Sweetpotato Production, Processing, and Nutritional Quality V

Total Page:16

File Type:pdf, Size:1020Kb

Sweetpotato Production, Processing, and Nutritional Quality V 811 35 Sweetpotato Production, Processing, and Nutritional Quality V. D. Truong1, R. Y. Avula2, K. V. Pecota3, and G. C. Yencho3 1 USDA‐ARS Food Science Research Unit, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, USA 2 Department of Food Science and Technology, University of Georgia, Athens, USA 3 Department of Horticultural Science, North Carolina State University, Raleigh, USA Introduction dry matter content (18–25%), high β‐carotene level, sweet and moist‐texture after cooking. Sweetpotato, Ipomoea batatas L. (Lam.), is an This sweetpotato type is imprecisely called important economic crop in many countries. In “yam,” which is not the true tropical yam of terms of annual production, sweetpotato ranks Dioscorea species. Historically, African as the fifth most important food crop in the Americans in Louisiana referred this moist‐ tropics and the seventh in the world food pro- sweetpotato as “nyami” because it reminded duction after wheat, rice, maize, potato, barley, them of the starchy tuber of that name in Africa. and cassava (FAO 2016). Sweetpotato fulfills a The Senagalese word “nyami” was eventually number of basic roles in the global food system, shortened to the trademark “yam” popular in all of which have fundamental implications for the United States. Commercial packages with meeting food requirements, reducing poverty, “yam” labels are required by the US Department and increasing food security (El‐Sheikha and of Agriculture to have the word “sweetpotato” in Ray 2017). the label to avoid confusion to the consumers Sweetpotato roots have high nutritional value (Estes 2009). and sensory versatility in terms of taste, texture, Depending on the flesh color, sweetpotatoes and flesh color (white, cream, yellow, orange, contain high levels of β‐carotene, anthocyanins, purple). The varieties with high dry matter phenolics, dietary fiber, vitamins, minerals, and (>25%), white‐cream flesh color, and mealy firm other bioactive compounds. The β‐carotene in texture after cooking are preferred by the con- orange‐fleshed sweetpotatoes can play a signifi- sumers in the tropics. These varieties are known cant role as a viable long‐term food‐based as tropical sweetpotato (e.g., “bianito,” “batiste,” strategy for combating vitamin A deficiency in or “camote”). The purple‐fleshed sweetpotato the world. Studies in Africa demonstrated that varieties with attractive color and high antho- increased consumption of orange‐fleshed cyanin content are the specialty type in Asia. In sweetpotatoes improved the vitamin A status of the United States, the commercially popular children, pregnant women, and lactating type is the orange‐fleshed sweetpotato with low mothers (Low et al. 2007; Hotz et al. 2012; Handbook of Vegetables and Vegetable Processing, Volume II, Second Edition. Edited by Muhammad Siddiq and Mark A. Uebersax. © 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd. 812 Sweetpotato Production, Processing, and Nutritional Quality Van Jaarsveld et al. 2005). Further, polyphenolics about 21%, while the Americas (North, Central, from purple‐fleshed sweetpotatoes exhibited and South) account for about 3.6%. China was diverse biological activities, including protec- the leading producer of sweetpotatoes, with tive antioxidant, anti‐inflammatory, anticancer, 71.54 MMT or about 67% of the global produc- antidiabetic and hepatoprotective activity tion, followed by Nigeria (3.78 MMT), Tanzania effects (Hu et al. 2016; Lim et al. 2013). (3.5 MMT), Ethiopia (2.7 MMT), and Sweetpotato has a strong potential to contribute Mozambique (2.4 MMT). The United States to better nutritional quality of our diets around was the tenth largest producer, with 1.34 MMT the world. This chapter provides a contempo- production. Only two countries in Europe, rary review of production, quality, and process- Portugal and Spain, grow sweetpotatoes, with ing aspects of sweetpotatoes. 22,591 and 13,550 metric tons produced in 2014. In comparison to other major staple food crops, sweetpotatoes have good adaptability to Production and Consumption marginal growing conditions, short production cycle, and high yield potential. The average Sweetpotato has wide production geography, world yield of sweetpotatoes is about 14 tons from 40° north to 32° south latitude of the globe, per hectare. Under subsistence conditions in and it is cultivated in 114 countries. The world many areas of the tropics, the average sweetpo- total production of sweetpotatoes was 106.60 tato yield is about 6 metric tons/hectare, far million metric tons (MMT) in 2014. Since the below the 20–26 metric tons/hectare obtained mid‐1990s, global production has ranged from a in China, Japan, and the United States, where low of 101.28 MMT in 2007 to a high of 147.17 improved varieties, fertilizer applications, and MMT in 1999 (Figure 35.1). In 2014, about cultural managements have been introduced. three‐fourth of the global production was from The per capita consumption is highest in Asia and Pacific Islands, followed by Africa with places where sweetpotatoes are consumed as a World China Americas Africa 150 125 106.6 tons 100 71.5 75 Million metric 50 22.6 25 3.8 0 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Figure 35.1 World and regional sweetpotato production for 1994–2014. Source: FAO (2016). Btn and Physiolog 813 staple food, e.g., Papua New Guinea at 550 kg analyses conducted by Huang and Sun (2000) per person per year, the Solomon Islands at 160 kg, and Zhang et al. (2000) also places Central Burundi and Rwanda at 130 kg, and Uganda at America as the region with the most genetic 85 kg. The average annual per capita consump- diversity and probable origin (Huang and Sun tion of sweetpotatoes is estimated at 18 kg in 2000; Zhang et al. 2000). Remains of dried Asia, 9 kg in Africa, 5 kg in Latin America. sweetpotato roots found in Peru have been Between 2000 and 2014, sweetpotato consump- radiocarbon dated back to 8,000–10,000 years tion in the United States increased nearly 80%, old, though it is unknown if these were col- from 1.9 kg to 3.4 kg per capita (FAO 2015; lected from the wild or were domesticated Johnson et al. 2015). Sweetpotato consumption (Engel 1970). Regardless of the center of origin, has been greatly enhanced by the wide spread sweetpotato was widely established in tropical commercial availability of frozen “French‐fried” regions of the new world around 2500 b.c. sweetpotatoes. To accommodate this recent (Austin 1988). It was established in Polynesia, growth trend, increased modern processing prior to European arrival (Roullier, et al. 2013b). capacity has been built within the southern US Europeans in the 1500s spread the sweetpotato sweetpotato growing regions. to Africa and India, with it arriving in China prior to 1600. Secondary centers of diversity include New Guinea, the Philippines, and parts Classification and Origin of Africa (Bohac et al. 1995; Roullier, et al. 2013a, b). The sweetpotato (I. batatas L.) is a dicotyledon- ous plant belonging to the morning glory or Convolvulaceae family. It is a new world crop, Botany and Physiology though there is still some confusion that exists regarding its origin, and primary and secondary The sweetpotato is a herbaceous perennial that centers of diversity. Roullier et al. (2013a,b) and is grown as an annual by stem cuttings or plant Grüneberg et al. (2015) have published thor- sprouts from storage roots (Figure 35.2). It has a ough reviews of this topic. In brief, using data predominately prostrate growth habit typically from morphology, ecology, and cytology, Austin with 1–5 m vines that grow horizontally on (1988) has postulated that cultivated sweetpo- the ground. The plant can be grouped into three tatoes originated somewhere in the region parts: between the Yucatan Peninsula of Mexico and 1) The leaves act as the photosynthetic canopy. the mouth of the Orinoco river in northeastern 2) The stems transport energy to the roots and Venezuela. Recent studies conducted by transport water and minerals from the roots. Roullier, et al. (2013 a, b) incorporating chloro- 3) The root system absorbs water and nutrients plast DNA and molecular phylogeny analyses from the soil, anchors the plant, and can act confirm this hypothesis. They also suggest that as a storage site for energy via the develop- I. batatas most likely evolved from at least two ment of fleshy storage roots. distinct autopolyploidization events in wild populations of a single progenitor species most Sweetpotatoes possess three types of roots: likely I. trifida. Secondary contact between storage, fibrous, and pencil (Kays 1985a; Firon sweetpotatoes domesticated in Central America et al. 2009). Young adventitious roots develop and in South America, from differentiated wild out of both the nodal and the internodal regions I. batatas or I. trifida populations, could have of an underground stem portion of a vine led to further introgression. Molecular marker cutting. Roots from the internodal regions 814 Sweetpotato Production, Processing, and Nutritional Quality Sweetpotato plant Sweetpotato harvesting Harvested sweetpotatoes Figure 35.2 Sweetpotato plant, harvesting and harvested tubers in the market. Source (From left): USDA Plants Database, NC State Extension, USDA‐AMS. normally become fibrous roots and have a and 25°C promote storage root formation and tetrarch arrangement of their primary vascular growth, while temperatures above 25°C sup- tissue. Roots from the nodes are pentarch or press storage root formation and favor shoot hexarch and have the potential to develop into growth. Night air temperatures lower than 15°C enlarged storage roots; however, unfavorable suppress storage root formation, growth, and conditions can cause many or all of these to yield. Air temperatures >30°C reduce storage develop into primary fibrous roots or to lignify root formation and growth, and promote shoot and produce pencil roots.
Recommended publications
  • Genetic Control of Dry Matter, Starch and Sugar Content in Sweetpotato
    Acta Agriculturae Scandinavica, Section B — Soil & Plant Science ISSN: 0906-4710 (Print) 1651-1913 (Online) Journal homepage: http://www.tandfonline.com/loi/sagb20 Genetic control of dry matter, starch and sugar content in sweetpotato Ernest Baafi, Vernon E. Gracen, Joe Manu-Aduening, Essie T. Blay, Kwadwo Ofori & Edward E. Carey To cite this article: Ernest Baafi, Vernon E. Gracen, Joe Manu-Aduening, Essie T. Blay, Kwadwo Ofori & Edward E. Carey (2016): Genetic control of dry matter, starch and sugar content in sweetpotato, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, DOI: 10.1080/09064710.2016.1225813 To link to this article: http://dx.doi.org/10.1080/09064710.2016.1225813 Published online: 01 Sep 2016. Submit your article to this journal Article views: 4 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sagb20 Download by: [ERNEST BAAFI] Date: 08 September 2016, At: 13:18 ACTA AGRICULTURAE SCANDINAVICA, SECTION B — SOIL & PLANT SCIENCE, 2016 http://dx.doi.org/10.1080/09064710.2016.1225813 Genetic control of dry matter, starch and sugar content in sweetpotato Ernest Baafia, Vernon E. Gracenb, Joe Manu-Adueninga, Essie T. Blayb, Kwadwo Oforib and Edward E. Careyc aCSIR-Crops Research Institute, Kumasi, Ghana; bWest Africa Centre for Crop Improvement (WACCI), University of Ghana, Legon, Ghana; cInternational Potato Centre (CIP), Kumasi, Ghana ABSTRACT ARTICLE HISTORY Sweetpotato (Ipomoea batatas L. (Lam)) is a nutritious food security crop for most tropical Received 31 May 2016 households, but its utilisation is very low in Ghana compared to the other root and tuber Accepted 11 August 2016 crops due to lack of end-user-preferred cultivars.
    [Show full text]
  • The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae)
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2011 The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae) Michael Wright Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Plant Breeding and Genetics Commons Recommended Citation Wright, Michael, "The Evolution of Sexual Reproduction in Cuscuta (Convolvulaceae)" (2011). Theses and Dissertations (Comprehensive). 1039. https://scholars.wlu.ca/etd/1039 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-75396-5 Our file Notre reference ISBN: 978-0-494-75396-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciaies ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Convolvulaceae1
    Photograph: Helen Owens © Department of Environment, Water and Natural Resources, Government of South Australia Department of All rights reserved Environment, Copyright of illustrations might reside with other institutions or Water and individuals. Please enquire for details. Natural Resources Contact: Dr Jürgen Kellermann Editor, Flora of South Australia (ed. 5) State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia email: [email protected] Flora of South Australia 5th Edition | Edited by Jürgen Kellermann CONVOLVULACEAE1 R.W. Johnson2 Annual or perennial herbs or shrubs, often with trailing or twining stems, or leafless parasites; leaves alternate, exstipulate. Inflorescence axillary, rarely terminal, cymose or reduced to a single flower; flowers regular, (4) 5 (6)-merous, bisexual; sepals free or rarely united, quincuncial; corolla sympetalous, funnel-shaped or campanulate, occasionally rotate or salver-shaped; stamens adnate to the base of the corolla, alternating with the corolla lobes, filaments usually flattened and dilated downwards; anthers 2-celled, dehiscing longitudinally; ovary superior, mostly 2-celled, occasionally with 1, 3 or 4 cells, subtended by a disk; ovules 2, rarely 1, in each cell; styles 1 or 2, stigmas variously shaped. Fruit capsular. About 58 genera and 1,650 species mainly tropical and subtropical; in Australia 20 genera, 1 endemic, with c. 160 species, 17 naturalised. The highly modified parasitic species of Cuscuta are sometimes placed in a separate family, the Cuscutaceae. 1. Yellowish leafless parasitic twiners ...................................................................................................................... 5. Cuscuta 1: Green leafy plants 2. Ovary distinctly 2-lobed; styles 2, inserted between the lobes of ovary (gynobasic style); leaves often kidney-shaped .............................................................................................................
    [Show full text]
  • Challenges to Genome Sequence Dissection in Sweetpotato
    Breeding Science 67: 35–40 (2017) doi:10.1270/jsbbs.16186 Review Challenges to genome sequence dissection in sweetpotato Sachiko Isobe*, Kenta Shirasawa and Hideki Hirakawa Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan The development of next generation sequencing (NGS) technologies has enabled the determination of whole genome sequences in many non-model plant species. However, genome sequencing in sweetpotato (Ipomoea batatas (L.) Lam) is still difficult because of the hexaploid genome structure. Previous studies suggested that a diploid wild relative, I. trifida (H.B.K.) Don., is the most possible ancestor of sweetpotato. Therefore, the ge- netic and genomic features of I. trifida have been studied as a potential reference for sweetpotato. Meanwhile, several research groups have begun the challenging task of directly sequencing the sweetpotato genome. In this manuscript, we review the recent results and activities of large-scale genome and transcriptome analysis related to genome sequence dissection in sweetpotato under the sections as follows: I. trifida genome and tran- script sequencing, genome sequences of I. nil (Japanese morning glory), transcript sequences in sweetpotato, chloroplast sequences, transposable elements and transfer DNA. The recent international activities of de novo whole genome sequencing in sweetpotato are also described. The large-scale publically available genome and transcript sequence resources and the international genome sequencing streams are expected to promote the genome sequence dissection in sweetpotato. Key Words: sweetpotato, Ipomoea, genome, transcript. Introduction tor diploid species are often sequenced and used as a reference for polyploidy species (Bertioli et al. 2016, The development of next generation sequencing (NGS) D’Hont et al.
    [Show full text]
  • Larvicide of Aedes Aegypti (Diptera: Culicidae) from Ipomoea Pes-Caprae (Solanales: Convolvulaceae) Musri Musman, Sofyatuddin Karina, Said Almukhsin
    AACL BIOFLUX Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society Larvicide of Aedes aegypti (Diptera: Culicidae) from Ipomoea pes-caprae (Solanales: Convolvulaceae) Musri Musman, Sofyatuddin Karina, Said Almukhsin Department of Marine Science, Marine and Fisheries Coordinatorate, Syiah Kuala University, Darussalam-Banda Aceh, Indonesia. Corresponding author: M. Musman, [email protected] Abstract. This research aimed to evaluate larvicidal candidate of the extracts of whole parts (roots, stems, leaves, flowers, and seeds) of Ipomoea pes-caprae (L.) R. Br. on Aedes aegypti (Linnaeus, 1762) larvae. The criteria applied to select larvicidal candidate were (1) the concentration of the extract solution must be ≤ 50 ppm, and (2) the larval mortality due to administration of the extract should be reached ≥ 75%. The I. pes-caprae parts were extracted with methanol and water solvents. Refer to the criteria, the methanol extract of the I. pes-caprae leaf was selected as the larvicidal candidate of the A. aegypti larvae. The 3rd instar of A. aegypti larvae was tested with five kinds of concentration of an aqueous solution of I. pes-caprae leaf extracts by completely random design with four replications. The methanol extract of I. pes-caprae leaf showed a very strong larvicide (LC50 was 12.60 ppm) of A. aegypti larvae. Key Words: larvae, Aedes aegypti, Ipomoea pes-caprae, instar, larvicidal candidate, methanol extract. Introduction. Dengue Hemorrhagic Fever (DHF) is a disease spread by the Aedes aegypti (Linnaeus, 1762) mosquito with a rapid rate of transmission and occurs in tropical regions, subtropical, and temperate in the whole world. DHF is one health problem in the world which the number of sufferers have been gradually increasing in quantity (Rao et al 2011).
    [Show full text]
  • Classification of Convolvulaceae: a Phylogenetic Approach
    Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain.
    [Show full text]
  • Evolutionary Routes to Biochemical Innovation Revealed by Integrative
    RESEARCH ARTICLE Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway Gaurav D Moghe1†, Bryan J Leong1,2, Steven M Hurney1,3, A Daniel Jones1,3, Robert L Last1,2* 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States; 2Department of Plant Biology, Michigan State University, East Lansing, United States; 3Department of Chemistry, Michigan State University, East Lansing, United States Abstract The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome- localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of *For correspondence: [email protected] innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the † Present address: Section of emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non- Plant Biology, School of model plant species that remain underexplored. Integrative Plant Sciences, DOI: https://doi.org/10.7554/eLife.28468.001 Cornell University, Ithaca, United States Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Sweet Potato (Ipomoea Batatas L
    Cláudio E. Cartabiano-Leite, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 10, Issue 6, (Series-VIII) June 2020, pp. 23-40 RESEARCH ARTICLE OPEN ACCESS Sweet potato (Ipomoea batatas L. Lam) nutritional potential and social relevance: a review Cláudio E. Cartabiano-Leite*, Ornella M. Porcu**, Alicia F. de Casas* * Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis/SC, 88034-001, Brazil ** Department of Chemistry, Federal Technological University of Paraná, Via do Conhecimento, Km 1, Bloco V, Pato Branco/PR, 85503-390, Brazil Corresponding author: Cláudio E. Cartabiano-Leite ABSTRACT Sweet potato (Ipomoea batatas (L.) Lam) is a dicotyledonous angiosperm plant which belongs to the Convolvulaceae family and its capable of producing nutritious tuberous roots eaten worldwide. Its origin, as well as the circumstances related to its worldwide dispersion, are pertinent questions and intrigue researchers till nowadays. China is the main sweet potato producing country, and the Asian continent has the largest share of world production. In Brazil, sweet potatoes are specially grown by small farmers and used to domestic market supply. The sweet potato arouses huge interest when considering its nutritional qualities, mainly because it is rich in fibers, micronutrients, and an excellent source of energy for the consumer. The colored pulp cultivars such as yellow, orange, and purple sweet potatoes have in their composition several bioactive compounds such as polyphenols, carotenoids, and anthocyanins. In this regard, the work presents a review of the main aspects related to taxonomy, morphology, history, world production, and Brazilian production, highlighting the nutritional potential and the social relevance of sweet potatoes as a crop.
    [Show full text]
  • Table 5. List of Feed Ingredients That Are Used Or Have the Potential to Be
    Table 5. List of feed ingredients that are used or have the potential to be used as protein and/or energy supplements in milkfish feed (nutrient content as % dry matter) Primary use Gross Moisture Crude Inclusion Main nutritional Main nutritional Processing Feed ingredients Protein Energy energy Both DM (%) protein (% ) (% max) interest deficiencies restrictions supplement supplement (kJ/g) Air drying Animal Fishmeal Protein, essential amino Fat soluble 10 64 19 25 reduces protein orgin (local) acids, minerals vitamins and fat content Air drying Fishmeal Protein, essential amino Fat soluble 8 68 20 25 reduces protein (Peruvian) acids, minerals vitamins and fat content Air drying Fishmeal Protein, essential amino Fat soluble 9 65 20 25 reduces protein (tuna) acids, minerals vitamins and fat content Chemoattractants, Oven drying Shrimp meal Poor mineral 8 69 19 10 lysine, methionine, may damage (Acetes ) digestibility HUFA fatty acids Protein, essential amino Meat meal Anti-nutritional Cooking is 4 52 16 5–10 acids and fatty acids, (snail meat) factor in slime required xanthophyll Isoleucine, Hygienic Meat & bone 6 47 16 10–15 Protein, minerals methionine+cyst standard meal ine needed Protein, unsaturated Contains Heating Mussel meal 6 65 21 5 fatty acids, enzyme inhibitor destroys (green) chemoattractant thiaminase thiaminase Low digestibility Poultry by- Essential amino acids, due to keratin 8 61 22 35 product meal iron, zinc, choline and raw feathers Primary use Gross Moisture Crude Inclusion Main nutritional Main nutritional Processing
    [Show full text]
  • Cheese, Nutrition & Health
    11b Cheese, Nutrition Updated August 2016 & Health Generalities 1. What is cheese? What is cheese? 1. In France the term “cheese” is governed by a decree 2. What are the main types? (from November 2007 updated in November 2013). It is a product made exclusively from specific dairy ingre- Nutrient composition dients (milk; cream, fat, buttermilk) used alone or in 3. What are its nutritional benefits? a mixture and coagulated (in whole or in part). The 4. What about its proteins? coagulation of milk gives a solid phase (curds) and a 5. Its vitamins? liquid phase (whey). Coagulum – which will turn into 6. Its calcium? cheese – may be strained, molded, salted, fermented 7. Its other minerals and trace elements? and/or ripened for more or less time. Minimum dry matter 8. Its lipids? content of a cheese of 23 g/100 g**. 9. Its other constituents? In France alone, there are 1000 different cheeses clas- sified by types. Cheese & Health What is the connection between cheese and: It is worth noting that speciality cheeses, in the strict 10. Bone health and oral health? sense of the term do not fall under the “cheeses” 11. Cardiovascular diseases? category. They can contain raw materials from milk, 12. Intolerances and allergies? other than those used to make cheeses (such as serum 13. Other pathologies? proteins in high concentrations for example). Their mini- 14. What to conclude? mum dry matter content is 20 g/100 g of end product for ripened specialty cheeses and 10 g/100 g for unrip- Where does cheese stand in the ened cheeses.
    [Show full text]
  • Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan
    Journal of Bioresource Management Volume 7 Issue 1 Article 9 Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan Nafeesa Qudsia Hanif AgriPak Labs, Rawalpindi, Pakistan, [email protected] Nadeem Akhtar Institute of Natural and Management Sciences (INAM), Rawalpindi Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Agriculture Commons, and the Biology Commons Recommended Citation Hanif, N. Q., & Akhtar, N. (2020). Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan, Journal of Bioresource Management, 7 (1). DOI: https://doi.org/10.35691/JBM.0202.0123 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission.
    [Show full text]
  • Informe Citrícola De La Provincia De Corrientes
    ESTACION EXPERIMENTAL AGROPECUARIA BELLA VISTA a. Hoja de divulgación N° 54 Noviembre 2018 ISSN 0328-350X Batata afectada por el barrenador Megastes grandalis Guenée Raúl Ernesto Grandoli1 Carlos Adolfo Estigarribia2 Roxana Cristina Almonacid3 Pablo Isidro Gauna4 Sara Cáceres5 Resumen En la zona de influencia de la Agencia de Extensión Rural INTA Esquina se encontraron plantas de batata muy afectadas por un barrenador. Se recolectaron muestras representativas del daño observado (guías cercanas al cuello de la planta y raíces) y se procedió a su examen en el Laboratorio de Entomología de la EEA INTA Bella Vista. La especie del barrenador fue identificada como Megastes grandalis Guenée 1854 (Lepidoptera: Crambidae: Pyraustinae). Ante la aparición esporádica de esta especie y la ausencia de antecedentes locales digitalizados, se presentan los daños ocasionados y sus características más importantes. Introducción La batata Ipomoea batatas (Convolvulaceae) conocida en otros lugares del mundo como camote, moniato o boniato es cultivada en gran parte del mundo por su raíz tuberosa comestible. En Corrientes se cultiva en toda la provincia (1996 ha aproximadamente) con las mayores superficies en Bella Vista, Lavalle y Goya. En Esquina el cultivo se desarrolla en chacras de pequeños y medianos productores y el destino principal es la venta local y el autoconsumo. La superficie implantada por productor no supera los 10000 m2. El sistema de implantación utilizado consiste en el uso de guías obtenidas a campo en cultivo dejado de una campaña a otra con ese propósito. Actualmente se está difundiendo con éxito la obtención de guías en almácigos forzados con el uso de túnel plástico.
    [Show full text]