Major Color Order Systems and Their Psychophysical Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Color and Gamut Poster
Understanding Colors and Gamut www.tektronix.com/video Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria* 00800 2255 4835 Understanding High Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Definition Video Poster Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 This poster provides graphical Canada 1 (800) 833-9200 reference to understanding Central East Europe and the Baltics +41 52 675 3777 high definition video. Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 To order your free copy of this poster, please visit: Germany* 00800 2255 4835 www.tek.com/poster/understanding-hd-and-3g-sdi-video-poster Hong Kong 400-820-5835 India 000-800-650-1835 Italy* 00800 2255 4835 Japan 81 (3) 6714-3010 Luxembourg +41 52 675 3777 MPEG-2 Transport Stream Advanced Television Systems Committee (ATSC) Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 ISO/IEC 13818-1 International Standard Program and System Information Protocol (PSIP) for Terrestrial Broadcast and cable (Doc. A//65B and A/69) System Time Table (STT) Rating Region Table (RRT) Direct Channel Change Table (DCCT) ISO/IEC 13818-2 Video Levels and Profiles MPEG Poster ISO/IEC 13818-1 Transport Packet PES PACKET SYNTAX DIAGRAM 24 bits 8 bits 16 bits Syntax Bits Format Syntax Bits Format Syntax Bits Format 4:2:0 4:2:2 4:2:0, 4:2:2 1920x1152 1920x1088 1920x1152 Packet PES Optional system_time_table_section(){ rating_region_table_section(){ directed_channel_change_table_section(){ High Syntax -
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position. -
Basic Color I
Basic Color I Up to this point we have explored and /or reviewed 4 several basic visual elements that will help develop a solid foundation for a Language of Painting. With a strong focus on the dynamics of paint application, we have connected simple dots with confident lines, con- figured lines into a wide array of shapes, and applied contrasting pigments in concert with varied pressures to yield seamless gradations of value. However, the previous chapter incorporated a new element that many find to be one of the most powerful tools for the creative endeavor-- color. The Painted Pressure Scale chapter, had us grow our palette from the sparse black and white that we have started with to include three colors: Red, Yellow and Blue. It is our hope that your experience generated a good number of questions from this inaugural color use. With this chapter we will take some first steps towards answering those questions. We will also revisit some of the color concepts you may already hold and introduce you to some of the more advanced methods for identifying, using and understanding this brilliant aspect of the artist’s salvo. On any initial investigation into color we are faced with a robust vocabulary of terms and concepts that may leave us somewhat confused. Like the many other aspects of our curriculum, we make a strong effort to simplify all of this. We will endeavor to make use of what you may have learned in the past and offer options for you to integrate color in the manner you wish into your creative process efficiently and effectively. -
Creating 4K/UHD Content Poster
Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display. -
Development of a Methodology for Analyzing the Color Content of a Selected Group of Printed Color Analysis Systems
AN ABSTRACT OF THE THESIS OF Edith E. Collin for the degree of Master of Sciencein Clothing, Textiles and Related Arts presented on April 7, 1986. Title: Development of a Methodology for Analyzing theColor Content of a Selected Group of Printed Color Analysis Systems Redacted for Privacy Abstract approved: Ardis Koester The purpose of this study was to develop amethodology to compare the color choice recommendationsfor each personal color analysis category identified by the authorsof selected publications. The procedure used included: (1) identification of publications with color analysis systemsdirected toward female clientele; (2) comparison of number and names of categoriesused; (3) identification, by use of Munsell colornotations, the visual and written color recommendations ascribed toeach category; and (4) comparison of the publications on the basisof: (a) number and names of categories; (b) numberof color recommendations in each category; (c) range of hue value and chroma presented;(d) comparison of visual and written color recommendations by categoryand author. With the exception of comparison of publications onthe basis of written color recommendations, all components of themethodology were successful. Comparison of the publications used in development ofthe methodology revealed that: 1. The majority of authors use the seasonal category system. 2. The number of color recommendations per category was quite consistent within a publication but varied widely among authors. 3. There were few similarities in color recommendations even among authors using the same name categories. 4. There was poor agreement between written and visual color recommendations within all color categories. 5. There was no discernable theoretical basis for the color recommendations presented by any author included in this study. -
Color Space Conversion
L Technical Color Space Information Conversion The role of color space conversion in the process of scanning and reproduc- ing a color image begins the moment an image is captured by a scanner and continues through the point at which it is output on film. For the purpose of this article we will discuss conversions between three types of color systems: RGB, CIE, and CMYK. The RGB (Red, Green, & Blue) and CMYK (Cyan, Magenta, Yellow, & Black) color models have been described in greater detail in the Linotype-Hell Technical information piece entitled Color in Printing. For some background information on the CIE (Commission Internationale de l’Eclairage), please refer to Color Spaces and PostScript Level 2. CIE as a reference color space Most scanners acquire color in the form of RGB data. The majority of non- photographic printing methods employ CMYK inks or toners. In a closed sys- tem, where the characteristics of both the scanner and the printing method are well-defined, conversions may be made from RGB to CMYK through tables that maintain a reasonable level of color consistency. The process becomes somewhat more difficult as you add monitors, other scanners, proofing devices or printing processes that have different characteristics. It becomes critical to have a consistent yardstick, if you will, a means of con- verting between different color systems (and back again) without a loss in color fidelity. This is what CIE provides. Let’s start with some background on CIE, and then we will look at how it can be applied in an open system. Measuring color Light reflected off of, or transmitted through a colored object can be mea- sured by the wavelengths of light that are reflected or transmitted. -
Color Measurement1 Agr1c Ü8 ,
I A^w /\PK4 1946 USDA COLOR MEASUREMENT1 AGR1C ü8 , ,. 2001 DEC-1 f=> 7=50 AndA ItsT ApplicationA rL '"NT SERIAL Í to the Grading of Agricultural Products A HANDBOOK ON THE METHOD OF DISK COLORIMETRY ui By S3 DOROTHY NICKERSON, Color Technologist, Producdon and Marketing Administration 50! es tt^iSi as U. S. DEPARTMENT OF AGRICULTURE Miscellaneous Publication 580 March 1946 CONTENTS Page Introduction 1 Color-grading problems 1 Color charts in grading work 2 Transparent-color standards in grading work 3 Standards need measuring 4 Several methods of expressing results of color measurement 5 I.C.I, method of color notation 6 Homogeneous-heterogeneous method of color notation 6 Munsell method of color notation 7 Relation between methods 9 Disk colorimetry 10 Early method 22 Present method 22 Instruments 23 Choice of disks 25 Conversion to Munsell notation 37 Application of disk colorimetry to grading problems 38 Sample preparation 38 Preparation of conversion data 40 Applications of Munsell notations in related problems 45 The Kelly mask method for color matching 47 Standard names for colors 48 A.S.A. standard for the specification and description of color 50 Color-tolerance specifications 52 Artificial daylighting for grading work 53 Color-vision testing 59 Literature cited 61 666177—46- COLOR MEASUREMENT And Its Application to the Grading of Agricultural Products By DOROTHY NICKERSON, color technologist Production and Marketing Administration INTRODUCTION cotton, hay, butter, cheese, eggs, fruits and vegetables (fresh, canned, frozen, and dried), honey, tobacco, In the 16 years since publication of the disk method 3 1 cereal grains, meats, and rosin. -
Tabla De Conversión Pantone a NCS (Natural Color System)
Tabla de conversión Pantone a NCS (Natural Color System) PANTONE NCS (más parecido) PANTONE NCS (más parecido) Pantone Yellow C NCS 0580-Y Pantone 3985C NCS 3060-G80Y Pantone Yellow U NCS 0580-Y Pantone 3985U NCS 4040-G80Y Pantone Warm Red C NCS 0580-Y70R Pantone 3995C NCS 5040-G80Y Pantone Warm Red U NCS 0580-Y70R Pantone 3995U NCS 6020-G70Y Pantone Rubine Red C NCS 1575-R10B Pantone 400C NCS 2005-Y50R Pantone Rubine Red U NCS 1070-R20B Pantone 400U NCS 2502-R Pantone Rhodamine Red C Pantone 401C NCS 2005-Y50R Pantone Rhodamine Red U NCS 1070-R20B Pantone 401U NCS 2502-R Pantone Purple C Pantone 402C NCS 4005-Y50R Pantone Purple U NCS 2060-R40B Pantone 402U NCS 3502-R Pantone Violet C Pantone 403C NCS 4055-Y50R Pantone Violet U NCS 3050-R60B Pantone 403U NCS 4502-R Pantone Reflex Blue C NCS 3560-R80B Pantone 404C NCS 6005-Y20R Pantone Reflex Blue U NCS 3060-R70B Pantone 404U NCS 5502-R Pantone Process Blue C NCS 2065-B Pantone 405C NCS 7005-Y20R Pantone Process Blue U NCS 1565-B Pantone 405U NCS 6502-R Pantone Green C NCS 2060-B90G Pantone 406C NCS 2005-Y50R Pantone Green U NCS 2060-B90G Pantone 406U NCS 2005-Y50R Pantone Black C NCS 8005-Y20R Pantone 407C NCS 3005-Y50R Pantone Black U NCS 7502-Y Pantone 407U NCS 3005-Y80R Pantone Yellow 012C NCS 0580-Y Pantone 408C NCS 3005-Y50R Pantone Yellow 012U NCS 0580-Y Pantone 408U NCS 4005-Y80R Pantone Orange 021C NCS 0585-Y60R Pantone 409C NCS 5005-Y50R Pantone Orange 021U NCS 0580-Y60R Pantone 409U NCS 5005-Y80R Pantone Red 032C NCS 0580-Y90R Pantone 410C NCS 5005-Y50R Pantone Red 032U NCS -
Spectral Primary Decomposition for Rendering with RGB Reflectance
Eurographics Symposium on Rendering (DL-only Track) (2019) T. Boubekeur and P. Sen (Editors) Spectral Primary Decomposition for Rendering with sRGB Reflectance Ian Mallett1 and Cem Yuksel1 1University of Utah Ground Truth Our Method Meng et al. 2015 D65 Environment 35 Error (Noise & Imprecision) Error (Color Distortion) E D CIE76 0:0 Lambertian Plane Figure 1: Spectral rendering of a texture containing the entire sRGB gamut as the Lambertian albedo for a plane under a D65 environment. In this configuration, ideally, rendered sRGB pixels should match the texture’s values. Prior work by Meng et al. [MSHD15] produces noticeable color distortion, whereas our method produces no error beyond numerical precision and Monte Carlo sampling noise (the magnitude of the DE induced by this noise varies with the image because sRGB is perceptually nonlinear). Contemporary work [JH19] is also nearly able to achieve this, but at a significant implementation and memory cost. Abstract Spectral renderers, as-compared to RGB renderers, are able to simulate light transport that is closer to reality, capturing light behavior that is impossible to simulate with any three-primary decomposition. However, spectral rendering requires spectral scene data (e.g. textures and material properties), which is not widely available, severely limiting the practicality of spectral rendering. Unfortunately, producing a physically valid reflectance spectrum from a given sRGB triple has been a challenging problem, and indeed until very recently constructing a spectrum without colorimetric round-trip error was thought to be impos- sible. In this paper, we introduce a new procedure for efficiently generating a reflectance spectrum from any given sRGB input data. -
RAINSTONE Inspired by Nature, This Collection Will Give Fresh and Natural Design Elements to Any Space
RAINSTONE Inspired by nature, this collection will give fresh and natural design elements to any space. Rain Stone Dark Grey 60x60 cm | 24”x 24” Dark Grey Rain Stone 12 13 Floor Floor Floor Rain Stone_Natural 60x60 | 24”x24” 14 15 RAIN STONE NATURAL RAIN STONE BEIGE WHITE *CERST060002_NATURAL 60x120 - 24”x48” rect. CERST060006_NATURAL 60x60 - 24”x24” rect. *CERST060001_BEIGE WHITE 60x120 - 24”x48” rect. CERST060005_BEIGE WHITE 60x60 - 24”x24” rect. *CERST030014 _NATURAL 30x120 - 12”x48” rect. CERST030002_NATURAL 30x60 - 12”x24” rect. *CERST030013 _BEIGE WHITE 30x120 - 12”x48” rect. CERST030001_BEIGE WHITE 30x60 - 12”x24” rect. *CERST029002_NATURAL 29x29 - 12”x12” rect. CERST005002_NATURAL MOSAICO *CERST029001_BEIGE WHITE 29x29 - 12”x12” rect. CERST005001_BEIGE WHITE MOSAICO 5x5 - 2”x2” rect. 5x5 - 2”x2” rect. *CERST015002_NATURAL 15x60 - 6”x24” rect. *CERST010002_NATURAL 10x30 - 4”x12” rect. *CERST015001_BEIGE WHITE 15x60 - 6”x24” rect. *CERST010001_BEIGE WHITE 10x30 - 4”x12” rect. *CERST030006_NATURAL *CERST030010_NATURAL WALL *CERST030005_BEIGE WHITE *CERST030009_ BEIGE WHITE WALL 5x15 - 2”x6” rect. 30x60 - 12”x24” rect. 5x15 - 2”x6” rect. 30x60 - 12”x24” rect. 30x30 - 12”x12” su rete rect. 30x30 - 12”x12” su rete rect. *CERST031002 _ NATURAL CHEVRON *CERST028002 _ NATURAL FRINGE *CERST031001_ BEIGE WHITE CHEVRON *CERST028001_ BEIGE WHITE FRINGE 31,5x29,6 - 12,40”x11,65” rect. 28,8X28,8 - 11,34”x11,34” rect. 31,5x29,6 - 12,40”x11,65” rect. 28,8X28,8 - 11,34”x11,34” rect. 16 * Special order sizes 17 RAIN STONE LIGHT GREY RAIN STONE DARK GREY *CERST060003_LIGHT GREY 60x120 - 24”x48” rect. CERST060007_LIGHT GREY 60x60 - 24”x24” rect. *CERST060004_DARK GREY 60x120 - 24”x48” rect. CERST060008_DARK GREY 60x60 - 24”x24” rect. -
Chromatic Adaptation Transform by Spectral Reconstruction Scott A
Chromatic Adaptation Transform by Spectral Reconstruction Scott A. Burns, University of Illinois at Urbana-Champaign, [email protected] February 28, 2019 Note to readers: This version of the paper is a preprint of a paper to appear in Color Research and Application in October 2019 (Citation: Burns SA. Chromatic adaptation transform by spectral reconstruction. Color Res Appl. 2019;44(5):682-693). The full text of the final version is available courtesy of Wiley Content Sharing initiative at: https://rdcu.be/bEZbD. The final published version differs substantially from the preprint shown here, as follows. The claims of negative tristimulus values being “failures” of a CAT are removed, since in some circumstances such as with “supersaturated” colors, it may be reasonable for a CAT to produce such results. The revised version simply states that in certain applications, tristimulus values outside the spectral locus or having negative values are undesirable. In these cases, the proposed method will guarantee that the destination colors will always be within the spectral locus. Abstract: A color appearance model (CAM) is an advanced colorimetric tool used to predict color appearance under a wide variety of viewing conditions. A chromatic adaptation transform (CAT) is an integral part of a CAM. Its role is to predict “corresponding colors,” that is, a pair of colors that have the same color appearance when viewed under different illuminants, after partial or full adaptation to each illuminant. Modern CATs perform well when applied to a limited range of illuminant pairs and a limited range of source (test) colors. However, they can fail if operated outside these ranges. -
ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the