Branches of Earth Science Section 2.1 Pg.36-41
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preprint Arxiv:1806.10939, 2018
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4 Manuscript under review for journal Solid Earth Discussion started: 15 January 2019 c Author(s) 2019. CC BY 4.0 License. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models Hugo K. H. Olierook1, Richard Scalzo2, David Kohn3, Rohitash Chandra2,4, Ehsan Farahbakhsh2,4, Gregory Houseman3, Chris Clark1, Steven M. Reddy1, R. Dietmar Müller4 5 1School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 2Centre for Translational Data Science, University of Sydney, NSW 2006 Sydney, Australia 3Sydney Informatics Hub, University of Sydney, NSW 2006 Sydney, Australia 4EarthByte Group, School of Geosciences, University of Sydney, NSW 2006 Sydney, Australia Correspondence to: Hugo K. H. Olierook ([email protected]) 10 Abstract. Traditional approaches to develop 3D geological models employ a mix of quantitative and qualitative scientific techniques, which do not fully provide quantification of uncertainty in the constructed models and fail to optimally weight geological field observations against constraints from geophysical data. Here, we demonstrate a Bayesian methodology to fuse geological field observations with aeromagnetic and gravity data to build robust 3D models in a 13.5 × 13.5 km region of the Gascoyne Province, Western Australia. Our approach is validated by comparing model results to independently-constrained 15 geological maps and cross-sections produced by the Geological Survey of Western Australia. By fusing geological field data with magnetics and gravity surveys, we show that at 89% of the modelled region has >95% certainty. The boundaries between geological units are characterized by narrow regions with <95% certainty, which are typically 400–1000 m wide at the Earth’s surface and 500–2000 m wide at depth. -
A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M. -
Molecular Biology for Computer Scientists
CHAPTER 1 Molecular Biology for Computer Scientists Lawrence Hunter “Computers are to biology what mathematics is to physics.” — Harold Morowitz One of the major challenges for computer scientists who wish to work in the domain of molecular biology is becoming conversant with the daunting intri- cacies of existing biological knowledge and its extensive technical vocabu- lary. Questions about the origin, function, and structure of living systems have been pursued by nearly all cultures throughout history, and the work of the last two generations has been particularly fruitful. The knowledge of liv- ing systems resulting from this research is far too detailed and complex for any one human to comprehend. An entire scientific career can be based in the study of a single biomolecule. Nevertheless, in the following pages, I attempt to provide enough background for a computer scientist to understand much of the biology discussed in this book. This chapter provides the briefest of overviews; I can only begin to convey the depth, variety, complexity and stunning beauty of the universe of living things. Much of what follows is not about molecular biology per se. In order to 2ARTIFICIAL INTELLIGENCE & MOLECULAR BIOLOGY explain what the molecules are doing, it is often necessary to use concepts involving, for example, cells, embryological development, or evolution. Bi- ology is frustratingly holistic. Events at one level can effect and be affected by events at very different levels of scale or time. Digesting a survey of the basic background material is a prerequisite for understanding the significance of the molecular biology that is described elsewhere in the book. -
Outline of Science
Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of -
Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA
Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA Company Overview Entrada Therapeutics is a biotechnology company dedicated to transforming the treatment of devastating diseases through the intracellular delivery of biologics. Entrada’s technology enables the efficient intracellular delivery of proteins, peptides and nucleic acids, thus allowing for the development of programs across several intracellular target classes. The Company’s novel approach addresses current challenges associated with both large and small molecule therapeutics and represents a fundamental advancement in the delivery of molecules into the cytosol. Entrada is comprised of experts and leaders in both biologics development and the rare disease space. In December 2018, Entrada closed a $59 million Series A from 5AM Ventures, MPM Capital, Roche Venture Fund, MRL Ventures Fund and Agent Capital. Position Summary Entrada is hiring for a highly motivated, collaborative and innovative Principal Scientist, specializing in pharmacokinetics and pharmacology to join the Company’s intracellular biologics discovery and development efforts. The candidate will work with a world-class, multidisciplinary team of drug discovery scientists and lead the in vitro and in vivo ADME, PK, PD and toxicokinetic efforts. Specifically, the candidate will design, manage and execute in vitro and in vivo programs both in- house and at contract research organizations. The candidate will also be responsible for analyzing, interpreting and modeling -
How Science Works
PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community. -
Internationalizing the University Curricula Through Communication
DOCUMENT RESUME ED 428 409 CS 510 027 AUTHOR Oseguera, A. Anthony Lopez TITLE Internationalizing the University Curricula through Communication: A Comparative Analysis among Nation States as Matrix for the Promulgation of Internationalism, through the Theoretical Influence of Communication Rhetors and International Educators, Viewed within the Arena of Political-Economy. PUB DATE 1998-12-00 NOTE 55p.; Paper presented at the Annual Meeting of the Speech Communication Association of Puerto Rico (18th, San Juan, Puerto Rico, December 4-5, 1998). PUB TYPE Reports Research (143) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *College Curriculum; *Communication (Thought Transfer); Comparative Analysis; *Educational Change; Educational Research; Foreign Countries; Global Approach; Higher Education; *International Education IDENTIFIERS *Internationalism ABSTRACT This paper surveys the current situation of internationalism among the various nation states by a comparative analysis, as matrix, to promulgate the internationalizing process, as a worthwhile goal, within and without the college and university curricula; the theoretical influence and contributions of scholars in communication, international education, and political-economy, moreover, become allies toward this endeavor. The paper calls for the promulgation of a new and more effective educational paradigm; in this respect, helping the movement toward the creation of new and better schools for the next millennium. The paper profiles "poorer nations" and "richer nations" and then views the United States, with its enormous wealth, leading technology, vast educational infrastructure, and its respect for democratic principles, as an agent with agencies that can effect positive consequences to ameliorating the status quo. The paper presents two hypotheses: the malaise of the current educational paradigm is real, and the "abertura" (opening) toward a better paradigmatic, educational pathway is advisable and feasible. -
Geodynamics If the Entire Solid Earth Is Viewed As a Single Dynamic
http://www.paper.edu.cn Geodynamic Processes and Our Living Environment YANG Wencai, P. Robinson, FU Rongshan and WANG Ying Geological Publishing House: 2001 Geophysical System Yang Wencai, Institute of Geology, CAGS, China Key words: Geophysics, geodynamics, kinetics of the Earth, tectonics, energies of the Earth, driving forces, applied geophysics, sustainable development. Contents: I. About geophysical system II. Kinetics of the Earth III. About plate tectonics and plume tectonics IV. The contents in the topic V. Energies for the dynamic Earth VI. Driving Forces of Plate Tectonics VII. Geophysics and sustainable development of the society I. About geophysical system Rapid advance of sciences during the second half of the twentieth century has enabled man to make a successful star in the exploration of planetary space. The deep interior of the Earth, however, remains as inaccessible as ever. This is the realm of solid-Earth geophysics, which still mainly depends on observations made at or near the Earth's surface. Despite this limitation, a major revolution in knowledge of the Earth's interior has taken place over the last forty years. This has led to a new understanding of the processes which occur within the Earth that produce surface conditions outstandingly different from those of the other inner planets and the moon. How has this come about? It is mainly the results of the introduction of new experimental and computational techniques into geophysics. Geophysics as a major branch of the geosciences has been discussed in Topic 6.16.1. Theoretically and traditionally the geophysical system correlates to physical system, but specified st study the solid Earth, containing sub-branches such as gravitation and Earth-motion correlated with 转载 1 中国科技论文在线 http://www.paper.edu.cn mechanics, geothermics correlated with heat and thermics, seismology with acoustics and wave theory, geoelectricity and geomagnetism. -
Chapter 2 the Solid Materials of the Earth's Surface
CHAPTER 2 THE SOLID MATERIALS OF THE EARTH’S SURFACE 1. INTRODUCTION 1.1 To a great extent in this course, we will be dealing with processes that act on the solid materials at and near the Earth’s surface. This chapter might better be called “the ground beneath your feet”. This is the place to deal with the nature of the Earth’s surface materials, which in later sections of the chapter I will be calling regolith, sediment, and soil. 1.2 I purposely did not specify any previous knowledge of geology as a prerequisite for this course, so it is important, here in the first part of this chapter, for me to provide you with some background on Earth materials. 1.3 We will be dealing almost exclusively with the Earth’s continental surfaces. There are profound geological differences between the continents and the ocean basins, in terms of origin, age, history, and composition. Here I’ll present, very briefly, some basic things about geology. (For more depth on such matters you would need to take a course like “The Earth: What It Is, How It Works”, given in the Harvard Extension program in the fall semester of 2005– 2006 and likely to be offered again in the not-too-distant future.) 1.4 In a gross sense, the Earth is a layered body (Figure 2-1). To a first approximation, it consists of concentric shells: the core, the mantle, and the crust. Figure 2-1: Schematic cross section through the Earth. 73 The core: The core consists mostly of iron, alloyed with a small percentage of certain other chemical elements. -
Application Scientist (M/F/D) Biophysical Methods
CAREERS JOIN OUR TEAM Application Scientist (m/f/d) Biophysical Methods Munich, Germany We are a growing provider of scientific instruments for the analysis of molecular interactions and are seeking highly motivated individuals to join our team as Application Scientists for our innovative heliX® biosensors. We welcome applications from high-potentials who want to use their innovative minds to realize novel biophysical assays and to push the limits of what is possible in biosensing. If you like: • applied science and collaborating with scientists, technical sales, software developers and engineers • advanced scientific instruments for high-end research challenges in academia and industry • conformational changes, molecular interactions and investigating binding kinetics, affinities, enzymatic activity, and thermodynamics of biomolecules • advancing a pioneering biosensing technology (switchSENSE®), developing new biophysical assays to fight cancer and other diseases, and being embedded at the forefront of next-generation drug development • being a technical expert who enjoys providing advice, training, and hands-on support • traveling and an international work environment And if you have: • a friendly personality with great team spirit • training in biophysics, physics, biochemistry, chemistry, molecular biology, biotechnology, or similar (MSc, or PhD level) • a positive, hands-on attitude combined with a relentless will to get things to work • excellent communication and presentation skills • the ability to manage several projects simultaneously -
The Effect of Using the History of Science in Science Lessons On
THE EFFECT OF USING THE HISTORY OF SCIENCE IN SCIENCE LESSONS ON MEANINGFUL LEARNING DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hayati Seker, MSc ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Arthur L. White, Adviser Professor Donna F. Berlin Adviser Professor Gordon Aubrecht College of Education Graduate Program ABSTRACT Incorporating the history of science into the instructional process has been proposed by national endeavors in science education because of the advantages for understanding scientific inquiry, the nature of scientific knowledge, interaction between science and society, and humanizing scientific knowledge. Because studies of the effectiveness of history of science in promoting student understanding report mixed results for student learning of science and interest in science, only its effect on understanding aspects of the nature of science has been emphasized by science educators. This dissertation presents a four-month study which investigated the effectiveness of curriculum materials incorporating the history of science on learning science, understanding the nature of science, and students’ interest in science. With regards to these objectives, three different class contexts were developed three main types of historical information: history of scientific concepts, the nature of science, and stories from scientists’ personal lives. In the first class context, which is termed the “Meaningful Class”, the similarities between students’ alternative ideas and scientific concepts from the history of science were considered in developing teaching materials. In the second ii context, which is termed the “Nature of Science (NOS) Class”, the teacher developed discussion sessions on the ways scientists produce scientific knowledge. -
In Vivo/Translational Biology Scientist
In Vivo/Translational Biology Scientist The Position Earli, Inc. is currently seeking high-caliber In Vivo Scientist candidates. About Earli The mission of the Biotechnology startup Earli Inc. is large and ambitious: to detect and then cure cancer at its earliest stages, effortlessly and pain free. In other words, ‘make cancer a benign experience’. The technology which grounds the company’s efforts ushers in a new era in “synthetic biomarkers” as a novel methodology to detect cancer and then subsequently localize and then treat the cancer. The enabling technology utilizes “synthetic biomarkers” as a novel methodology to detect, localize and ultimately destroy cancer. Founded by Sam Gambhir, Cyriac Roeding and David Suhy, the company is well funded by world-class entrepreneurs and venture capital firms. Earli, Inc. is currently based in the Biotech hub of South San Francisco. Who You Are • You share our same sense of dedication, scientific passion and entrepreneurial spirit. • You are technically gifted, with great hands on experience. • You work well in a fast-paced and extremely focused startup environment. • You are not only smart, but clever and constantly think outside the box. • You are able to make logical decisions in an instant when there is little time to evaluate. • You are a natural communicator and relationship builder. • You stay calm under high pressure and stress. • You have the ability to multi-task in a serious way, with an extreme attention to detail. • You become a representative of the core DNA of the company through who you are. Your Primary Responsibilities The In Vivo scientist position will be a key contributor to the overall mission at Earli.