Effect of Experimental Ostertagia Ostertagi Infection Or Chronic Pentagastrin Treatment on Abomasal Pathophysiology and Morphology of Goats

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Experimental Ostertagia Ostertagi Infection Or Chronic Pentagastrin Treatment on Abomasal Pathophysiology and Morphology of Goats Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Effect of Experimental Ostertagia Ostertagi Infection or Chronic Pentagastrin Treatment on Abomasal Pathophysiology and Morphology of Goats. Judit Eva Markovits Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Markovits, Judit Eva, "Effect of Experimental Ostertagia Ostertagi Infection or Chronic Pentagastrin Treatment on Abomasal Pathophysiology and Morphology of Goats." (1986). LSU Historical Dissertations and Theses. 4193. https://digitalcommons.lsu.edu/gradschool_disstheses/4193 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.* 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.* ♦For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department A yTT Dissertation 1V 1 L Information Service University Microfilms International ■ A Bell & Howell Information Company 300 N. Zeeb Road, Ann Arbor, Michigan 48106 8625344 Markovits, Judit Eva EFFECT OF EXPERIMENTAL OSTERTAGIA OSTERTAGI INFECTION OR CHRONIC PENTAGASTRIN TREATMENT ON ABOMASAL PATHOPHYSIOLOGY AND MORPHOLOGY OF GOATS The Louisiana State University and Agricultural and Mechanical Ph.D. Col. 1986 University Microfilms International300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V 1. Glossy photographs or pagesJ 2. Colored illustrations, paper or______ print 3. Photographs with dark backgroundJ 4. Illustrations are poor copy______ 5. Pages with black marks, not original______ copy 6. Print shows through as there is text on both sides______ of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements_____ 9. Tightly bound copy with print lost_____ In spine 10. Computer printout pages with indistinct___ print 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s)___________ seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages______ 15. Dissertation contains pages with print at a slant, filmed as received 16. Other___________________________________________________ University Microfilms International EFFECT OF EXPERIMENTAL OSTERTAGIA OSTERTAGI INFECTION OR CHRONIC PENTAGASTRIN TREATMENT ON ABOMASAL PATHOPHYSIOLOGY AND MORPHOLOGY OF GOATS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences Veterinary Pathology by Judit E. Markovits D.V.M., University of Veterinary Science, Hungary, 1978 August 1986 ACKNOWLEDGEMENTS I wish to express my gratitude to Dr. T.G. Snider who awakened my interest in gastroenterology and was also instrumental to gain the support of Ayerst Laboratories. Dr. Snider also gave guidance in the preparation of this dissertation. I am indebted to Dr. W.G. Henk for his suggestions and help in morphometric and electron microscopic techniques. I would also like to thank the other members of my graduate committee, Drs. H.W. Taylor, J.C. Williams and K.A. Gossett for their advice and editorial comments. A special thanks is due to Dr. H.W. Casey whose advice was invaluable throughout this study. I would like to thank' Dr. K.J. Wolfsheimer who gave excellent advice on the RIA technique. I also thank the support of Drs. D.C. Baker and S.D. Gaunt throughout this experiment. Dr. A.M. Saxton was helpful in the statistical evaluation of morphometry. Terry Romaire shared with me the responsibilities of taking care of the animals. I am also very grateful for Terry's editorial comments. All my light microscopic tissues were processed by Cheryl Crowder, whom I have to thank for her patience and talent during the frustrating months of modification of special stains. Without the efforts of Dr. V.J. Banks and Pam Ellis the morphometry would have been impossible to complete. Gary Bates. Rick Knight, Kenny Marbury, Rick Ramsey and Ted Vance helped on the farm. Serum chemistry and hematology was performed by Maureen Stockwell, Carol Turnwald and Linda West. Sherry Gibson and Laura Tounger had some excellent practical suggestion on EM techniques. I wish to thank Jason Osburn for his help with parasite recovery. Andy Smith made contact prints and developed film for me. Michael Broussard and Harry Cowgill were helpful with illustrations for the dissertation and seminars. This work was supported by a grant from the School of Veterinary Medicine Organized Research Fund, Louisiana State University. Additional support was provided by Ayerst Laboratories, New York, NY. iii Table of Contents Pa.fi e Acknowledgements .. ........................... ....11 Table of Contents. ........... .............. iv List of Figures...............................................v List of Tables .................... ix Abstract.................. xi Chapter I - Literature Review and Objectives ....... 1 Chapter II - Experimental Ostertagia ostertagi Infection or Chronic Pentagastrin Treatment of Goat Kids: Parasitological, Clinicopathologic and Macroscopic Observations Introduction. ............... 29 Materials and Methods........... 31 Results ................................................... 39 Discussion.................... 43 Chapter III - Qualitative and Quantitaive Light Microscopic Studies Following Ostertagia ostertagi Infection or Chronic Pentagastrin Treatment of Goat Kids Introduction................................................. 66 Materials and Methods................................ .. 67 Results................................ 73 Discussion.............................................. • 80 Chapter IV - U1trastructural Abomasal Changes Following Ostertagia ostertagi Infection or Chronic Pentagastrin Treatment of Goat Kids Introduction.................. 107 Materials and Methods ................................... 108 Results.....................................................113 Discussion....................... 119 Chapter V - Summary and Conclusions.................... 147 Bibliography................................................ 152 Vita........................... 172 Approval Sheets iv LIST OF FIGURES Page CHAPTER II Fig. 1 Gastrin RIA kit validation, specificity . 56 Fig. 2 Serum pepsinogen levels of Group I control goat kids .................... 57 Fig. 3 Serum pepsinogen levels of Group III goat k i d s ................................ 58 Fig. A Serum pepsinogen levels of Group II goat k i d s ...................................59 Fig. 5 Gastrin immunoreactivity of Group I control goat k i d s .......................... 60 Fig. 6 Gastrin immunoreactivity of Group III goat kids ........................... .61 Fig. 7 Gastrin immunoreactivity of Group II goat k i d s ....................................62 Fig. 8 Abomasa of control and Ostertagia ostertagi-infected goat kids opened along the greater curvature............... 63 Fig. 9 Abomasum of an Ostertagia ostertagi- infected goat k i d .......................... 64 Fig. 10 Abomasum of a pentagastrin-treated goat kid. ................................65 CHAPTER III Fig. 1 Schematic drawing of a caprine abomasum opened along the greater curvature........ 90 Fig. 2 Non-folded fundus of a control animal .. 91 Fig. 3 Fundic fold of a control a n i m a l ...........92 Fig. A Non-folded fundus of a pentagastrin- treated animal............................... 93 Fig. 5 Fundic fold of a pentagastrin- treated animal............. .........94 v CHAPTER III Con't Fig. 6 Non-folded fundus of an 0 ostertaRi- infected animal ......................... Fig.
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
    ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals.
    [Show full text]
  • Anthelmintic Resistance of Ostertagia Ostertagi and Cooperia Oncophora to Macrocyclic Lactones in Cattle from the Western United States
    Veterinary Parasitology 170 (2010) 224–229 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Anthelmintic resistance of Ostertagia ostertagi and Cooperia oncophora to macrocyclic lactones in cattle from the western United States M.D. Edmonds, E.G. Johnson, J.D. Edmonds ∗ Johnson Research LLC, 24007 Highway 20-26, Parma, ID, 83660, USA article info abstract Article history: In June 2008, 122 yearling heifers with a history of anthelmintic resistance were obtained Received 15 October 2009 from pastures in northern California and transported to a dry lot facility in southwest- Received in revised form 28 January 2010 ern Idaho, USA. Fifty heifers with the highest fecal egg counts were selected for study Accepted 24 February 2010 enrollment. Candidates were equally randomized to treatment with either injectable iver- mectin (Ivomec®, Merial, 0.2 mg kg−1 BW), injectable moxidectin (Cydectin®, Fort Dodge, Keywords: 0.2 mg kg−1 BW), oral fenbendazole (Safe-Guard®, Intervet, 5.0 mg kg−1 BW), oral oxfenda- Anthelmintic resistance zole (Synanthic®, Fort Dodge, 4.5 mg kg−1 BW), or saline. At 14 days post-treatment, Cattle Bovine nematodes were recovered from the abomasum, small intestine, and large intestine. Par- Nematodes asitism was confirmed in the control group when 10/10 animals were infected with Efficacy adult Ostertagia ostertagi and 9/10 animals with both developing and early L4 stages of Cooperia O. ostertagi. Similarly, 9/10 animals were parasitized with adult Cooperia spp. Fenbenda- Ostertagia zole and oxfendazole efficacy verses controls were >90% against adult Cooperia spp., while moxidectin caused an 88% parasite reduction post-treatment (P < 0.05).
    [Show full text]
  • Ostertagia Ostertagi Excretory-Secretory Products
    Academic Year 2007-2008 Laboratory for Parasitology Department of Virology, Parasitology and Immunology Ghent University – Faculty of Veterinary Medicine Study of Ostertagia ostertagi excretory-secretory products Heidi Saverwyns Proefschrift voorgelegd aan de faculteit Diergeneeskunde tot het behalen van de graad van Doctor in de Diergeneeskundige Wetenschappen Promotoren: Prof. Dr. E. Claerebout en Dr. P. Geldhof Het heeft wel eventjes geduurd, maar nu is het zover. Veel mensen hebben de afgelopen jaren direct of indirect hun medewerking verleend aan het tot stand komen van dit proefschrift. Een aantal van hen wil ik hier persoonlijk bedanken. In eerste instantie wens ik Prof dr. Jozef Vercuysse en mijn promotor Prof. Dr. Edwin Claerebout te bedanken omdat jullie mij de kans boden om op het labo Parasitologie te doctoreren. Jullie deur stond altijd open zowel in goede tijden als in slechte tijden. Bedankt voor alles!! Peter, nog maar pas terug uit Moredun en vervolgens gebombardeerd tot mijn promotor. Jouw hulp was onmisbaar bij het vervolledigen van dit proefschrift. Hopelijk heb je niet te veel fietsuren moeten missen door de ontelbare corrigeersessies. Denk vooral aan die ‘oh zo leuke bureau momenten’ wanneer we samen neurieden op mijn nieuwste ringtone. Dr. Marc Fransen, bedankt voor alle hulp en goede tips wanneer mijn fagen niet deden wat van hen verwacht werd. Natuurlijk wil ik u ook bedanken voor het gedetailleerd en supersnel nalezen van dit proefschrift! Isabel, jouw hersenspinsels (neergepend in een FWO aanvraag) betekenden het startsignaal van een wilde rit op het faagdisplay rad. Je hebt ons reeds enkele jaren geleden verlaten, desalniettemin was je direct bereid om in mijn leescommissie te zetelen.
    [Show full text]
  • The Role of Carbon Dioxide in Nematode Behaviour and Physiology Cambridge.Org/Par
    Parasitology The role of carbon dioxide in nematode behaviour and physiology cambridge.org/par Navonil Banerjee and Elissa A. Hallem Review Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA Cite this article: Banerjee N, Hallem EA Abstract (2020). The role of carbon dioxide in nematode behaviour and physiology. Parasitology 147, Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic 841–854. https://doi.org/10.1017/ and free-living nematodes. Many nematodes show context-dependent, experience-dependent S0031182019001422 and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also Received: 11 July 2019 show a wide range of physiological responses to CO . Here, we review the diverse responses Revised: 4 September 2019 2 Accepted: 16 September 2019 of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and First published online: 11 October 2019 neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive con- text-dependent and experience-dependent responses of nematodes to CO2. Key words: Carbon dioxide; chemotaxis; C. elegans; hookworms; nematodes; parasitic nematodes; sensory behaviour; Strongyloides Introduction Author for correspondence: Carbon dioxide (CO2) is an important sensory cue for animals across diverse phyla, including Elissa A. Hallem, E-mail: [email protected] Nematoda (Lahiri and Forster, 2003; Shusterman and Avila, 2003; Bensafi et al., 2007; Smallegange et al., 2011; Carrillo and Hallem, 2015). While the CO2 concentration in ambient air is approximately 0.038% (Scott, 2011), many nematodes encounter much higher levels of CO2 in their microenvironment during the course of their life cycles.
    [Show full text]
  • Ostertagia Ostertagi: Population Dynamics Under Pasture and Confinement Conditions with Particular Reference to the Inhibition Phenomenon
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Ostertagia Ostertagi: Population Dynamics Under Pasture and Confinement Conditions With Particular Reference to the Inhibition Phenomenon. Carlos Solomon Eddi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Eddi, Carlos Solomon, "Ostertagia Ostertagi: Population Dynamics Under Pasture and Confinement Conditions With Particular Reference to the Inhibition Phenomenon." (1989). LSU Historical Dissertations and Theses. 4712. https://digitalcommons.lsu.edu/gradschool_disstheses/4712 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Overview of the Order Strongylida
    Overview of the Order Strongylida Objectives: 1) Describe the general structure and function of the copulatory bursa of adult males of the Order Strongylida (“the bursate worms”). 2) Compare buccal area morphology of (a) Trichostrongyloidea, (b) Strongyloidea, (c) Ancylostomatoidea, and (d) Metastrongyloidea. 3) Describe the life cycle stages outside of the host for the four superfamilies listed below: (a) Trichostrongyloidea (includes the following eight genera: Trichostrongylus, Ostertagia, Haemonchus, Cooperia, Nematodirus [variation in life cycle], Dictyocaulus, Hyostrongylus, Ollulanus [variation in life cycle]); (b) Strongyloidea (includes the following five genera: Strongylus, Triodontophorus, cyathostomes [many different small strongyles], Oesophagostomum, Stephanurus [variation in life cycle]). (c) Ancylostomatoidea (includes the following three genera: Ancylostoma, Uncinaria, Bunostomum); (d) Metastrongyloidea (includes the following seven genera: Metastrongylus, Protostrongylus, Muellerius, Parelaphostrongylus, Crenosoma, Aelurostrongylus and Filaroides [variation in life cycle]). 4) Describe the pathogenesis and etiology of disease associated with Ostertagia in cattle, Haemonchus in sheep. 5) Outline the general control measures for trichostrongyles (Trichostrongylus, Ostertagia, Haemonchus and Cooperia) in cattle. 6) Outline the general control measures for trichostrongyles in sheep. 7) Describe the pathogenesis and etiology of pneumonia caused by Dictyocaulus. Outline: I. General morphology of the Order Strongylidea (bursate worms): distinctive copulatory bursa on adult males. A. Structure 1. Well-developed dorsal, ventral and lateral expansions of the surface cuticle at the posterior end, referred to as lobes. 2. Lobes supported by muscular rays. 3. Exception in the superfamily Metastrongyloidea where copulatory bursa is less well- developed. B. Function 1. To grasp the female worm at the vulvar site. 2. To facilitate male spicule insertion and movement of sperm from the male cloaca to the female vulva.
    [Show full text]
  • Evaluation of Some Vulval Appendages in Nematode Taxonomy
    Comp. Parasitol. 76(2), 2009, pp. 191–209 Evaluation of Some Vulval Appendages in Nematode Taxonomy 1,5 1 2 3 4 LYNN K. CARTA, ZAFAR A. HANDOO, ERIC P. HOBERG, ERIC F. ERBE, AND WILLIAM P. WERGIN 1 Nematology Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected], [email protected]) and 2 United States National Parasite Collection, and Animal Parasitic Diseases Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected]) ABSTRACT: A survey of the nature and phylogenetic distribution of nematode vulval appendages revealed 3 major classes based on composition, position, and orientation that included membranes, flaps, and epiptygmata. Minor classes included cuticular inflations, protruding vulvar appendages of extruded gonadal tissues, vulval ridges, and peri-vulval pits. Vulval membranes were found in Mermithida, Triplonchida, Chromadorida, Rhabditidae, Panagrolaimidae, Tylenchida, and Trichostrongylidae. Vulval flaps were found in Desmodoroidea, Mermithida, Oxyuroidea, Tylenchida, Rhabditida, and Trichostrongyloidea. Epiptygmata were present within Aphelenchida, Tylenchida, Rhabditida, including the diverged Steinernematidae, and Enoplida. Within the Rhabditida, vulval ridges occurred in Cervidellus, peri-vulval pits in Strongyloides, cuticular inflations in Trichostrongylidae, and vulval cuticular sacs in Myolaimus and Deleyia. Vulval membranes have been confused with persistent copulatory sacs deposited by males, and some putative appendages may be artifactual. Vulval appendages occurred almost exclusively in commensal or parasitic nematode taxa. Appendages were discussed based on their relative taxonomic reliability, ecological associations, and distribution in the context of recent 18S ribosomal DNA molecular phylogenetic trees for the nematodes.
    [Show full text]
  • Safe-Guard• Dairy
    Safe-Guard® Dairy (fenbendazole) Technical Bulletin Brown Stomach Worm - Does it Arrest in US Dairy Cattle? Gil Myers, PhD Consulting Parasitologist Magnolia, Kentucky Summary Points Dairy producers receive advice from different sources ( vet, feed/animal health reps, nutritionist, other producers, commercial ads, etc.) concerning control of gastrointestinal nematode ( worm ) infections. Much of this information and opinion comes from beef cattle research and from foreign sources; such information may not apply to US dairy cattle management. Dairy versus beef cattle management differences are considerable and may affect the type of worm infections found. For example, dairy cows give birth throughout the year. In contrast, 70 % of US beef cows give birth in the spring. Differences in calving pattern and season may explain some of the parasitology described below. Young dairy cattle are often confined. Confinement can expose cattle to worm infections such as Nematodirus and whip- worms. In fact, published surveys show these infections are more common in dairy cattle than beef cattle. Most of what is known about worm infections in US cattle comes from studies involving beef cattle. In beef cattle, seasonal patterns of arrested development for the brown stomach worm (Ostertagia ostertagi ) have been described. Arrested development is the temporary cessation of development by the brown stomach worm in the lining of the aboma- sum. In the deep South, this worm arrests in the spring to avoid extremely hot dry summer conditions. Arrested development is well-documented in southern beef cattle but is not clearly defined in US dairy cattle nor in beef cattle in the upper South and northern states.
    [Show full text]
  • Cooperia Punctata: Effect on Cattle Productivity?
    Veterinary Parasitology 183 (2012) 284–291 Contents lists available at ScienceDirect Veterinary Parasitology jou rnal homepage: www.elsevier.com/locate/vetpar Cooperia punctata: Effect on cattle productivity? a,∗ b c c Bert E. Stromberg , Louis C. Gasbarre , Audie Waite , David T. Bechtol , d a a e Michael S. Brown , Nicholas A. Robinson , Erik J. Olson , Harold Newcomb a College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, United States b Gasbarre Consulting, Crazy Woman Drive, Buffalo, WY 82834, United States c Agri Research Center, Inc., 16851 Hope Road, Canyon, TX 79015, United States d Ruminant Nutrition and Management, West Texas A&M University, Canyon, TX 79016, United States e Merck Animal Health, 35500W. 91st St., DeSoto, KS 66018, United States a r t i c l e i n f o a b s t r a c t Article history: Cooperia spp. have become the most prevalent parasites in United States cow/calf opera- Received 23 March 2011 tions as observed in the USDA NAHMS (National Animal Health Monitoring System) Beef Received in revised form 6 July 2011 Cow/Calf survey in 2008. This is at least in part due to the widespread use of macrocyclic Accepted 13 July 2011 lactones that have recently been shown to have a reduced activity against these parasites. The effects of Cooperia spp. on cattle productivity are largely unknown. This study was Keywords: conducted to assess their effect upon cattle housed under conditions found in American Beef cattle production feedlots. Two hundred yearling calves (average weight 460 lb/209 kg) were acquired from Cooperia punctata northwestern Arkansas and northeastern Oklahoma and were vaccinated and dewormed Anthelmintic resistance Daily weight gain upon arrival at the feedlot.
    [Show full text]
  • Analysis of the Vaccine-Induced Immune Response Against the Bovine Parasites Ostertagia Ostertagi and Cooperia Oncophora
    Laboratory of Parasitology Department of Virology, Parasitology and Immunology Faculty of Veterinary Medicine Ghent University Analysis of the vaccine-induced immune response against the bovine parasites Ostertagia ostertagi and Cooperia oncophora. Frederik Van Meulder Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Veterinary Science, 2019 Promotor Prof. Dr. Peter Geldhof Table of Contents LIST OF ABBREVIATIONS 5 1 LITERATURE REVIEW: 9 1.1 NEMATODE HELMINTH INFECTIONS IN CATTLE 9 1.1.1 LIFE CYCLE 11 1.1.2 PATHOPHYSIOLOGY - PATHOLOGY OF O. OSTERTAGI AND C. ONCOPHORA 14 1.1.3 ECONOMIC IMPACT OF HELMINTH INFECTIONS 16 1.2 TREATMENT OF HELMINTHS WITH CHEMICAL ANTHELMINTHICS 17 1.3 ALTERNATIVE TO ANTHELMINTHIC DRUGS: VACCINES 18 1.3.1 VACCINES AGAINST OSTERTAGIA OSTERTAGI 19 1.3.2 VACCINES AGAINST COOPERIA ONCOPHORA 21 1.3.3 RECOMBINANT VACCINES 22 1.4 ANTI-PARASITE IMMUNE RESPONSES 27 1.4.1 CELLULAR RESPONSE IN GASTROINTESTINAL TRACT 27 1.4.2 EOSINOPHILS 30 1.4.3 MUCOSAL MAST CELLS AND GLOBULAR LEUKOCYTES 31 1.4.4 GOBLET CELLS AND MUCINS 31 1.4.5 HUMORAL RESPONSE 32 1.4.6 –OMICS RESULTS OF IMMUNE RESPONSES 34 1.5 OBJECTIVES: 41 2 GRANULE-EXOCYTOSIS OF GRANULYSIN AND GRANZYME B AS A POTENTIAL KEY MECHANISM IN VACCINE-INDUCED IMMUNITY IN CATTLE AGAINST THE NEMATODE OSTERTAGIA OSTERTAGI 45 2.1 ABSTRACT 45 2.2 INTRODUCTION: 45 2.3 MATERIALS AND METHODS: 48 2.3.1 PREPARATIONS OF ASP ANTIGENS 48 2.3.2 VACCINATION TRIAL 48 2.3.3 ENZYME-LINKED IMMUNOSORBENT ASSAYS 48 2.3.4 TISSUE COLLECTION,
    [Show full text]
  • Ostertagia Ostertagi (Trichostrongylidae)
    Acta vet. scand. 1989, 30, 77-87. Induction of Nematode-Trapping Organs in the Predacious Fungus Arthrobotrys oligospora (Hyphomycetales) by Infective Larvae of Ostertagia ostertagi (Trichostrongylidae) By JfiJrn GrfiJnvold Institute of Hygiene and Microb10logy, Royal Veterinary and Agncultural Umvemty, Denmark. Grenvold, J.: Induction of nematode-trapping organs in the predacious fungus Ar­ throbotrys o/igospora (Hyphomycetales) by infective larvae of Ostertag1a ostertag1 (Tnchostrongy/idae). Acta vet. scand. 1989, 30, 77-87. - Laboratory expenments were designed to study the mfluence of temperature, concentrations of nematodes, oxygen tension, light, and nutnent levels, on the mduction of nematode-trappmg hyphal nets in the predacious fungus Arthrobotrys o/igospora When induced by infective Ostertagza ostertag1 larvae, a maximum number of nets was produced at 20°C, at which temperature nets in surplus were produced at larval concentrations up to 1,000 larvae per cm2. A obgospora did not produce nets in an anaerobic atmosphere containing 21 % C02 (v/v), and net induction was suppressed to acer­ tain degree by exposure to light. The composition of the medium had an important influence on the saprophytic growth and the net-forming capability of A o/igo­ spora as a maximum number of nets was induced at a relatively low concentration of com meal supporting the relatively sparse mycehum. It was shown that a pro­ portion of trapping nets in A. o/igospora maintained their trapping potential for more than 7 weeks when the temperature was below 25°C. Induction of nematode­ trappmg organs m A o/igospora is discussed in relation to control of infective nematode parasite larvae in cow pats.
    [Show full text]