Guyton Physiology : Guyton and Hall Textbook of Medical Physiology

Total Page:16

File Type:pdf, Size:1020Kb

Guyton Physiology : Guyton and Hall Textbook of Medical Physiology CHAPTER 16 UNIT The Microcirculation and Lymphatic System: Capillary Fluid Exchange, Interstitial I V Fluid, and Lymph Flow The most purposeful func- the capillary. This is called the precapillary sphincter. This tion of the circulation occurs sphincter can open and close the entrance to the capillary. in the microcirculation: This The venules are larger than the arterioles and have a is transport of nutrients to much weaker muscular coat. Yet the pressure in the venules the tissues and removal of is much less than that in the arterioles, so the venules can cell excreta. The small arte- still contract considerably despite the weak muscle. rioles control blood flow to This typical arrangement of the capillary bed is not each tissue, and local conditions in the tissues in turn con- found in all parts of the body, although a similar arrange- trol the diameters of the arterioles. Thus, each tissue, in ment may serve the same purposes. Most important, the most instances, controls its own blood flow in relation to its metarterioles and the precapillary sphincters are in close individual needs, a subject that is discussed in Chapter 17. contact with the tissues they serve. Therefore, the local The walls of the capillaries are extremely thin, con- conditions of the tissues—the concentrations of nutri- structed of single-layer, highly permeable endothelial ents, end products of metabolism, hydrogen ions, and so cells. Therefore, water, cell nutrients, and cell excreta can forth—can cause direct effects on the vessels to control all interchange quickly and easily between the tissues and local blood flow in each small tissue area. the circulating blood. The peripheral circulation of the whole body has Structure of the Capillary Wall. Figure 16-2 shows about 10 billion capillaries with a total surface area esti- the ultramicroscopic structure of typical endothelial cells mated to be 500 to 700 square meters (about one-eighth in the capillary wall as found in most organs of the body, the surface area of a football field). Indeed, it is rare that especially in muscles and connective tissue. Note that the any single functional cell of the body is more than 20 to wall is composed of a unicellular layer of endothelial cells 30 micrometers away from a capillary. and is surrounded by a thin basement membrane on the outside of the capillary. The total thickness of the capillary wall is only about 0.5 micrometer. The internal diameter of Structure of the Microcirculation the capillary is 4 to 9 micrometers, barely large enough for and Capillary System red blood cells and other blood cells to squeeze through. The microcirculation of each organ is organized specifi- “Pores” in the Capillary Membrane. Figure 16-2 cally to serve that organ’s needs. In general, each nutrient shows two small passageways connecting the interior of artery entering an organ branches six to eight times before the capillary with the exterior. One of these is an inter- the arteries become small enough to be called arterioles, cellular cleft, which is the thin-slit, curving channel that which generally have internal diameters of only 10 to 15 lies at the bottom of the figure between adjacent endothe- micrometers. Then the arterioles themselves branch two lial cells. Each cleft is interrupted periodically by short to five times, reaching diameters of 5 to 9 micrometers at ridges of protein attachments that hold the endothelial their ends where they supply blood to the capillaries. cells together, but between these ridges fluid can perco- The arterioles are highly muscular, and their diameters late freely through the cleft. The cleft normally has a uni- can change manyfold. The metarterioles (the terminal form spacing with a width of about 6 to 7 nanometers (60 arterioles) do not have a continuous muscular coat, but to 70 angstroms), slightly smaller than the diameter of an smooth muscle fibers encircle the vessel at intermittent albumin protein molecule. points, as shown in Figure 16-1 by the black dots on the Because the intercellular clefts are located only at the sides of the metarteriole. edges of the endothelial cells, they usually represent no At the point where each true capillary originates from more than 1/1000 of the total surface area of the capillary a metarteriole, a smooth muscle fiber usually encircles wall. Nevertheless, the rate of thermal motion of water 177 Unit IV The Circulation cell appear to imbibe small packets of plasma or extra- cellular fluid that contain plasma proteins. These vesicles can then move slowly through the endothelial cell. Some of these vesicles may coalesce to form vesicular channels all the way through the endothelial cell, which is demon- strated in Figure 16-2. Special Types of “Pores” Occur in the Capillaries of Certain Organs. The “pores” in the capillaries of some organs have special characteristics to meet the Figure 16-1 Structure of the mesenteric capillary bed. (Redrawn from Zweifach BW: Factors Regulating Blood Pressure. New York: peculiar needs of the organs. Some of these characteris- Josiah Macy, Jr., Foundation, 1950.) tics are as follows: 1. In the brain, the junctions between the capillary endothelial cells are mainly “tight” junctions that allow molecules, as well as most water-soluble ions and small sol- only extremely small molecules such as water, oxygen, utes, is so rapid that all of these diffuse with ease between and carbon dioxide to pass into or out of the brain the interior and exterior of the capillaries through these tissues. “slit-pores,” the intercellular clefts. 2. In the liver, the opposite is true. The clefts between the Present in the endothelial cells are many minute plas- capillary endothelial cells are wide open so that almost malemmal vesicles, also called caveolae (small caves). all dissolved substances of the plasma, including the These form from oligomers of proteins called caveolins plasma proteins, can pass from the blood into the liver that are associated with molecules of cholesterol and tissues. sphingolipids. Although the precise functions of cave- 3. olae are still unclear, they are believed to play a role in The pores of the gastrointestinal capillary membranes endocytosis (the process by which the cell engulfs material are midway between those of the muscles and those of from outside the cell) and transcytosis of macromolecules the liver. across endothelial cells. The caveolae at the surface of the 4. In the glomerular capillaries of the kidney, numerous small oval windows called fenestrae penetrate all the way through the middle of the endothelial cells so that Intercellular cleft tremendous amounts of very small molecular and ionic Basement membrane substances (but not the large molecules of the plasma proteins) can filter through the glomeruli without hav- ing to pass through the clefts between the endothelial Caveolae cells. (Plasmalemmal vesicles) Vesicular Endothelial channel?? cell Flow of Blood in the Capillaries—Vasomotion Caveolin Blood usually does not flow continuously through the Phospholipid capillaries. Instead, it flows intermittently, turning on and off every few seconds or minutes. The cause of this inter- Sphingolipid mittency is the phenomenon called vasomotion, which Cholesterol means intermittent contraction of the metarterioles and precapillary sphincters (and sometimes even the very small arterioles as well). Regulation of Vasomotion. The most important factor found thus far to affect the degree of opening and closing of the metarterioles and precapillary sphincters is Figure 16-2 Structure of the capillary wall. Note especially the the concentration of oxygen in the tissues. When the rate intercellular cleft at the junction between adjacent endothelial of oxygen usage by the tissue is great so that tissue oxy- cells; it is believed that most water-soluble substances diffuse gen concentration decreases below normal, the intermit- through the capillary membrane along the clefts. Small mem- brane invaginations, called caveolae, are believed to play a role in tent periods of capillary blood flow occur more often, and transporting macromolecules across the cell membrane. Caveolae the duration of each period of flow lasts longer, thereby contain caveolins, proteins which interact with cholesterol and allowing the capillary blood to carry increased quanti- polymerize to form the caveolae. ties of oxygen (as well as other nutrients) to the tissues. 178 Chapter 16 The Microcirculation and Lymphatic System: Capillary Fluid Exchange, Interstitial Fluid, and Lymph Flow This effect, along with multiple other factors that control Lipid-Soluble Substances Can Diffuse Directly local tissue blood flow, is discussed in Chapter 17. Through the Cell Membranes of the Capillary Endothelium. If a substance is lipid soluble, it can dif- Average Function of the Capillary System fuse directly through the cell membranes of the capillary UNIT Despite the fact that blood flow through each capillary is without having to go through the pores. Such substances intermittent, so many capillaries are present in the tissues include oxygen and carbon dioxide. Because these sub- that their overall function becomes averaged. That is, there stances can permeate all areas of the capillary membrane, is an average rate of blood flow through each tissue capil- their rates of transport through the capillary membrane are lary bed, an average capillary pressure within the capillar- many times faster than the rates for lipid-insoluble sub- I ies, and an average rate of transfer of substances between stances, such as sodium ions and glucose that can go only V the blood of the capillaries and the surrounding interstitial through the pores. fluid. In the remainder of this chapter, we are concerned Water-Soluble, Non-Lipid-Soluble Substances with these averages, although one must remember that the Diffuse Through Intercellular “Pores” in the Capillary average functions are, in reality, the functions of literally Membrane. billions of individual capillaries, each operating intermit- Many substances needed by the tissues are tently in response to local conditions in the tissues.
Recommended publications
  • Determination of Cardiac Output by Equating Venous Return Curves with Cardiac Response Curves
    Determination of Cardiac Output By Equating Ve- nous Return Curves With Cardiac Response Curves1 ARTHUR C. GUYTQN From the Department of Physiology and Biophysics, School of Medicine, University of Mississippi, University, Mississippi HE CONCEPT that the heart responds with increasing cardiac output when there occurs increasing venous return was popularized by Starling and, in- deed, has come to be known as Starling’s law. There are many different forms in which Starling’s law can be expressed,including the relationship of cardiac output to right atria1 pressure, the relationship of cardiac output to the degree of distention of the right ventricle at the end of diastole, the relationship of cardiac work to right atria1 pressure or right ventricular distention, the relationship of left ventricular work to right atria1 pressure or right ventricular distention, etc. For the determina- tion of cardiac output, the form of Starling’s law which will be used in the present discussion is the relationship of cardiac output to mean right atria1 pressure, and this type of cruve will be called the “cardiac responsecurve” to right atria1 pressure. It is well known that many factors in the peripheral circulatory system combine together to determine the rate of venous return to the heart. These include the quantity of blood available, the degree of vascular resistance in various parts of the peripheral circulatory system, and the back pressure from the right atrium. It is with these factors that this paper is especially concerned, and it is hoped that this presentation will demonstrate how cardiac output is determined by equating the peripheral circulatory factors with the cardiac responsecurves.
    [Show full text]
  • Venous Return & Factors Affecting Vr
    CARDIOVASCULAR SYSTEM VENOUS RETURN & FACTORS AFFECTING VR Prof. Shahid Habib Dept of Physiology PROF. HABIB CVS 2019 King Saud University OBJECTIVES At the end of the lecture you should be able to ….. Discuss functions of the veins as blood reservoirs. Describe measurement of central venous pressure (CVP) and state its physiological and clinical significance. State determinants of venous return and explain how they influence venous return. Define mean systemic filling pressure, give its normal value and describe the factors which affect it. Explain the effect of gravity on venous pressure and explain pathophysiology of varicose veins. Describe vascular and cardiac function curves under physiological and pathophysiological conditions. DISTRIBUTION OF BLOOD Capacitance Vessels Veins are blood reservoirs When the body is at rest and many of the capillaries are closed, the capacity of the venous reservoir is increased as extra blood bypasses the capillaries and enters the veins. When this extra volume of blood stretches the veins, the blood moves forward through the veins more slowly because the total cross sectional area of the veins has increased as a result of the stretching. Therefore, blood spends more time in the veins. When the stored blood is needed, such as during exercise, extrinsic factors reduce the capacity of the venous reservoir and drive the extra blood from the veins to the heart so that it can be pumped to the tissues. Rt. Lt. At At Right Left ven ven Large veins Large arteries CAPACITANCE VESSELS EXCHANGE VESSELS RESISTANCE VESSELS Venules Capillaries Arterioles Vascular circuit • all 3 layers are present, but thinner than in •In varicose veins, arteries of corresponding size (external blood pools because diameter).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Lymph and Lymphatic Vessels
    Cardiovascular System LYMPH AND LYMPHATIC VESSELS Venous system Arterial system Large veins Heart (capacitance vessels) Elastic arteries Large (conducting lymphatic vessels) vessels Lymph node Muscular arteries (distributing Lymphatic vessels) system Small veins (capacitance Arteriovenous vessels) anastomosis Lymphatic Sinusoid capillary Arterioles (resistance vessels) Postcapillary Terminal arteriole venule Metarteriole Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) Copyright © 2010 Pearson Education, Inc. Figure 19.2 Regional Internal jugular vein lymph nodes: Cervical nodes Entrance of right lymphatic duct into vein Entrance of thoracic duct into vein Axillary nodes Thoracic duct Cisterna chyli Aorta Inguinal nodes Lymphatic collecting vessels Drained by the right lymphatic duct Drained by the thoracic duct (a) General distribution of lymphatic collecting vessels and regional lymph nodes. Figure 20.2a Lymphatic System Outflow of fluid slightly exceeds return Consists of three parts 1. A network of lymphatic vessels carrying lymph 1. Transports fluid back to CV system 2. Lymph nodes 1. Filter the fluid within the vessels 3. Lymphoid organs 1. Participate in disease prevention Lymphatic System Functions 1. Returns interstitial fluid and leaked plasma proteins back to the blood 2. Disease surveillance 3. Lipid transport from intestine via lacteals Venous system Arterial system Heart Lymphatic system: Lymph duct Lymph trunk Lymph node Lymphatic collecting vessels, with valves Tissue fluid Blood Lymphatic capillaries Tissue cell capillary Blood Lymphatic capillaries capillaries (a) Structural relationship between a capillary bed of the blood vascular system and lymphatic capillaries. Filaments anchored to connective tissue Endothelial cell Flaplike minivalve Fibroblast in loose connective tissue (b) Lymphatic capillaries are blind-ended tubes in which adjacent endothelial cells overlap each other, forming flaplike minivalves.
    [Show full text]
  • Blood Vessels
    10/1/2010 Objectives Overview of the vessels. Human Anatomy & Define the different type of blood vessels. Physiology BI 233 --ArteriesArteries --VeinsVeins Course Intro --CapillariesCapillaries Identify the tissue layers of blood vessels. Distinguish the different forms of arteries, veins and capillaries. Homework Preparations Function of the Blood Vessels Cardiac Flow in HW section (diagram) Transport blood to and from the heart. Need colored pencils or marker Due Wed I. Arteries deliver oxygenated blood to tissues. HW #1 Artery Labeling II Veins carry deoxygenated blood to the Due in lab (Thursday) heart. III Capillaries are the site of gas exchange for internal respiration. Venous system Arterial system Tunica intima Large veins Heart (capacitance • Endothelium Valve • Subendothelial layer vessels) Elastic arteries Large (conducting Internal elastic lamina lymphatic vessels) Tunica media vessels (smooth muscle and Lymph elastic fibers) node Muscular arteries (distributing External elastic lamina Lymphatic system vessels) Tunica externa Small veins (collagen fibers) Arteriovenous (capacitance anastomosis vessels) Lymphatic Sinusoid capillary Lumen Arterioles Lumen Capillary Vein (resistance vessels) Artery network Postcapillary Terminal arteriole Basement membrane venule Metarteriole Endothelial cells Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) (b) Capillary Copyright © 2010 Pearson Education, Inc. Copyright © 2010 Pearson Education, Inc. 1 10/1/2010 Tissue Layers of Vessels Tissue Layers of Vessels
    [Show full text]
  • Precapillary Sphincters Maintain Perfusion in the Cerebral Cortex
    ARTICLE https://doi.org/10.1038/s41467-020-14330-z OPEN Precapillary sphincters maintain perfusion in the cerebral cortex Søren Grubb 1,5*, Changsi Cai1,5, Bjørn O. Hald1,5, Lila Khennouf 1,2, Reena Prity Murmu1, Aske G.K. Jensen 1,3, Jonas Fordsmann 1, Stefan Zambach1 & Martin Lauritzen1,4* Active nerve cells release vasodilators that increase their energy supply by dilating local blood vessels, a mechanism termed neurovascular coupling and the basis of BOLD functional 1234567890():,; neuroimaging signals. Here, we reveal a mechanism for cerebral blood flow control, a pre- capillary sphincter at the transition between the penetrating arteriole and first order capillary, linking blood flow in capillaries to the arteriolar inflow. The sphincters are encircled by contractile mural cells, which are capable of bidirectional control of the length and width of the enclosed vessel segment. The hemodynamic consequence is that precapillary sphincters can generate the largest changes in the cerebrovascular flow resistance of all brain vessel segments, thereby controlling capillary flow while protecting the downstream capillary bed and brain tissue from adverse pressure fluctuations. Cortical spreading depolarization con- stricts sphincters and causes vascular trapping of blood cells. Thus, precapillary sphincters are bottlenecks for brain capillary blood flow. 1 Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark. 2 Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Neurosciences, University of California, San Diego, CA 92093, USA. 4 Department of Clinical Neurophysiology, Rigshospitalet, 2600 Glostrup, Denmark. 5These authors contributed equally: Søren Grubb, Changsi Cai, Bjørn O.
    [Show full text]
  • Celina Maria Dos Reis Parreira 2013
    DEPARTAMENTO DE CIÊNCIAS DA VIDA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA The role of miR-21 in the bone marrow microenvironment Dissertação apresentada à Universidade de Coimbra para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biologia Celular e Molecular, realizada sob a orientação científica do Professor Doutor Sérgio Dias (Universidade de Lisboa) e do Professor Doutor Carlos Duarte (Universidade de Coimbra). Celina Maria dos Reis Parreira 2013 1 2 Acknowledgements First of all, I would like to express my gratitude to Doctor Sérgio Dias for accepting to be my supervisor and for giving me the opportunity to carry out my master dissertation with the excellent group that he coordinates. I am grateful for all the knowledge transmitted and for the confidence placed in me. I would also like to thank my co-supervisor, Doctor Carlos Duarte, for the understanding and interest and also the commitment dedicated to the master in Cellular and Molecular Biology. I would like to thank the coordinator of the master in Cellular and Molecular Biology, Doctor Emília Duarte, for her commitment to the course and also for her willingness and useful discussions. I thank all my colleagues from the laboratory, for all the transmitted knowledge, support, help, advices and good moments shared in the lab. I want to thank specially Joana Afonso who was always available to help me, for the encouragement, friendship, confidence and the knowledge shared with me. I would also like to thank my master colleagues, especially João, Andreia and Raquel, for the share of difficulties throughout this year.
    [Show full text]
  • BLOOD Vessels in Anatomy Today Histology of Blood Vessels
    Human Anatomy Unit 3 CARDIOVASCULAR SYSTEM: BLOOD vessels In Anatomy Today Histology of Blood Vessels • Tunica intima – endothelium – loose CT + simple squamous epithelium • Tunica media – smooth muscle (not cardiac) – may have elastin • Tunica externa – adventitia – fibrous CT with elastin Histology of Blood Vessels Histology of Blood Vessels Types of Blood Vessels • Arteries – resistance vessels – high pressure – carry blood away from heart • Capillaries – exchange vessels • Veins – capacitance vessels – low pressure lines – carry blood to the heart Arteries • Characteristics – Smaller diameter than veins – thick tunica media – Lots of elastin • Function – carry blood away from the heart – not always oxygenated Types of Arteries • Elastic (Conducting) – Transport large volumes of blood – abundant elastin – Vasa vasorum • Muscular (Distribution) – Skeletal muscle and internal organs – distribute to “lobes” of an organ • Arterioles – Vasocontriction/vasodilation – Scattered smooth muscle fibers – small diameters, branch into capillaries – greatest resistance to blood flow Capillaries Capillaries • Structure – Tunica intima only (endothelium) – Precapillary sphincter – Metarteriole – Thoroughfare channel • Function – Diffusion and exchange of substances with tissues – Anastomosis Sinusoids • Liver, bone marrow, adrenal gland • Resemble fenestrated capillaries but have larger pores • Thinner basal lamina • Allow for bulk exchange • Low flow rate Portal Circuits • Parallel circuits – Artery – Capillary – Vein • Portal circuit – Artery – Capillary
    [Show full text]
  • Cardiac Output Venous Return
    Circulatory Physiology As a Country Doc Episode 3 Cardiac Output and Venous Return Patrick Eggena, M.D. Novateur Medmedia, LLC. Circulatory Physiology As a Country Doc Episode 3 Cardiac Output and Venous Return Patrick Eggena, M.D. Novateur Medmedia, LLC. i Copyright This Episode is derived from: Course in Cardiovascular Physiology by Patrick Eggena, M.D. © Copyright Novateur Medmedia, LLC. April 13, 2012 The United States Copyright Registration Number: PAu3-662-048 Ordering Information via iBooks: ISBN 978-0-9663441-2-7 Circulatory Physiology as a Country Doc, Episode 3: Cardiac Output and Venous Return Contact Information: Novateur Medmedia, LLC 39 Terry Hill Road, Carmel, NY 10512 email: [email protected] Credits: Oil Paintings by Bonnie Eggena, PsD. Music by Alan Goodman from his CD Under the Bed, Cancoll Music, copyright 2005 (with permission). Illustrations, movies, text, and lectures by Patrick Eggena, M.D. Note: Knowledge in the basic and clinical sciences is constantly changing. The reader is advised to carefully consult the instruc- tions and informational material included in the package inserts of each drug or therapeutic agent before administration. The Country Doctor Series illustrates Physiological Principles and is not intended as a guide to Medical Therapeutics. Care has been taken to present correct information in this book, however, the author and publisher are not responsible for errors or omissions or for any consequence from application of the information in this work and make no warranty, expressed or implied, with re- spect to the contents of this publication or that its operation will be uninterrupted and error free on any particular recording de- vice.
    [Show full text]
  • 1. Arteries - Carry Blood Away from Heart
    Anatomy Lecture Objectives Chapter 19 Chapter 19 - Vascular System A. categories and general functions: 1. arteries - carry blood away from heart 2. capillaries - allow exchange of materials between blood and tissue fluid 3. veins - return blood to heart B. wall structure - most blood vessel walls have 3 layers lumen = space inside vessel 1. tunica intima / tunica interna endothelium - simple squamous e. subendothelial layer - loose c.t. (collagen) 2. tunica media a. smooth muscle - cells circularly arranged controlled by ANS and chemical factors constriction (smooth muscle contracts) decreases blood flow and increases systemic blood pressure dilation (smooth muscle relaxes) increases blood flow and decreases systemic blood pressure b. elastic c.t. 3. tunica adventitia / tunica externa c.t. attaches vessel to surrounding structures vasa vasorum nourish outer part of vessel wall Strong/Fall 2008 page 1 Anatomy Lecture Objectives Chapter 19 C. arteries 1. elastic (conducting) - large arteries near heart (aorta and major branches) conduct blood to muscular arteries low resistance tunica media = circular elastin sheets with few smooth m. cells recoil maintains blood pressure during diastole 2. muscular - middle-sized arteries, distal to elastic arteries distal to elastic arteries tunica media very thick; much smooth m. and some elastin regulate blood flow to organs have an internal and an external elastic lamina 3. arterioles - smallest arteries tunica media contains smooth m. only diameter controlled by ANS and chemical messengers diameter determines blood flow and blood pressure D. capillaries wall consists of endothelium and basal lamina (no tunica media or externa) 8 to 10 mm in diameter join and branch to form capillary beds cells are joined at spots around perimeter by tight junctions and desmosomes intercellular clefts are spaces between cells 1.
    [Show full text]
  • Guyton's Venous Return Curves Should Be Taught at Medical Schools
    J Physiol Sci (2017) 67:447–458 DOI 10.1007/s12576-017-0533-0 REVIEW Guyton’s venous return curves should be taught at medical schools (complete English translation of Japanese version) Kenji Sunagawa1 Received: 9 February 2017 / Accepted: 6 March 2017 / Published online: 27 March 2017 Ó The Physiological Society of Japan and Springer Japan 2017 Abstract Guyton’s most significant contributions are the around 2000, sparking a flurry of debates in scientific exploration into the development of venous return and journals. This article introduces the most important points circulatory equilibrium. Recently, several physiologists of argument among the various controversies, and explains challenged the validity of venous return as a function of the views of the authors. Based on this background, the venous pressure. Guyton’s experiment in effect controlled latest development of Guyton’s physiology will be com- venous pressure by changing cardiac output. Thus, critics mented. Some terms that appear frequently in this article claimed that cardiac output is the determinant of venous may be unfamiliar to some readers. For the benefit of those return. This claim is true, but in the presence of constant readers, Memos are added to explain these terms in simple stressed volume, venous return and venous pressure have a language. For those readers who already know the defini- fixed reciprocal relationship. Thus, it is meaningless to tions of these terms, they may skip these Memos and argue which one is the independent variable. We fully continue to read on. Moreover, many equations are used to support Guyton’s venous return and in particular circula- explain how the basic concept proposed in Guyton’s tory equilibrium.
    [Show full text]
  • The Use of Central Venous Pressure in Critically Ill Patients
    The Use of Central Venous Pressure in Critically Ill Patients S. Magder Introduction The assessment of the central venous pressure (CVP) is one of the basic elements of a standard physical exam. This is done at the bedside by measuring the vertical height of the distension of the jugular veins above the sternal angle, which is where the second rib meets the sternum. The sternal angle is used because it is fortui- tously approximately 5 cm above the mid-point of the right atrium whether the patient is lying down or whether the patient is sitting upright at a 60° angle. This works because the right atrium is a relatively anterior structure and sits just below the sternal angle. Differences in heart size only add a small difference to the measurement, and this standard reference point allows comparisons over time and by different operators. The midpoint of the right atrium is used as the stand- ard reference point because it represents the lowest pressure for the blood return- ing to the heart, and the starting point from which the heart raises the pressure. The value is in cmH2O, which can be converted to mmHg by dividing the value in centimeters by 1.36, which accounts for the density of mercury and the conversion from cmH2O to mmHg. A major reason given for assessing the CVP is that it gives an indication of a person’s volume status, but before the usefulness of this meas- ure can be assessed, it is important to appreciate the factors that determine CVP and right atrial pressure [1].
    [Show full text]