Modern Recharge to Fossil Aquifers: Geochemical, Geophysical, and Modeling Constraints ⇑ M
Journal of Hydrology 403 (2011) 14–24 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Modern recharge to fossil aquifers: Geochemical, geophysical, and modeling constraints ⇑ M. Sultan a, , S. Metwally b, A. Milewski a, D. Becker a, M. Ahmed a, W. Sauck a, F. Soliman c, N. Sturchio d, E. Yan e , M. Rashed c, A. Wagdy f, R. Becker g, B. Welton a a Department of Geosciences, Western Michigan University, Kalamazoo, MI, USA b Desert Research Center, El Matariya, Cairo, Egypt c Suez Canal University, Department of Geology, Ismalia, Egypt d Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA e Environmental Science Division, Argonne National Laboratory, Argonne, IL, USA f Irrigations & Hydraulics Engineering Department, Cairo University, Giza, Egypt g University of Toledo, Department of Environmental Sciences, Toledo, OH, USA article info abstract Article history: The Nubian Sandstone (NSS) aquifer of northeast Africa is believed to have been recharged in previous Received 21 June 2010 wet climatic periods in the Quaternary Period. While this is largely true, we show using the Sinai Penin- Received in revised form 4 February 2011 sula as our test site that the aquifer is locally receiving modern recharge under the current dry climatic Accepted 22 March 2011 conditions. The validity of the advocated model was tested using geophysical (conventional electrical Available online 3 April 2011 resistivity [ER]) and isotopic (O, H) data, and estimates for modern recharge were obtained using contin- This manuscript was handled by L. Charlet, Editor-in-Chief, with the assistance of uous rainfall-runoff modeling over the period 1998–2007.
[Show full text]