode Ultra Wide-Color Technology delivers a wider Picture quality matters. Regular displays deliver spectrum of colors for a more brilliant picture. quality, but you expect more. This display Ultra Wide-Color wider "color gamut" features enhanced Full HD 1920 x 1080 produces more natural-looking greens, vivid resolution. With Full HD for crisp detail paired Studies have shown that just as ultra-violet rays reds and deeper blues.
    [Show full text]
  • Specification of Srgb
    How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7.
    [Show full text]
  • Spectral Primary Decomposition for Rendering with RGB Reflectance
    Eurographics Symposium on Rendering (DL-only Track) (2019) T. Boubekeur and P. Sen (Editors) Spectral Primary Decomposition for Rendering with sRGB Reflectance Ian Mallett1 and Cem Yuksel1 1University of Utah Ground Truth Our Method Meng et al. 2015 D65 Environment 35 Error (Noise & Imprecision) Error (Color Distortion) E D CIE76 0:0 Lambertian Plane Figure 1: Spectral rendering of a texture containing the entire sRGB gamut as the Lambertian albedo for a plane under a D65 environment. In this configuration, ideally, rendered sRGB pixels should match the texture’s values. Prior work by Meng et al. [MSHD15] produces noticeable color distortion, whereas our method produces no error beyond numerical precision and Monte Carlo sampling noise (the magnitude of the DE induced by this noise varies with the image because sRGB is perceptually nonlinear). Contemporary work [JH19] is also nearly able to achieve this, but at a significant implementation and memory cost. Abstract Spectral renderers, as-compared to RGB renderers, are able to simulate light transport that is closer to reality, capturing light behavior that is impossible to simulate with any three-primary decomposition. However, spectral rendering requires spectral scene data (e.g. textures and material properties), which is not widely available, severely limiting the practicality of spectral rendering. Unfortunately, producing a physically valid reflectance spectrum from a given sRGB triple has been a challenging problem, and indeed until very recently constructing a spectrum without colorimetric round-trip error was thought to be impos- sible. In this paper, we introduce a new procedure for efficiently generating a reflectance spectrum from any given sRGB input data.
    [Show full text]
  • NFP Brand Guide At-A-Glance
    NFP Brand Guide At-A-Glance Communication tools to keep your conversations growing. At-A-Glance Brand Guidelines Page 2 Clear Space Always maintain a minimum area of clear space around the NFP logo. This area is equal to the height of the nexus symbol as shown to the right. Do not let anything infringe upon this space. Minimum Size = x 1x Print Minimum Digital Minimum 1x 1x 1x 0.75˝ 90px Signature Color Use NFP Green – PANTONE® 363C (RGB 170/208/149) – whenever possible. When you can’t use NFP Green – on forms and limited color communications – use black. The logo can also be reversed out to white for use on solid and dark backgrounds. The reversed logo should not be used on complex backgrounds or a background without sufficient contrast. Logo Do Nots Changing the NFP logo in any way weakens its impact and our brand strength, and detracts from the consistent image we want to project. The examples below are not exhaustive, but help demonstrate what not to do. Don’t use an older version Don’t redraw any of our Signature. elements. Don’t modify or change Don’t add a stroke. the color. Don’t place on complex Don’t add effects or backgrounds. drop shadows. Don’t create lockups with Don’t use our Signature any other logos. How cares... as a “read through.” Acme Brothers Don’t modify the letter forms or use another Don’t distort the logo. NFP typeface. Don’t use the full- Don’t add graphics color logo on colored or drawings.
    [Show full text]
  • Chromatic Adaptation Transform by Spectral Reconstruction Scott A
    Chromatic Adaptation Transform by Spectral Reconstruction Scott A. Burns, University of Illinois at Urbana-Champaign, [email protected] February 28, 2019 Note to readers: This version of the paper is a preprint of a paper to appear in Color Research and Application in October 2019 (Citation: Burns SA. Chromatic adaptation transform by spectral reconstruction. Color Res Appl. 2019;44(5):682-693). The full text of the final version is available courtesy of Wiley Content Sharing initiative at: https://rdcu.be/bEZbD. The final published version differs substantially from the preprint shown here, as follows. The claims of negative tristimulus values being “failures” of a CAT are removed, since in some circumstances such as with “supersaturated” colors, it may be reasonable for a CAT to produce such results. The revised version simply states that in certain applications, tristimulus values outside the spectral locus or having negative values are undesirable. In these cases, the proposed method will guarantee that the destination colors will always be within the spectral locus. Abstract: A color appearance model (CAM) is an advanced colorimetric tool used to predict color appearance under a wide variety of viewing conditions. A chromatic adaptation transform (CAT) is an integral part of a CAM. Its role is to predict “corresponding colors,” that is, a pair of colors that have the same color appearance when viewed under different illuminants, after partial or full adaptation to each illuminant. Modern CATs perform well when applied to a limited range of illuminant pairs and a limited range of source (test) colors. However, they can fail if operated outside these ranges.
    [Show full text]
  • 新動画用拡張色空間xvycc(IEC61966-2-4)
    xvYCC制定の背景 1. 現在のテレビシステムの色再現は、CRT の蛍光 新動画用拡張色空間 体の特性をもとに決められており、実在する物体 xvYCC(IEC61966-2-4) 色の約55%しか表現できないという問題があった。 2. これまでのテレビ信号との互換性を保持しつつ、よ り鮮やかな色を表現するため、新しい動画用拡張 (社)電子情報技術産業協会 AV&IT機器標準化委員会 色空間規格IEC61966-2-4: xvYCC(エックスブイ・ ・カラーマネージメント標準化グループ ワイシーシー)の制定に至った。 主査: 杉浦博明 [三菱電機㈱] ・61966-2sRGB等対応グループ 副主査: 加藤直哉 [ソニー㈱] 2006/08/30 @JEITA 1 2 xvYCC制定の経緯 動画用拡張色域YCC色空間 - Extended-gamut YCC colour space [2004 年9 月] for video applications - xvYCC JEITA カラーマネジメント標準化委員会(後にカラー マネジメント標準化グループに改組)において、動画用 拡張色空間xvYCCの国際規格化の審議を開始した。 拡張色域色空間制定の背景 表示装置の現状 [2004 年10 月] 規格の現状(cf. 静止画) 韓国 ソウルで開催された第68 回IEC(国際電気標準 会議)総会と同時開催の第10回TC100 総会において、 撮像装置の現状 日本から提案した本規格案は、次世代のテレビシステ ムあるいは、動画システムにおいて非常に重要との産 IECにおける標準化の経緯 業的判断から、加速化プロセスにて迅速な審議を行うこ xvYCC – IEC61966-2-4 とが決定された。 各種色空間の比較 [2006 年1 月] メディア色域包括率 IEC に設けられたプロジェクトチームにおいて、数回 の国際的な審議を経た後、ほぼJEITA からの提案どお 期待される効果 りの内容で国際規格IEC 61966-2-4 として正式に発行 された。 関連プレスリリース 他規格(MPEG,HDMI)への波及 3 4 sRGB色域外の高彩度物体色の例 拡張色域色空間の必要性(背景1) CRT以外の技術を用いて色再現域(色域)を拡張させた 様々な表示装置が市場に出現してきている. 0.9 しかしながら,現在の動画コンテンツの多くは従来の(sRGB 0.8 色域に制限された)CRTテレビ向けに画作りされている. 0.7 その結果,表示装置側が広色域となったメリットを活かしき 0.6 れていないのが現状である. 0.5 0.4 sRGB 0.6 0.3 (CRT色域) 0.2 0.4 0.1 CIE sRGB 0 Triluminos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 色域外 0.2 x sRGB(709) NTSC Wide-gamut xy Chromaticity Diagram 0 0 0.2 0.4 0.6 これらの色は,CRT特性をもとに決められた従来のテレビ信号では表現できません. 5 6 SID 2005 @ Boston SID 2006 @ San Francisco 広色域関連発表:計5件(4社) 広色域関連発表:計4件(3社) Session 25: Spatial and Temporal Color Session 19: Applications and Vision STColor: Hybrid Spatial-Temporal Color Synthesis for Enhanced (Applications/Applied Vision) Display Image Quality Improved Six-Primary-Color 23-in. WXGA LCD Using Six-Color LEDs L. D. Silverstein, VCD Sciences, Inc., USA Hiroaki Sugiura, Mitsubishi Electric Corp., Japan A Wide-Gamut-Color High-Aperture-Ratio Mobile Spectrum xvYCC: A new Standard for Video Systems Using Extended-Gamut Sequential LCD YCC Color Space S.
    [Show full text]
  • ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
    Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the
    [Show full text]
  • Arxiv:1902.00267V1 [Cs.CV] 1 Feb 2019 Fcmue Iin Oto H Aaesue O Mg Classificat Image Th for in Used Applications Datasets Fundamental the Most of the Most Vision
    ColorNet: Investigating the importance of color spaces for image classification⋆ Shreyank N Gowda1 and Chun Yuan2 1 Computer Science Department, Tsinghua University, Beijing 10084, China [email protected] 2 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China [email protected] Abstract. Image classification is a fundamental application in computer vision. Recently, deeper networks and highly connected networks have shown state of the art performance for image classification tasks. Most datasets these days consist of a finite number of color images. These color images are taken as input in the form of RGB images and clas- sification is done without modifying them. We explore the importance of color spaces and show that color spaces (essentially transformations of original RGB images) can significantly affect classification accuracy. Further, we show that certain classes of images are better represented in particular color spaces and for a dataset with a highly varying number of classes such as CIFAR and Imagenet, using a model that considers multi- ple color spaces within the same model gives excellent levels of accuracy. Also, we show that such a model, where the input is preprocessed into multiple color spaces simultaneously, needs far fewer parameters to ob- tain high accuracy for classification. For example, our model with 1.75M parameters significantly outperforms DenseNet 100-12 that has 12M pa- rameters and gives results comparable to Densenet-BC-190-40 that has 25.6M parameters for classification of four competitive image classifica- tion datasets namely: CIFAR-10, CIFAR-100, SVHN and Imagenet. Our model essentially takes an RGB image as input, simultaneously converts the image into 7 different color spaces and uses these as inputs to individ- ual densenets.
    [Show full text]