The Role of Groundwater in the Management of Water Resources in the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluating Vapor Intrusion Pathways
Evaluating Vapor Intrusion Pathways Guidance for ATSDR’s Division of Community Health Investigations October 31, 2016 Contents Acronym List ........................................................................................................................................................................... 1 Introduction ........................................................................................................................................................................... 2 What are the potential health risks from the vapor intrusion pathway? ............................................................................... 2 When should a vapor intrusion pathway be evaluated? ........................................................................................................ 3 Why is it so difficult to assess the public health hazard posed by the vapor intrusion pathway? .......................................... 3 What is the best approach for a public health evaluation of the vapor intrusion pathway? ................................................. 5 Public health evaluation.......................................................................................................................................................... 5 Vapor intrusion evaluation process outline ............................................................................................................................ 8 References… …...................................................................................................................................................................... -
Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico
Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico Vincente Ruiz WP 2016.05 Suggested citation: V. Ruiz (2016). Groundwater Overdraft, Electricity, and Wrong Incentives : Evidence from Mexico. FAERE Working Paper, 2016.05. ISSN number: 2274-5556 www.faere.fr Groundwater Overdraft, Electricity, and Wrong Incentives: Evidence from Mexico by Vicente Ruiz⇤ Last version: January 2016 Abstract Groundwater overdraft is threatening the sustainability of an increasing number of aquifers in Mexico. The excessive amount of groundwater ex- tracted by irrigation farming has significantly contributed to this problem. The objective of this paper is to analyse the effect of changes in ground- water price over the allocation of different production inputs. I model the technology of producers facing groundwater overdraft through a Translog cost function and using a combination of multiple micro-data sources. My results show that groundwater demand is inelastic, -0.54. Moreover, these results also show that both labour and fertiliser can act as substitutes for groundwater, further reacting to changes in groundwater price. JEL codes:Q12,Q25 Key words: Groundwater, Electricity, Subsidies, Mexico, Translog Cost ⇤Université Paris 1 - Panthéon Sorbonne, Paris School of Economics (PSE). Centre d’Économie de la Sorbonne, 106-112 Boulevard de l’Hopital, 75647, Paris Cedex 13, France. Email: [email protected] Introduction The high rate of groundwater extraction in Mexico is threatening the sustainability of an increasing number of aquifers in the country. Today in Mexico 1 out of 6aquifersisconsideredtobeoverexploited(CONAGUA, 2010). Groundwater overdraft is not only an important cause of major environmental problems, but it also has a direct impact on economic activities and the wellbeing of a high share of the population. -
Reference: Groundwater Quality and Groundwater Pollution
PUBLICATION 8084 FWQP REFERENCE SHEET 11.2 Reference: Groundwater Quality and Groundwater Pollution THOMAS HARTER is UC Cooperative Extension Hydrogeology Specialist, University of California, Davis, and Kearney Agricultural Center. roundwater quality comprises the physical, chemical, and biological qualities of UNIVERSITY OF G ground water. Temperature, turbidity, color, taste, and odor make up the list of physi- CALIFORNIA cal water quality parameters. Since most ground water is colorless, odorless, and Division of Agriculture without specific taste, we are typically most concerned with its chemical and biologi- and Natural Resources cal qualities. Although spring water or groundwater products are often sold as “pure,” http://anrcatalog.ucdavis.edu their water quality is different from that of pure water. In partnership with Naturally, ground water contains mineral ions. These ions slowly dissolve from soil particles, sediments, and rocks as the water travels along mineral surfaces in the pores or fractures of the unsaturated zone and the aquifer. They are referred to as dis- solved solids. Some dissolved solids may have originated in the precipitation water or river water that recharges the aquifer. A list of the dissolved solids in any water is long, but it can be divided into three groups: major constituents, minor constituents, and trace elements (Table 1). The http://www.nrcs.usda.gov total mass of dissolved constituents is referred to as the total dissolved solids (TDS) concentration. In water, all of the dissolved solids are either positively charged ions Farm Water (cations) or negatively charged ions (anions). The total negative charge of the anions always equals the total positive charge of the cations. -
Nubian Sandstone Aquifer System Isotopes and Modelling to Support the Nubian Sandstone Aquifer System Project
Transboundary aquifers and river basins Mediterranean Sea Benghazi ! Port Said Alexandria ! ! 30°N Cairo! ! Suez Nile ! Asyût R e d S e a Egypt Libyan Arab Jamahiriya Lake Nasser Administrative Chad Boundaries 20°N NSAS boundary ! Major city National boundary Khartoum/ ! Omdurman Blue Nile Kilometres 0 100 200 300 400 500 White Nile Sudan 20°E 30°E Nubian Sandstone Aquifer System Isotopes and modelling to support the Nubian Sandstone Aquifer System Project he Nubian Sandstone Aquifer System (NSAS) underlies Tthe countries of Chad, Egypt, Libyan Arab Jamahiriya and Sudan, the total population of which is over 136 million. It is the world’s largest ‘fossil’ water aquifer system. This gigantic reservoir faces heavy demands from agriculture and for drinking water, and the amount drawn out could double in the next 50–100 years. Climate change is expected to add significant stress due to rising temperatures as well as changes in precipitation patterns, inland evaporation and salinization. Groundwater has been identified as the biggest and in some cases the only future source of water to meet growing demands and the development goals of each NSAS country, and evidence shows that massive volumes of groundwater are still potentially available. Since the 1960s, groundwater has been actively pumped out of the aquifer to support irrigation and water supply needs. Over-abstraction has already begun in some areas, which leads to significant drawdowns and can induce salinization. In the approximately 20 000 years since the last glacial period, the aquifer has been slowly draining; the system faces low recharge rates in some areas, while others have no recharge at all. -
'Great Man-Made River' Courses Through Desert in Libya
Click here for Full Issue of EIR Volume 18, Number 3, January 18, 1991 'Great Man-Made River' courses through desert in Libya by Marcia Merry Over the past year, a major link has been completed in Libya's the International Monetary Fund and World Bank, to deter "Great Man-Made River" (GMR)-a project designed to pro GMR-style development. Typical of this anti-development vide an integrated national grid of piped water from aquifers approach is the "Arab World Survey" of May 1990 by the deep beneath the deserts of the Sahara. Concrete pipes are London Economist, which stated, "Libya is another offend carrying water from well fields in southern and east-central er" planning water projects. "It is building a spectacular sys Libya, northward for various uses in the coastal areas where tem of pipelines, known as the 'Great Man-Made River,' to the population of 4.3 million is concentrated. move water pumped from under the Sahara Desert north The water is especially welcome because the coastal aqui� wards to the coastal region for use in agriculture." The Econ fers that have supplied the population centers in the Tripoli omist said it is wrongheaded to plan water for farming, and and Benghazi regions, have been depleted by heavy pumping that it costs too much-an estimated $25 billion for the entire over the years, and there has been significant infiltration of plan. salt water from the Mediterranean Sea. This is a prime loca tion for desalination plants, but without financial credit and Water project moves ahead high technology, Libya can only afford to desalinate water Despite London's scorn, planning and work has proceed to supplement water supplies for urban and industrial use, ed, and the accomplishments of the GMR project to date give and cannot yet hope to meet the expense of desalinating the a preview of how water projects of all types could make the large volumes of water needed for agricultural expansion. -
Freshwater Resources
3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ........................................................................................................................................................... -
Assessing Groundwater Irrigation Sustainability in the Euro-Mediterranean Region with an Integrated Agro-Hydrologic Model
19th EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2019 Adv. Sci. Res., 17, 227–253, 2020 https://doi.org/10.5194/asr-17-227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Assessing groundwater irrigation sustainability in the Euro-Mediterranean region with an integrated agro-hydrologic model Emiliano Gelati1,a, Zuzanna Zajac1, Andrej Ceglar1, Simona Bassu1, Bernard Bisselink1, Marko Adamovic1, Jeroen Bernhard2, Anna Malagó1, Marco Pastori1, Fayçal Bouraoui1, and Ad de Roo1,2 1European Commission, Joint Research Centre (JRC), Ispra, Italy 2Department of Physical Geography, Utrecht University, Utrecht, the Netherlands anow at: Department of Geosciences, University of Oslo, Oslo, Norway Correspondence: Emiliano Gelati ([email protected]) Received: 16 February 2020 – Revised: 27 July 2020 – Accepted: 21 September 2020 – Published: 31 October 2020 Abstract. We assess the sustainability of groundwater irrigation in the Euro-Mediterranean region. After analysing the available data on groundwater irrigation, we identify areas where irrigation causes groundwater depletion. To prevent the latter, we experiment with guidelines to restrict groundwater irrigation to sustainable levels, simulating beneficial and detrimental impacts in terms of improved environmental flow conditions and crop yield losses. To carry out these analyses, we apply the integrated model of water resources, irrigation and crop production LISFLOOD-EPIC. Crop growth is simulated accounting for atmospheric conditions and abiotic stress factors, including transpiration deficit. Four irrigation methods are modelled: drip, sprinkler, and intermit- tent and permanent flooding. Hydrologic and agricultural modules are dynamically coupled at the daily time scale through soil moisture, plant water uptake, and irrigation water abstraction and application. -
Groundwater Overdraft Reduction Through Agricultural
Water Resources Development, Vol. 20, No. 2, 149–164, June 2004 Groundwater Overdraft Reduction through Agricultural Energy Policy: Insights from India and Mexico CHRISTOPHER A. SCOTT* & TUSHAAR SHAH** *South Asia Regional Office, International Water Management Institute, Hyderabad, India **Sustainable Groundwater Management, International Water Management Institute, Anand, India ABSTRACT Rapid expansion of groundwater irrigation has transformed the rural economy in regions around the world, leading to significant increases in agricultural productivity and rising incomes. Farmer investment in wells and pumps has driven this expansion on the demand side; however, the supply of cheap agricultural energy—usu- ally electrical power—is a critical though often overlooked driver of the groundwater boom. One serious outcome in numerous regions around the world has been groundwa- Downloaded By: [University of Arizona] At: 21:56 10 September 2007 ter overdraft; where pumping exceeds aquifer recharge, water tables have declined and water quality has deteriorated. India and Mexico are two of the largest users of groundwater in the world and both face critical overdraft challenges. The two countries are compared, given that electrical energy supply and pricing are primary driving forces behind groundwater pumping for irrigation in India and Mexico alike. Both countries have attempted regulatory measures to reduce groundwater overdraft. However, with low energy costs and readily available connections, there are few financial disincentives for farmers to limit pumping. The linkages between energy and irrigation are reviewed, comparing and contrasting India and Mexico. Examples of legal, regulatory and participatory approaches to groundwater management are assessed. Finally, the implica- tions of linking electrical power pricing and supply with ongoing groundwater regu- lation efforts in both countries are explored. -
Groundwater Resource Guide
Oregon Public Water Systems Groundwater Resource Guide For Drinking Water Source Protection October 2017 Version 1.0 Oregon Department of Environmental Quality Environmental Solutions Division Watershed Management Oregon Health Authority Center for Health Protection Drinking Water Services A Call to Action - A Recommitment to Assessing and Protecting Sources of Drinking Water “Our vision…Federal, state, and local actions reflect the high value of safe drinking water: the high value of drinking water is widely recognized at all levels of government and among the general public…” (Appendix 1, Source Water Collaborative, 2014) This report prepared by: Oregon Department of Environmental Quality Environmental Solutions Division Watershed Management Section 811 SW 6th Avenue Portland, OR 97204 1-800-452-4011 www.oregon.gov/deq Contact: Sheree Stewart [email protected] NOTE: This document is “Version 1.0” and dated October 2017. It will be made available on DEQ’s Drinking Water Protection website in October 2017. DEQ anticipates there will be frequent revisions and updates on this document. Please feel free to make suggestions for improvements so that we can make the document more valuable to the public water systems in Oregon. Groundwater Resource Guide TABLE OF CONTENTS PROJECT JUSTIFICATION EXECUTIVE SUMMARY 1.0 DRINKING WATER REGULATORY OVERVIEW ...........................................5 Safe Drinking Water Act .........................................................................................................5 Clean -
Growing with Groundwater
Growing With Groundwater www.groundwater.org What is the water cycle? The water cycle is the endless process of water moving throughout the oceans, atmosphere, groundwater, streams, etc. Water on the surface is evaporated from the earth by the energy of the sun. The water vapor forms clouds in the sky. Depending on the temperature and weather conditions, the water vapor condenses and falls to the earth as precipitation (rain, snow, hail, etc.). Some precipitation runs from high areas to low areas on the earth’s surface. This is known as surface runoff. Other precipitation seeps into the ground and is stored as groundwater. Key Topic: Aquifer, Groundwater, Recharge, Water cycle Grade Level: This activity can be adapted for many age groups and settings Duration: 20 minutes Objectives Create a miniature terrarium that demonstrates the different phases of the water cycle. Identify the four basic elements (soil, water, sun light, and air) needed for plant/animal/human survival. Stress the importance of water as one of the four elements and the importance of having healthy water, soil, and air. Items Needed: • Plastic cups and lids • Seeds • Soil • Water • Gravel • Large spoons • Containers to hold water • Small jar filled with soil (optional) • Spray bottles • Small jar filled with water (optional) • Rubber bands (if lids are not available) • Small jar filled with air (optional) • Plastic wrap (if lids are not available) • Small jar filled with light (optional) www.groundwater.org 1-800-858-4844 Activity Steps: 1. Discuss the four essential elements or pass around four containers with water, soil, air, and light. -
Survey of Sustainable Development to Make Great Man-Made River Producing Energy and Food
Current World Environment Vol. 10(3), 758-763 (2015) Survey of Sustainable Development to Make Great Man-Made River Producing Energy and Food MOHAMED NASAR NASAR Department Of Applied Ecology, Futura, Singidunum, Belgrade, Serbia. http://dx.doi.org/10.12944/CWE.10.3.05 (Received: July 24, 2015; Accepted: October 21, 2015) ABSTRACT The Great Man-Made River (GMR) is the world largest irrigation project, consisting of a network of pipes that supplies water from Libyan desert in the south to the coastal areas in the north. This paper studies the possibility of taking advantage of GMR to generate energy and produce food through agriculture. Hydro-kinetic power generation, would be carried out by generating energy from water movements across Great Man-Made River pipelines using appropriate sizes of turbines. It’s known that the length of the GMR pipeline is about 4000 km with a diameter of 4 m. Pipeline of such magnitude with great water flow rate would make a turbine to produce hundreds of Kilowatts of clean energy. The most significant reasons that force us to take advantage of GMR to generate energy are: a) The needs to sustainable environmental energy source; b) Power System uses energy of flowing water to provide a consistent, controllable, non-weather-dependent source of electricity, such as other types of renewable energy, which are depend on the weather. The conversion of GMR, from supplying freshwater to coastal cities, to huge agricultural project after the establishment of many seawater desalination plants (solar powered) would cover the needs of cities for fresh water. -
Water Mining for a Pot of Gold Matthew Lindon, PE Utah Assistant State Engineer
Water Mining for a Pot of Gold Matthew Lindon, PE Utah Assistant State Engineer “In this arid state, a drop of water is like a drop of gold.” San Pete River Water User - 1967 There has long been hopeful speculation, particularly in arid Utah, of the existence of deep, untapped underground rivers, flowing with limitless, ancient water which will solve all of our water resource needs and fulfill someone’s get-rich-quick dreams. It is well established that there are isolated caches of ‘fossil water’, or paleo- groundwater around the world, that originated as precipitation and recharge many millennia ago when the climate and even the local geology were different. Changes in climate and geology can trap water in underground storage basins, sometimes without any further recharge or discharge. Prominent examples of these aquifers are; the Nubian Sandstone aquifer, the world’s largest fossil aquifer, underlying the Sahara desert and the Kalahari of northern Africa, with more than 120 billion acre-feet* of water, and the Ogallala aquifer located beneath the Great Plains of North America with 3 billion acre- feet of water in storage. The deposition of the Ogallala aquifer material dates back 2 to 6 million years, from late Miocene to the early Pliocene age when the southern Rocky Mountains were still tectonically active. Rivers and streams, from the uplands to the west, cut channels in a generally west to east or southeast direction. Erosion of the Rockies provided alluvial and Eolian sediment that filled the ancient channels and eventually covered the entire area of the present-day aquifer, forming the water-bearing Ogallala Formation.