Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italics refer to Figures; page numbers in bold refer to Tables. A batus 158 Arrhoges spp. Actinoceramus concentricus 11 A. arcuacheilos 158 Actinoperygii 91-92 A. diversicostata 158 Alepisauriformes 94, 97 Ascodinium sp. 11 Elopomorpha 92, 96 A. serratum 11 Ichthyodectiformes 86, 92-94, 96-97 Asterosoma 24 Teleostei 94 Astrapotheria 179 Aeneator tawsi 158 Atherospermataceae 52 Agathoxylon 66 Atherospermoxylon bulboradiatum 70 Albuliformes 86 Atlantic Gateway 58 Alepisauriformes 94, 97 Aucellina 11 Alexander Island 64 Albian flora 68 Baculites 15 stratigraphy 65 belemnites 11 ammonites 11,14, 23 bennettitaleans 68, 69 angiosperms see leaf fossils also wood fossils Bibby Point Member 11,12,15 Anisodonta subovata 158 birds of the A. nordenskjoeldi biozone 159 Antarctiberyx seymouri 86, 94 bivalves 11,13,14, 23, 30 Antarctic Peninsula of the A. nordenskjoeldi biozone 158 floristic record 65--66 body size, climatic significance of 183-185 Cretaceous 66-74 bony fish see Osteichthyes Neogene 74-76 Botany Bay Group, fossil wood 66 Palaeogene 74 Botula pirriei 158 formation of 1 Bouchardia 158 geological setting 64-65 brachiopods 11,14, 23 Antarctodolops dailyi see Polydolops dailyi Brandy Bay Member 9,10,12,11-14,16,17 Antarctohoges Brassospora 72 A. arcuacheilos 158 bread-crust bombs 25, 43 A. diversicostata 158 bryophytes 69, 75 Antarctoxylon spp. 70, 71 bryozoans 11, 14, 24 A. heterosporosum 70 BuUa glacialis 158 A. junglandoides 70 A. livingstonensis 70 Callorhinchus sp. 113,114,115, 120 A. multiseriatum 70 Canninginopsis denticulata 15 A. uniperforatum 70 Cape Melville Formation 188 Anthropornis spp. 151,152 Carcharias sp. 88, 89 A. grandis 151,157 Celliana feldmanni 158 A. nordenskjoeldi 145,147,151,157 Cerro Negro Formation 65, 66 A. nordenskjoeldi biozone 147,157-159 cetaceans of the A. nordenskjoeldi biozone 159 Anthropornithinae see penguins Chester Cone Formation 65 Apateodus 86, 97 Chimaera zangerli 85-86, 97 Aptea sp. 13 Chimaeridae 113,114,115 4°Ar/39Ar dating, James Ross Island Volcanic Group Chlamydoselachus spp. 192 C. anguineus 88, 95 Araliaephyllum 68 C. thomsoni 86, 87, 95 Araucaria spp. Chlamys sp. 158 A. marenssi 72 Chondrichthyes 113, 114,115 A. nathorstii 72 Chopin Ridge Group 65 Araucariaceae 68, 70,136 Clavatipollenites 68 Archaeospheniscus spp. climate-leaf analysis multivariate programme A. lopdelli 154-155,157 (CLAMP) 183 A. wimani 157 in palaeoclimate analysis Arctic, Cretaceous climate compared 58 method 55 Arcuatula sootryeni 158 results 56 Aristonectes 120 Cockburn Island Formation 188 From: FRANCIS, J. E., PIRRIE, D. & CRAME, J. A. (eds) 2006. Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society, London, Special Publications, 258,201-206. 0305-8719/06/$15 © The Geological Society of London 2006. 202 INDEX Colbert Formation 65 Enchodus sp. 86, 97,113,115,116,120 Colobanthus quietensis 76 E. ferox 94 Cominella ottoi 158 Endoceratium ludbrookiae 15 conifers, deciduous v. evergreen 68-69 Eocene Conosphaeridium striatoconus 15 faunas compared with Patagonia 180-181 contourites 32 body size and thermal strategy 183-185 corals 24 diversity 183 Cosmasyrinx brychiosinus 158 sample bias 182-183 Crabeater Point Beds 65 stratigraphy see La Meseta Formation Cretaceous vertebrate fossils 177-178 floral fossil record 65-66 see penguins; Sparnatheriodontids; Aptian-Albian 66--69 Sudamerica ameghinoi Campanian-Maastrichtian 71-74 equisetites 68, 69 Cenomanian-Santonian 69-71 Eucrossorhinus 89 stratigraphy 110-112 Eucryphyioxylon eucryphiodes 70 Hidden Lake Formation 9, 9,11,12,14-15, Eurhomalea ftorentinoi 158 23-25 Ezcurra Inlet Group 65 summary 15-17 Whisky Bay Formation 10,11-14,12 facies analysis and associations vertebrate palaeontology Hidden Lake Formation history of research 112 conglomerates 26 systematics 113-120 cross-bedded sandstones 31-33 Cretascyllium 89 graded sandstones 33 Cretorectolobus 89 pebbly sandstones 26-27 Cribroperidinium edwardsii 11 sediment sheets 31 Cross Valley Formation 65,127,130,137,147,167 stratified sandstones 27-28, 29 Eocene flora 183 thick sandstones 28-29, 30 first studied 1 thin sandstones 29-31 Cucullaea donaldi 158 Hobbs Glacier Formation 190 Cunoniaceae 52, 70 James Ross Island Volcanic Group 190 Cupressaceae 74,136 La Meseta Formation 127-129,146,149-150 Cyatheacidites 66 ferns 68, 69, 74, 75 Cyathidites 11, 66 Ferugliotherium 135 Cyrtochetus bucciniformis 158 Ficophyllum 68 Fildes Peninsula Group 65 Dacrydium 71, 74 Finlandia Formation 65 Delphinornis spp. fish fossils 159 D. arctowski 153,157 L6pez de Bertodano Formation, teleosts 94 D. gracilis 157 Santa Marta Formation D. larseni 153,157 Actinoperygii 91-94, 96-97 density flows 26, 27, 29, 31, 32, 40 Holocephalians 85-86 Dentalium pulchrum 158 Neoselachians 86-91, 95-96 Derorhynchidae 179 Foersterichnus rossensis 24 Derorhynchus minutus 179 Fuscospora 72 Deschampsia antarctica 76 Fusinus suraknisos 158 diamictite see Hobbs Glacier Formation gastropods 14, 23,158 Diconodinium multispinum 11 Gaudryceras 15 Dicotylophyllum 68 General Circulation Model (GCM) 59 Didelphimorphia 179 Gin Cove Member 9,15 Didymaulichnus 24 ginkopsids 68, 69 Dilleniaceae 136 glacigenic sediments see Hobbs Glacier dinoflagellates 13,15 Formation Dufayel Island Group 65 Gondwanatheria 135-136,179 dykes 137 see also Sudamerica ameghinoi graphic logs, Hidden Lake Formation 35, 36, 38, 39 Eights, James 63 Gunnarites antarcticus 111 Elaeocarpaceae 52 Gustav Group Elasmisauridae 113,115,116-117,120-121 distribution maps 8, 9, 24, 50, 84,110 Elatocladus sp. 67 fossils 66 Electroma notiala 158 stratigraphy 1, 7, 9,17, 23, 83, 95 Elgar Formation 65 see also Hidden Lake Formation; Kotick Point Elopomorpha 92, 96 Formation; Lagrelius Point Formation; Enchodontidae 113,115, 116 Whisky Bay Formation INDEX 203 Hamamelidae 71 James Ross Island 2, 50, 101,102,110 Hamilton Point (James Ross Island) 191 first visitors 1 Haq sea-level curve 131 Neogene stratigraphy 192 Haslum Crags Member 111 James Ross Island Volcanic Group 10, 84,193, Hedycaryoxylon sp. 71 198 H. tambourissoides 70 distribution map 189 Helminthoida 30 facies associations 190 Herbert Sound Member 85, 86, 88, 89, 90, 91, 92, 97 lithofacies interpretations 193 Heteroglyphis dewoletzky 163,172 lithostratigraphy 196-197 Hexanchidae 113,114,115 stratigraphy 190-193 Hexanchiformes 86-88, 95 Josepha ottoi 158 Hiatella tenuis 158 Hidden Lake Formation 9, 9,10,12, 14-15,17, 22, 24, K/T boundary 111 65, 69, 71, 72 Kaitoa schmitti 158 depositional environments Karlsen Cliffs Member 111 base of slope 33-34 King George Island 64 basin floor 38-40 Palaeogene flora 74 fan-delta 34-38 stratigraphy 65, 188 evolution of deposition 40-41, 42 King George Island Supergroup 65 facies analysis Kotick Point Formation 9, 9,15, 22, 24, 65 conglomerates 26 cross-bedded sandstones 31-33 La Meseta Formation 65,137,145,167 graded sandstones 33 age 129,149 pebbly sandstones 26-27 facies associations 127-129,146,149-150 sediment sheets 31 faunas compared with Patagonia 180-181 stratified sandstones 27-28, 29 body size and thermal strategy 183--185 thick sandstones 28-29, 30 diversity 183 thin sandstones 29-31 sample bias 182-183 flora 51, 52 first studied 1 palaeocurrent record 28 fossils see penguins; Sparnatheriodontids; provenance 25-26 Sudamerica ameghinoi sedimentology50-51 graphic log 148 stratigraphy 23-25 impact of sea level on 130,131 tectonic setting 41-43 mammal fauna 136,178,179 volcanic setting 43 map 147 Himalia Ridge Formation 65 stratigraphy 126-127 Hobbs Glacier Formation Lachman Crags Member 85, 86, 88, 90, 91, 92, 97 distribution map 189 Lagrelius Point Formation 9, 9, 22, 24, 65 facies associations 190 Lamniformes 88-89, 95-96 lithostratigraphy 193,194-196 lapilli 43 provenance 198 Larsen Basin 1, 22-23,125,126 stratigraphy 188 stratigraphy 65 Holocephalians 85-86 Lauraceae 52,136 humerus, basis of penguin systematics 150,151,152 Laurelites jamesrossii 70 hummocky cross stratification 30 leaf fossils hyaloclastite 190,191 Cretaceous flora 51-53 Hydrocotyllophyllus 68 first recorded 49 preservation 51 Ichthyodectiformes 92-94, 96-97 use as palaeoclimate indicators 136,183 Illicioxylon spp. methods of analysis 53-56 I. antarcticum 70 results 56-59 1. tenuradiatum 70 Leiodon sp. 104,105,113,120,121 Inoceramus spp. Lenitrophon suteri 158 I. australis 14,15 Lewis Hill Member 10,11,12 I. carsoni 15 lichens 76 I. inaequivalvis 14 Lingula antarctica 158 I. neocalidonicus 14,15 Litopterna 179 inverse grading 33 see also Sparnotheriodontids Isabelidinium glabrum 11,13 liverworts 68 Ischyodus dolloi 85, 86 Livingston Island 64 Isurus 91 stratigraphy 65 James Ross Basin 125,126 lizards (marine) see Mosasaurinae formation of 1 Llanocetus denticrenatus 159 204 INDEX L6pez de Bertodano Formation nearest living relative (NLR) technique distribution maps 127,137,147,167 in palaeoclimate analysis fossils 111-112 methods 53 fish 86, 91, 94, 97 results 56 mosasaurs 103,104, 105,107 Neogene stratigraphy 9, 24, 65, 84 floral fossil record 74-76 Lophozonia 72 glacial climate 187 lycophytes 69, 75 glacier character 187-188 stratigraphy see James Ross Island Volcanic Group Maccoyella 16 Neoselachians 86, 87, 90, 91 Macrauchenia 163 Hexanchiformes 86-88, 95 Magnoliales 51 Lamniformes 88-89, 95-96 Magnolidae 71 Squatiniformes 89, 96 Mammalia (mammals) Synechodontiformes 89-91, 96 of A. nordenskjoeldi biozone 159 Neptune Glacier Formation 65 of La Meseta Formation 177-178,178-180 Nordenskj61d palaeoflora 183 see also Sparnotheriodontidae also Sudamerica Nordenskjold Formation 65 ameghinoi Nordenskj61d, Otto 1 Marambio Group Nothofagaceae 52,136 distribution maps 12, 50,110 Nothofagidites sp. 71 fossils N. senectus 71 mammals 177-178,178-180 Nothofagoxylon spp. wood 66 N. aconcaguaense 70 stratigraphy 2, 7, 9, 9,17, 23, 24, 83, 84, 85 N. corrugatus 70 see also L6pez de Bertodano Formation; Santa N. kraeuseli 70 Marta Formation; Snow Hill Island N. mendendezii 70 Formation N. ruei 70 Marambio Island see Seymour Island N. sclariforme 70 Marambiornis exilis 157 N. triseriatum 70 Marambiotherium glacialis 179 Nothofagus 71, 74, 75,183 Marsupialia 179 Notidanodon spp. Maytenus 75 N. dentatus 86, 87, 95,113,114,115 Megalops atlanticus 92 N.
Recommended publications
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • (Squamata: Mosasauridae) from the Late Cretaceous Of
    C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles.
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]
  • Palaeontology and Stratigraphy of the Inoceramid Species from the Mid-Turonian Through Upper Middle Coniacian in Japan
    Acta Geologica Polonica, Vol. 48 (1998), No.4, pp. 435-482 Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan MASAYUKI NODAl & TATSURO MATSUMOT02 IFukagochi 5kumi, Oita 870-0881, Japan 2c/O Department of Earth & Planetary Science, Kyushu University 33, Fukuoka 812, Japan ABSTRACT: NODA, M. & MATSUMOTO, T. 1998. Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan. Acta Geologica Polonica, 48 (4),435-482. Warszawa. Upper Cretaceous strata are weIl exposed in many areas of Japan, although good exposures through the Turonian/Coniacian boundary are not common. This paper focuses on six areas in Hokkaido, Shikoku and Kyushu and documents the stratigraphical distributions of inoceramid species. These data are used to summarise the stratigraphical ranges of Turonian/Coniacian taxa in Japan. In part 1 of the paper, 17 species are described, with some biometric data and phylogenetic interpretation. These species are: Inoceramus (1noceramus) hobetsensis NAGAO & MATSUMOTO, I. (1.) teshioensis NAGAO & MATSUMOTO, 1. (1.) iburiensis NAGAO & MATSUMOTO, I. (1.) tenuistriatus NAGAO & MATSUMOTO, I. (1.) pedalionoides NAGAO & MATSUMOTO, I. (1.) lusatiae ANDERT, I. (1.) uwajimensis YEHARA, I. (Cremnoceramus) rotun­ datus FIEGE, I. (Cr.) ernsti HEINZ, I. (Cr.) deformis MEEK, I. (Cr.) lueckendorfensis TRaGER, I. (Platyceramus) tappuensis nom. nov., I. (Pl.) szaszi NODA & UCHIDA, I. (Volviceramus) koeneni MULLER, Mytiloides incertus (JI!VlBO), M. mytiloidiformis (TRaGER), and M. sublabiatus (MULLER). In part 2, the stratigraphical distribution and correlation of these species are discussed. INTRODUCTION boundary problem (MATSUMOTO & NODA 1985; NOD A 1992, 1996; NOD A & UCHIDA 1995).
    [Show full text]
  • Russellosaurus Coheni N. Gen., N. Sp., a 92 Million-Year-Old Mosasaur from Texas (USA), and the Definition of the Parafamily Russellosaurina
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 321 - 333 | 2005 Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina M.J. Polcyn1'* & G.L. Bell Jr.2 1 Shuler Museum of Paleontology, Southern Methodist University, Dallas, Texas 75275, USA. 2 Guadalupe Mountains National Park, Salt Flat, Texas 79847, USA. * Corresponding author. Email: [email protected] Manuscript received: November 2004; accepted: January 2005 Abstract A new mosasaur, Russellosaurus coheni, is described from the Collignoniceras woollgari Zone (lower Middle Turonian) at Cedar Hill, Dallas County, Texas. At approximately 92 Ma, it is the oldest well-preserved mosasaur skull from North America. It possesses characters diagnostic of Plioplatecarpinae but retains numerous plesiomorphies as well. Phylogenetic analysis indicates a close relationship with Yaguarasaurus columbianus, and these two, together with Tethysaurus nopcsai, form a clade that occupies a position basal to the divergence of the subfamilies Tylosaurinae and Plioplatecarpinae. Russellosaurus coheni is proposed as the nominal taxon of a new mosasaur clade, parafamily taxon novum Russellosaurina, which includes Plioplatecarpinae, Tylosaurinae, their common ancestor and all descendants. Tethysaurus retains a plesiopedal limb and girdle morphology, and along with Russellosaurus and Yaguarasaurus, cranial plesiomorphies. Dallasaurus turneri, a temporally and geographically sympatric plesiopedal mosasaur, occupies a basal position within Mosasaurinae. This phyletic arrangement confirms that marine adaptations, such as development of paddle-like limbs, occurred independently in at least two lineages of mosasaurs, once within Mosasaurinae and once within Russellosaurina. Keywords: Mosasaur, Plioplatecarpinae, Tethysaurus, Turonian, Yaguarasaurus Introduction knowledge of the early evolutionary history of the group.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • At the Root of the Early Penguin Neck: a Study of the Only Two Cervicodorsal Spines Recovered from the Eocene of Antarctica Piotr Jadwiszczak
    RESEARCH/REVIEW ARTICLE At the root of the early penguin neck: a study of the only two cervicodorsal spines recovered from the Eocene of Antarctica Piotr Jadwiszczak Institute of Biology, University of Bialystok, Swierkowa 20B, PL-15-950, Bialystok, Poland Keywords Abstract Antarctic Peninsula; La Meseta Formation; Palaeogene; early Sphenisciformes; The spinal column of early Antarctic penguins is poorly known, mainly due to cervicodorsal vertebrae. the scarcity of articulated vertebrae in the fossil record. One of the most interesting segments of this part of the skeleton is the transitional series located Correspondence at the root of the neck. Here, two such cervicodorsal series, comprising rein- Piotr Jadwiszczak, Institute of Biology, terpreted known material and a new specimen from the Eocene of Seymour University of Bialystok, Swierkowa 20B, Island (Antarctic Peninsula), were investigated and contrasted with those PL-15-950 Bialystok, Poland. of modern penguins and some fossil bones. The new specimen is smaller E-mail: [email protected] than the counterpart elements in recent king penguins, whereas the second series belonged to a large-bodied penguin from the genus Palaeeudyptes. It had been assigned by earlier researchers to P. gunnari (a species of ‘‘giant’’ penguins) and a Bayesian analysis*a Bayes factor approach based on size of an associated tarsometatarsus*strongly supported such an assignment. Morphological and functional studies revealed that mobility within the aforementioned segment probably did not differ substantially between extant and studied fossil penguins. There were, however, intriguing morphological differences between the smaller fossil specimen and the comparative material related to the condition of the lateral excavation in the first cervicodorsal vertebra and the extremely small size of the intervertebral foramen located just prior to the first ‘‘true’’ thoracic vertebra.
    [Show full text]
  • Correlation of Albian European and Tethyan Ammonite Zonations and the Boundaries of the Albian Stage and Substages: Some Comments
    Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments Hugh G. Owen Owen, H.G. Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments. — Scripta Geol., Spec. Issue 3: 129-149, 5 figs., Lei• den, December 1999. H.G. Owen, Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, England (UK). Key words: Early Cretaceous, Albian Stage, ammonite zonation, European and Tethyan faunal provinces Although the so-called 'standard' ammonite zonation of the Albian contains index species which occur in the Tethyan province, the scheme largely reflects the faunal succession in the European fau• nal province with its endemic sonneratiinid and hoplitinid faunal elements. Workers in the Tethyan province, stretching from South America in the west to Australia in the east, including southern Africa, Madagascar and India, face problems in the correlation of their successions with this so-called 'standard' scheme. There are other problems in that the succession of hoplitinid ammonites used in the biostratigraphy of European Albian sediments allows a far more detailed zonation to be made than in the case of some of the longer time-ranging Tethyan forms. This paper comments on propos• als made recently for the delimiting of the base of the Albian Stage, and the Middle and Upper Sub- stages, based on ammonite faunas. New information which affects the Albian ammonite zonation in the European faunal province and its correlation with the Tethyan province is discussed. The current hierarchical framework of zones and subzones used in the European faunal province may prove to be unsatisfactory in interprovincial correlation and particularly if the lower boundary of the Albian Stage was placed within the current Leymeriella tardefurcata ammonite Zone, instead of at its base.
    [Show full text]
  • (Ypresian, Eocene) of the Cucullaea I Allomember, La Meseta Formation, Seymour (Marambio) Island, Antarctica
    Rev. peru. biol. 19(3): 275 - 284 (Diciembre 2012) © Facultad de Ciencias Biológicas UNMSM Weddellian marine/coastal vertebrates diversity from Seymour Island,ISSN Antarctica 1561-0837 Weddellian marine/coastal vertebrates diversity from a basal horizon (Ypresian, Eocene) of the Cucullaea I Allomember, La Meseta formation, Seymour (Marambio) Island, Antarctica Diversidad de vertebrados marino costeros de la Provincia Weddelliana en un horizonte basal (Ypresiano, Eoceno) del Alomiembro Cucullaea I, Formación La Meseta, isla Seymour (Marambio), Antártida Marcelo A. Reguero1,2,3,*, Sergio A. Marenssi1,3 and Sergio N. Santillana1 Abstract 1 Instituto Antártico Argentino, Ce- rrito 1248, C1010AAZ Ciudad Au- The La Meseta Formation crops out in Seymour/Marambio Island, Weddell Sea, northeast of the Antarctic tónoma de Buenos Aires, Argentina. Peninsula and contains one of the world's most diverse assemblages of Weddellian marine/coastal verte- 2 División Paleontología de Verte- brates of Early Eocene (Ypresian) age. The La Meseta Formation is composed of poorly consolidated, marine brados, Museo de La Plata, Paseo sandstones and siltstones which were deposited in a coastal, deltaic and/or estuarine environment. It includes del Bosque s/n, B1900FWA, La Plata, Argentina. marine invertebrates and vertebrates as well as terrestrial vertebrates and plants. The highly fossiliferous basal 3 Consejo Nacional de Investi- horizon (Cucullaea shell bed, Telm 4 of Sadler 1988) of the Cucullaea I Allomember is a laterally extensive shell gaciones Científicas y Técnicas, bed with sandy matrix. The fish remains, including 35 species from 26 families, of the YpresianCucullaea bed Argentina (CONICET). represent one of the most abundant and diverse fossil vertebrate faunas yet recorded in southern latitudes.
    [Show full text]
  • Albian Black Flysch Group Deposits) and Vation of the Abundant Organic Input
    Syntectonic deposits and punctuated limb rotation in an Albian submarine transpressional fold (Mutriku village, Basque-Cantabrian basin, northern Spain) L.M. Agirrezabala* Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain H.G. Owen Natural History Museum, Cromwell Road, London SW7 5BD, UK J. GarcõÂa-MondeÂjar Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain ABSTRACT strata and angular unconformity geome- Cenozoic foreland basins. Fewer cases have tries, temporal variation of deformation been reported from strike-slip basins. Field Deep-water syntectonic deposits and an- rates, and bedding-parallel faulting indi- and modeling studies support two contrasting, gular unconformities record the denudation cate folding by progressive limb rotation geometrically based kinematic models: instan- and deformation history of the middle Cre- and associated ¯exural slip. Local northwest- taneous limb rotation and progressive limb ro- taceous Aitzeta structure, interpreted here southeast compression is deduced in for- tation. The former model is based upon kink- as a monoclinal syncline associated with the mation of the Aitzeta syncline. The pres- band migration and displays constant dips on high-angle reverse Mutriku fault (Basque- ence of bedding-parallel oblique faulting the fold limbs (Suppe, 1983; Suppe et al., Cantabrian basin, northern Spain). Sedi- and minor drag folds suggests a component 1997). The second model produces limb ro- mentological and structural analyses, com- of right-oblique movement along the Mu- tation and increasing limb dips during growth bined with a precise chronostratigraphy triku fault. (Riba, 1976; Holl and Anastasio, 1993; Hardy based on ammonites, permit us to docu- and Poblet, 1994; VergeÂs et al., 1996; Schnei- ment in detail the history of this syncline Keywords: Albian, Basque, folding, rates, during ;0.53 m.y.
    [Show full text]
  • Phylogenetic Characters in the Humerus and Tarsometatarsus of Penguins
    vol. 35, no. 3, pp. 469–496, 2014 doi: 10.2478/popore−2014−0025 Phylogenetic characters in the humerus and tarsometatarsus of penguins Martín CHÁVEZ HOFFMEISTER School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, United Kingdom and Laboratorio de Paleoecología, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile <[email protected]> Abstract: The present review aims to improve the scope and coverage of the phylogenetic matrices currently in use, as well as explore some aspects of the relationships among Paleogene penguins, using two key skeletal elements, the humerus and tarsometatarsus. These bones are extremely important for phylogenetic analyses based on fossils because they are commonly found solid specimens, often selected as holo− and paratypes of fossil taxa. The resulting dataset includes 25 new characters, making a total of 75 characters, along with eight previously uncoded taxa for a total of 48. The incorporation and analysis of this corrected subset of morphological characters raise some interesting questions consider− ing the relationships among Paleogene penguins, particularly regarding the possible exis− tence of two separate clades including Palaeeudyptes and Paraptenodytes, the monophyly of Platydyptes and Paraptenodytes, and the position of Anthropornis. Additionally, Noto− dyptes wimani is here recovered in the same collapsed node as Archaeospheniscus and not within Delphinornis, as in former analyses. Key words: Sphenisciformes, limb bones, phylogenetic analysis, parsimony method, revised dataset. Introduction Since the work of O’Hara (1986), the phylogeny of penguins has been a sub− ject of great interest. During the last decade, several authors have explored the use of molecular (e.g., Subramanian et al.
    [Show full text]
  • Eocene Birds from the Western Margin of Southernmost South America Michel A
    Journal of Paleontology, 84(6), 2010, p. 1061–1070 Copyright ’ 2010, The Paleontological Society 0022-3360/10/0084-1061$03.00 EOCENE BIRDS FROM THE WESTERN MARGIN OF SOUTHERNMOST SOUTH AMERICA MICHEL A. SALLABERRY,1 ROBERTO E. YURY-YA´ N˜ EZ,1 RODRIGO A. OTERO,1,2 SERGIO SOTO-ACUN˜ A,1 AND TERESA TORRES G.3 1Laboratorio de Zoologı´a de Vertebrados, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, N˜ un˜oa, Santiago de Chile, ,[email protected]., ,[email protected]., ,[email protected].; 2Consejo de Monumentos Nacionales, A´ rea Patrimonio Natural, Vicun˜a Mackenna 084, Providencia, Santiago de Chile, ,[email protected].; and 3Facultad de Ciencias Agrono´micas, Universidad de Chile, Santa Rosa 11315, Santiago de Chile, ,[email protected]. ABSTRACT—This study presents the first record of Eocene birds from the western margin of southernmost South America. Three localities in Magallanes, southern Chile, have yielded a total of eleven bird remains, including Sphenisciformes (penguins) and one record tentatively assigned to cf. Ardeidae (egrets). Two different groups of penguins have been recognized from these localities. The first group is similar in size to the smallest taxa previously described from Seymour Island, Marambiornis Myrcha et al., 2002, Mesetaornis Myrcha et al., 2002, and Delphinornis Wiman, 1905. The second recognized group is similar in size to the biggest taxa from Seymour Island; based on the available remains, we recognize the genus Palaeeudyptes Huxley, 1859, one of the most widespread penguin genera in the Southern Hemisphere during the Eocene. The stratigraphic context of the localities indicates a certain level of correlation with the geological units described on Seymour Island.
    [Show full text]