Back Matter (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000. -
(Squamata: Mosasauridae) from the Late Cretaceous Of
C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles. -
Download Full Article in PDF Format
comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K. -
Palaeontology and Stratigraphy of the Inoceramid Species from the Mid-Turonian Through Upper Middle Coniacian in Japan
Acta Geologica Polonica, Vol. 48 (1998), No.4, pp. 435-482 Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan MASAYUKI NODAl & TATSURO MATSUMOT02 IFukagochi 5kumi, Oita 870-0881, Japan 2c/O Department of Earth & Planetary Science, Kyushu University 33, Fukuoka 812, Japan ABSTRACT: NODA, M. & MATSUMOTO, T. 1998. Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan. Acta Geologica Polonica, 48 (4),435-482. Warszawa. Upper Cretaceous strata are weIl exposed in many areas of Japan, although good exposures through the Turonian/Coniacian boundary are not common. This paper focuses on six areas in Hokkaido, Shikoku and Kyushu and documents the stratigraphical distributions of inoceramid species. These data are used to summarise the stratigraphical ranges of Turonian/Coniacian taxa in Japan. In part 1 of the paper, 17 species are described, with some biometric data and phylogenetic interpretation. These species are: Inoceramus (1noceramus) hobetsensis NAGAO & MATSUMOTO, I. (1.) teshioensis NAGAO & MATSUMOTO, 1. (1.) iburiensis NAGAO & MATSUMOTO, I. (1.) tenuistriatus NAGAO & MATSUMOTO, I. (1.) pedalionoides NAGAO & MATSUMOTO, I. (1.) lusatiae ANDERT, I. (1.) uwajimensis YEHARA, I. (Cremnoceramus) rotun datus FIEGE, I. (Cr.) ernsti HEINZ, I. (Cr.) deformis MEEK, I. (Cr.) lueckendorfensis TRaGER, I. (Platyceramus) tappuensis nom. nov., I. (Pl.) szaszi NODA & UCHIDA, I. (Volviceramus) koeneni MULLER, Mytiloides incertus (JI!VlBO), M. mytiloidiformis (TRaGER), and M. sublabiatus (MULLER). In part 2, the stratigraphical distribution and correlation of these species are discussed. INTRODUCTION boundary problem (MATSUMOTO & NODA 1985; NOD A 1992, 1996; NOD A & UCHIDA 1995). -
Russellosaurus Coheni N. Gen., N. Sp., a 92 Million-Year-Old Mosasaur from Texas (USA), and the Definition of the Parafamily Russellosaurina
Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 321 - 333 | 2005 Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina M.J. Polcyn1'* & G.L. Bell Jr.2 1 Shuler Museum of Paleontology, Southern Methodist University, Dallas, Texas 75275, USA. 2 Guadalupe Mountains National Park, Salt Flat, Texas 79847, USA. * Corresponding author. Email: [email protected] Manuscript received: November 2004; accepted: January 2005 Abstract A new mosasaur, Russellosaurus coheni, is described from the Collignoniceras woollgari Zone (lower Middle Turonian) at Cedar Hill, Dallas County, Texas. At approximately 92 Ma, it is the oldest well-preserved mosasaur skull from North America. It possesses characters diagnostic of Plioplatecarpinae but retains numerous plesiomorphies as well. Phylogenetic analysis indicates a close relationship with Yaguarasaurus columbianus, and these two, together with Tethysaurus nopcsai, form a clade that occupies a position basal to the divergence of the subfamilies Tylosaurinae and Plioplatecarpinae. Russellosaurus coheni is proposed as the nominal taxon of a new mosasaur clade, parafamily taxon novum Russellosaurina, which includes Plioplatecarpinae, Tylosaurinae, their common ancestor and all descendants. Tethysaurus retains a plesiopedal limb and girdle morphology, and along with Russellosaurus and Yaguarasaurus, cranial plesiomorphies. Dallasaurus turneri, a temporally and geographically sympatric plesiopedal mosasaur, occupies a basal position within Mosasaurinae. This phyletic arrangement confirms that marine adaptations, such as development of paddle-like limbs, occurred independently in at least two lineages of mosasaurs, once within Mosasaurinae and once within Russellosaurina. Keywords: Mosasaur, Plioplatecarpinae, Tethysaurus, Turonian, Yaguarasaurus Introduction knowledge of the early evolutionary history of the group. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
At the Root of the Early Penguin Neck: a Study of the Only Two Cervicodorsal Spines Recovered from the Eocene of Antarctica Piotr Jadwiszczak
RESEARCH/REVIEW ARTICLE At the root of the early penguin neck: a study of the only two cervicodorsal spines recovered from the Eocene of Antarctica Piotr Jadwiszczak Institute of Biology, University of Bialystok, Swierkowa 20B, PL-15-950, Bialystok, Poland Keywords Abstract Antarctic Peninsula; La Meseta Formation; Palaeogene; early Sphenisciformes; The spinal column of early Antarctic penguins is poorly known, mainly due to cervicodorsal vertebrae. the scarcity of articulated vertebrae in the fossil record. One of the most interesting segments of this part of the skeleton is the transitional series located Correspondence at the root of the neck. Here, two such cervicodorsal series, comprising rein- Piotr Jadwiszczak, Institute of Biology, terpreted known material and a new specimen from the Eocene of Seymour University of Bialystok, Swierkowa 20B, Island (Antarctic Peninsula), were investigated and contrasted with those PL-15-950 Bialystok, Poland. of modern penguins and some fossil bones. The new specimen is smaller E-mail: [email protected] than the counterpart elements in recent king penguins, whereas the second series belonged to a large-bodied penguin from the genus Palaeeudyptes. It had been assigned by earlier researchers to P. gunnari (a species of ‘‘giant’’ penguins) and a Bayesian analysis*a Bayes factor approach based on size of an associated tarsometatarsus*strongly supported such an assignment. Morphological and functional studies revealed that mobility within the aforementioned segment probably did not differ substantially between extant and studied fossil penguins. There were, however, intriguing morphological differences between the smaller fossil specimen and the comparative material related to the condition of the lateral excavation in the first cervicodorsal vertebra and the extremely small size of the intervertebral foramen located just prior to the first ‘‘true’’ thoracic vertebra. -
Correlation of Albian European and Tethyan Ammonite Zonations and the Boundaries of the Albian Stage and Substages: Some Comments
Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments Hugh G. Owen Owen, H.G. Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments. — Scripta Geol., Spec. Issue 3: 129-149, 5 figs., Lei• den, December 1999. H.G. Owen, Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, England (UK). Key words: Early Cretaceous, Albian Stage, ammonite zonation, European and Tethyan faunal provinces Although the so-called 'standard' ammonite zonation of the Albian contains index species which occur in the Tethyan province, the scheme largely reflects the faunal succession in the European fau• nal province with its endemic sonneratiinid and hoplitinid faunal elements. Workers in the Tethyan province, stretching from South America in the west to Australia in the east, including southern Africa, Madagascar and India, face problems in the correlation of their successions with this so-called 'standard' scheme. There are other problems in that the succession of hoplitinid ammonites used in the biostratigraphy of European Albian sediments allows a far more detailed zonation to be made than in the case of some of the longer time-ranging Tethyan forms. This paper comments on propos• als made recently for the delimiting of the base of the Albian Stage, and the Middle and Upper Sub- stages, based on ammonite faunas. New information which affects the Albian ammonite zonation in the European faunal province and its correlation with the Tethyan province is discussed. The current hierarchical framework of zones and subzones used in the European faunal province may prove to be unsatisfactory in interprovincial correlation and particularly if the lower boundary of the Albian Stage was placed within the current Leymeriella tardefurcata ammonite Zone, instead of at its base. -
(Ypresian, Eocene) of the Cucullaea I Allomember, La Meseta Formation, Seymour (Marambio) Island, Antarctica
Rev. peru. biol. 19(3): 275 - 284 (Diciembre 2012) © Facultad de Ciencias Biológicas UNMSM Weddellian marine/coastal vertebrates diversity from Seymour Island,ISSN Antarctica 1561-0837 Weddellian marine/coastal vertebrates diversity from a basal horizon (Ypresian, Eocene) of the Cucullaea I Allomember, La Meseta formation, Seymour (Marambio) Island, Antarctica Diversidad de vertebrados marino costeros de la Provincia Weddelliana en un horizonte basal (Ypresiano, Eoceno) del Alomiembro Cucullaea I, Formación La Meseta, isla Seymour (Marambio), Antártida Marcelo A. Reguero1,2,3,*, Sergio A. Marenssi1,3 and Sergio N. Santillana1 Abstract 1 Instituto Antártico Argentino, Ce- rrito 1248, C1010AAZ Ciudad Au- The La Meseta Formation crops out in Seymour/Marambio Island, Weddell Sea, northeast of the Antarctic tónoma de Buenos Aires, Argentina. Peninsula and contains one of the world's most diverse assemblages of Weddellian marine/coastal verte- 2 División Paleontología de Verte- brates of Early Eocene (Ypresian) age. The La Meseta Formation is composed of poorly consolidated, marine brados, Museo de La Plata, Paseo sandstones and siltstones which were deposited in a coastal, deltaic and/or estuarine environment. It includes del Bosque s/n, B1900FWA, La Plata, Argentina. marine invertebrates and vertebrates as well as terrestrial vertebrates and plants. The highly fossiliferous basal 3 Consejo Nacional de Investi- horizon (Cucullaea shell bed, Telm 4 of Sadler 1988) of the Cucullaea I Allomember is a laterally extensive shell gaciones Científicas y Técnicas, bed with sandy matrix. The fish remains, including 35 species from 26 families, of the YpresianCucullaea bed Argentina (CONICET). represent one of the most abundant and diverse fossil vertebrate faunas yet recorded in southern latitudes. -
Albian Black Flysch Group Deposits) and Vation of the Abundant Organic Input
Syntectonic deposits and punctuated limb rotation in an Albian submarine transpressional fold (Mutriku village, Basque-Cantabrian basin, northern Spain) L.M. Agirrezabala* Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain H.G. Owen Natural History Museum, Cromwell Road, London SW7 5BD, UK J. GarcõÂa-MondeÂjar Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain ABSTRACT strata and angular unconformity geome- Cenozoic foreland basins. Fewer cases have tries, temporal variation of deformation been reported from strike-slip basins. Field Deep-water syntectonic deposits and an- rates, and bedding-parallel faulting indi- and modeling studies support two contrasting, gular unconformities record the denudation cate folding by progressive limb rotation geometrically based kinematic models: instan- and deformation history of the middle Cre- and associated ¯exural slip. Local northwest- taneous limb rotation and progressive limb ro- taceous Aitzeta structure, interpreted here southeast compression is deduced in for- tation. The former model is based upon kink- as a monoclinal syncline associated with the mation of the Aitzeta syncline. The pres- band migration and displays constant dips on high-angle reverse Mutriku fault (Basque- ence of bedding-parallel oblique faulting the fold limbs (Suppe, 1983; Suppe et al., Cantabrian basin, northern Spain). Sedi- and minor drag folds suggests a component 1997). The second model produces limb ro- mentological and structural analyses, com- of right-oblique movement along the Mu- tation and increasing limb dips during growth bined with a precise chronostratigraphy triku fault. (Riba, 1976; Holl and Anastasio, 1993; Hardy based on ammonites, permit us to docu- and Poblet, 1994; VergeÂs et al., 1996; Schnei- ment in detail the history of this syncline Keywords: Albian, Basque, folding, rates, during ;0.53 m.y. -
Phylogenetic Characters in the Humerus and Tarsometatarsus of Penguins
vol. 35, no. 3, pp. 469–496, 2014 doi: 10.2478/popore−2014−0025 Phylogenetic characters in the humerus and tarsometatarsus of penguins Martín CHÁVEZ HOFFMEISTER School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, United Kingdom and Laboratorio de Paleoecología, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile <[email protected]> Abstract: The present review aims to improve the scope and coverage of the phylogenetic matrices currently in use, as well as explore some aspects of the relationships among Paleogene penguins, using two key skeletal elements, the humerus and tarsometatarsus. These bones are extremely important for phylogenetic analyses based on fossils because they are commonly found solid specimens, often selected as holo− and paratypes of fossil taxa. The resulting dataset includes 25 new characters, making a total of 75 characters, along with eight previously uncoded taxa for a total of 48. The incorporation and analysis of this corrected subset of morphological characters raise some interesting questions consider− ing the relationships among Paleogene penguins, particularly regarding the possible exis− tence of two separate clades including Palaeeudyptes and Paraptenodytes, the monophyly of Platydyptes and Paraptenodytes, and the position of Anthropornis. Additionally, Noto− dyptes wimani is here recovered in the same collapsed node as Archaeospheniscus and not within Delphinornis, as in former analyses. Key words: Sphenisciformes, limb bones, phylogenetic analysis, parsimony method, revised dataset. Introduction Since the work of O’Hara (1986), the phylogeny of penguins has been a sub− ject of great interest. During the last decade, several authors have explored the use of molecular (e.g., Subramanian et al. -
Eocene Birds from the Western Margin of Southernmost South America Michel A
Journal of Paleontology, 84(6), 2010, p. 1061–1070 Copyright ’ 2010, The Paleontological Society 0022-3360/10/0084-1061$03.00 EOCENE BIRDS FROM THE WESTERN MARGIN OF SOUTHERNMOST SOUTH AMERICA MICHEL A. SALLABERRY,1 ROBERTO E. YURY-YA´ N˜ EZ,1 RODRIGO A. OTERO,1,2 SERGIO SOTO-ACUN˜ A,1 AND TERESA TORRES G.3 1Laboratorio de Zoologı´a de Vertebrados, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, N˜ un˜oa, Santiago de Chile, ,[email protected]., ,[email protected]., ,[email protected].; 2Consejo de Monumentos Nacionales, A´ rea Patrimonio Natural, Vicun˜a Mackenna 084, Providencia, Santiago de Chile, ,[email protected].; and 3Facultad de Ciencias Agrono´micas, Universidad de Chile, Santa Rosa 11315, Santiago de Chile, ,[email protected]. ABSTRACT—This study presents the first record of Eocene birds from the western margin of southernmost South America. Three localities in Magallanes, southern Chile, have yielded a total of eleven bird remains, including Sphenisciformes (penguins) and one record tentatively assigned to cf. Ardeidae (egrets). Two different groups of penguins have been recognized from these localities. The first group is similar in size to the smallest taxa previously described from Seymour Island, Marambiornis Myrcha et al., 2002, Mesetaornis Myrcha et al., 2002, and Delphinornis Wiman, 1905. The second recognized group is similar in size to the biggest taxa from Seymour Island; based on the available remains, we recognize the genus Palaeeudyptes Huxley, 1859, one of the most widespread penguin genera in the Southern Hemisphere during the Eocene. The stratigraphic context of the localities indicates a certain level of correlation with the geological units described on Seymour Island.