Elucidation of the Pathophysiology of Intradialytic Muscle Cramps: Pharmacokinetics Applied to Translational Research

Total Page:16

File Type:pdf, Size:1020Kb

Elucidation of the Pathophysiology of Intradialytic Muscle Cramps: Pharmacokinetics Applied to Translational Research 2019;27(4):119-122 TCP Transl Clin Pharmacol https://doi.org/10.12793/tcp.2019.27.4.119 Elucidation of the pathophysiology of intradialytic muscle cramps: pharmacokinetics applied to translational research Arthur J. Atkinson, Jr.* TUTORIAL Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA *Correspondence: Arthur J. Atkinson, Jr.; E-mail: [email protected] In the conventional concept of translational research, investigations flow from the laboratory Received 17 Oct 2019 bench to the bedside. However, clinical research can also serve as the starting point for subsequent Accepted 7 Dec 2019 laboratory investigations that then lead back to the bedside. This article chronicles the evolution of a Keywords series of studies in which a detailed analysis of pharmacokinetics in hemodialysis patients revealed Capillary physiology, new physiological insight that, through a systems approach incorporating kinetic, physicochemical, Hemodialysis, Intradialytic cramps, physiologic, and clinical trial results, led to an elucidation of the pathophysiology of intradialytic Pharmacokinetics, skeletal muscle cramps. Based on this understanding, a therapeutic path forward is proposed. Renin-angiotensin system, Sympathetic nervous system pISSN: 2289-0882 eISSN: 2383-5427 Introduction Because the central compartment of the model represented in- After preliminary observations indicated that procainamide’s travascular space, it was concluded that the intercompartmental acetylated metabolite, N acetylprocainamide (NAPA), had clearances of the model represented the process of transcapil- antiarrhythmic activity in procainamide-treated patients,[1] lary exchange. and pharmacokinetic studies in healthy subjects indicated that NAPA’s longer elimination half-life would permit a more conve- Identification of model compartments and nient dosing interval than recommended for procainamide,[2] components of intercompartmental clearance patient trials were begun to further develop this metabolite as A similar three-compartment model was used to study the ki- an antiarrhythmic drug in its own right.[3] As part of the sub- netics of simultaneously injected inulin and urea in dogs[5] and sequent development program, NAPA pharmacokinetics were in healthy human subjects.[6] The following permeability-flow investigated in functionally anephric patients in a study that was equation, which has a long history[7] but was first developed by conducted in continuity before, during, and after hemodialysis. Renkin[8] to describe solute transfer across isolated perfused [4] Using a three-compartment mammillary model in which hind leg capillaries of cats in terms of their blood flow (Q) and the volume of the central compartment corresponded to plasma permeability coefficient-surface area products (P·S), was then volume, it was observed that the intercompartmental clearance used to interpret the intercompartmental clearance (CLI) re- to the slowly equilibrating peripheral compartment was reduced sults: during hemodialysis by an average of 77% and only partially –P·S/Q CL = Q (1 - e ) returned to normal in the first few hours after hemodialysis. I Since the transcapillary exchange of inulin is not restricted Copyright © 2019 Arthur J. Atkinson, Jr. It is identical to the Creative Commons Attribution Non-Commercial License by molecular size,[9] it was assumed that the ratio of P·S values (http://creativecommons.org/licenses/by-nc/3.0/). for inulin and urea would be the same as the ratio of their free- This paper meets the requirement of KS X ISO 9706, ISO 9706-1994 and water diffusion coefficients. In this way, simultaneous Renkin ANSI/NISO Z.39.48-1992 (Permanence of Paper). clearance equations for urea and inulin, and this ratio were used Reviewer to calculate values for blood flows and aggregate capillary P·S This article was invited and reviewed by the editors of TCP. values for the two peripheral compartments of the model. It was 119 Vol. 27, No.4, Dec 30, 2019 Pathophysiology of intradialytic cramps TCPTransl Clin Pharmacol found that the sum of the compartmental blood flows averaged 97% of measured cardiac output (range 83–113%) in dogs,[5] and in humans 5.39 ± 0.49 L/min, similar to the independently measured cardiac output value of 5.47 ± 0.40 L/min.[6] Further confirmation of the validity of this approach was provided by a pharmacokinetic study in dogs in which inulin, urea, and theophylline were injected simultaneously.[10] Theophyl- line kinetics were modeled with a similar three-compartment Figure 1. Schematic drawing of a skeletal muscle capillary showing arteriolar R and venular R resistances. Whereas arginine vasopres- model, and its intercompartmental clearances were similar to A V sin (AVP) acts solely on RA, resulting in closure of some capillaries, an- the blood flows estimated for the corresponding inulin and urea giotensin II (AII) acts on both RA and RV in such a way that the ratio of R /R is sufficient to maintain capillary patency and functional surface compartments. The anatomic identity of the peripheral model V A area. compartments was then explored by studying the pharmaco- kinetics of these three compounds in dogs after splenectomy and enterectomy.[11] Because this surgical procedure removed approximately half of the volume of the rapidly equilibrating sist in compartment identification.[11] In this study, there was but less than 20% of their slowly equilibrating inulin and urea a marked reduction in slow compartment P·S values that was peripheral compartments, it was concluded that the fast equili- correlated with a surgery-induced elevation in plasma levels brating compartment was composed primarily of splanchnic of arginine vasopressin (AVP) such that AVP levels of 45 pg/ tissues, and the slowly equilibrating compartment was made up ml resulted in an almost 50% decrease in P·S values.[13] The primarily of skeletal muscle and other somatic tissues. Based on observed reduction in P·S values results from the fact that AVP previous morphologic studies, it was inferred that the difference acts solely to increase precapillary arteriolar resistance and so in transcapillary exchange rates of the peripheral compartments lowers intracapillary pressure to the extent that functional capil- reflected the fact these three compounds reached the interstitial lary density decreases and aggregate capillary surface area is re- fluid of splanchnic organs primarily by diffusing through the duced (Fig. 1).[14] On the other hand, angiotensin II (AII) acts in relatively large fenestrations of splanchnic capillaries, whereas a balanced fashion to constrict both precapillary and postcapil- they reached somatic tissues through the much narrower endo- lary resistance vessels in such a way that sufficient intracapillary thelial cell junctions of continuous capillaries. hydrostatic pressure is retained to maintain patency.[15] Studies in a canine hemodialysis model Subsequent clinical studies This modeling approach subsequently was used to analyze Although kinetic studies in both hemodialyzed patients and inulin and urea distribution kinetics before, during, and after dogs indicated that this procedure was accompanied by sub- hemodialysis of dogs with intact kidneys.[12] During the two- stantial hemodynamic changes that were likely related to the hour hemodialysis session, mean arterial pressure fell by less occurrence of skeletal muscle cramps, they failed to provide than 5%, but total peripheral resistance increased by 47%, and evidence as to why only some hemodialyzed patients experi- cardiac output fell by 35%. These hemodynamic changes were enced these cramps. The study of hemodynamic and hormonal accompanied by marked reductions in the slow CLI of inulin responses to hemodialysis is complicated by the concurrence of and urea to 19% and 63% of their respective predialysis values. both osmotic and volume stimuli during the procedure and by Using the simultaneous Renkin equation approach, it was esti- the possible dialytic removal of vasoactive substances. Because mated that this corresponded to a 90% reduction in blood flow of the role played by plasma volume contraction in initiating to this compartment during hemodialysis. These changes were intradialytic cramps, head-up tilt was selected as a relatively only somewhat attenuated during the two hours after hemodi- well-controlled volume stress that could be used for compar- alysis. In contrast to these marked changes, the P·S values for ing the responses of 8 patients who frequently experienced this compartment were not significantly reduced, signifying that intradialytic cramps with those of 8 patients who cramped there was no significant derecruitment of capillaries supplying infrequently.[16] Baseline blood pressure, plasma renin activity skeletal muscles and other somatic compartment components. and plasma norepinephrine and arginine vasopressin concen- There also was no significant change in the blood flows or P·S trations were similar in both groups. After equilibration in the values calculated for the more rapidly equilibrating splanchnic recumbent position, the patients were brought to a 60° tilt for compartment. up to 1 hr. Systolic blood pressure rapidly fell by an average of The additional observation was made that these changes were 17% in patients who cramped infrequently but only by an aver- accompanied by activation of the renin-angiotensin system. age of 10% in frequently cramping patients. The ratio of tilt/ The stability of somatic compartment
Recommended publications
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Lymph and Lymphatic Vessels
    Cardiovascular System LYMPH AND LYMPHATIC VESSELS Venous system Arterial system Large veins Heart (capacitance vessels) Elastic arteries Large (conducting lymphatic vessels) vessels Lymph node Muscular arteries (distributing Lymphatic vessels) system Small veins (capacitance Arteriovenous vessels) anastomosis Lymphatic Sinusoid capillary Arterioles (resistance vessels) Postcapillary Terminal arteriole venule Metarteriole Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) Copyright © 2010 Pearson Education, Inc. Figure 19.2 Regional Internal jugular vein lymph nodes: Cervical nodes Entrance of right lymphatic duct into vein Entrance of thoracic duct into vein Axillary nodes Thoracic duct Cisterna chyli Aorta Inguinal nodes Lymphatic collecting vessels Drained by the right lymphatic duct Drained by the thoracic duct (a) General distribution of lymphatic collecting vessels and regional lymph nodes. Figure 20.2a Lymphatic System Outflow of fluid slightly exceeds return Consists of three parts 1. A network of lymphatic vessels carrying lymph 1. Transports fluid back to CV system 2. Lymph nodes 1. Filter the fluid within the vessels 3. Lymphoid organs 1. Participate in disease prevention Lymphatic System Functions 1. Returns interstitial fluid and leaked plasma proteins back to the blood 2. Disease surveillance 3. Lipid transport from intestine via lacteals Venous system Arterial system Heart Lymphatic system: Lymph duct Lymph trunk Lymph node Lymphatic collecting vessels, with valves Tissue fluid Blood Lymphatic capillaries Tissue cell capillary Blood Lymphatic capillaries capillaries (a) Structural relationship between a capillary bed of the blood vascular system and lymphatic capillaries. Filaments anchored to connective tissue Endothelial cell Flaplike minivalve Fibroblast in loose connective tissue (b) Lymphatic capillaries are blind-ended tubes in which adjacent endothelial cells overlap each other, forming flaplike minivalves.
    [Show full text]
  • Blood Vessels
    10/1/2010 Objectives Overview of the vessels. Human Anatomy & Define the different type of blood vessels. Physiology BI 233 --ArteriesArteries --VeinsVeins Course Intro --CapillariesCapillaries Identify the tissue layers of blood vessels. Distinguish the different forms of arteries, veins and capillaries. Homework Preparations Function of the Blood Vessels Cardiac Flow in HW section (diagram) Transport blood to and from the heart. Need colored pencils or marker Due Wed I. Arteries deliver oxygenated blood to tissues. HW #1 Artery Labeling II Veins carry deoxygenated blood to the Due in lab (Thursday) heart. III Capillaries are the site of gas exchange for internal respiration. Venous system Arterial system Tunica intima Large veins Heart (capacitance • Endothelium Valve • Subendothelial layer vessels) Elastic arteries Large (conducting Internal elastic lamina lymphatic vessels) Tunica media vessels (smooth muscle and Lymph elastic fibers) node Muscular arteries (distributing External elastic lamina Lymphatic system vessels) Tunica externa Small veins (collagen fibers) Arteriovenous (capacitance anastomosis vessels) Lymphatic Sinusoid capillary Lumen Arterioles Lumen Capillary Vein (resistance vessels) Artery network Postcapillary Terminal arteriole Basement membrane venule Metarteriole Endothelial cells Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) (b) Capillary Copyright © 2010 Pearson Education, Inc. Copyright © 2010 Pearson Education, Inc. 1 10/1/2010 Tissue Layers of Vessels Tissue Layers of Vessels
    [Show full text]
  • Precapillary Sphincters Maintain Perfusion in the Cerebral Cortex
    ARTICLE https://doi.org/10.1038/s41467-020-14330-z OPEN Precapillary sphincters maintain perfusion in the cerebral cortex Søren Grubb 1,5*, Changsi Cai1,5, Bjørn O. Hald1,5, Lila Khennouf 1,2, Reena Prity Murmu1, Aske G.K. Jensen 1,3, Jonas Fordsmann 1, Stefan Zambach1 & Martin Lauritzen1,4* Active nerve cells release vasodilators that increase their energy supply by dilating local blood vessels, a mechanism termed neurovascular coupling and the basis of BOLD functional 1234567890():,; neuroimaging signals. Here, we reveal a mechanism for cerebral blood flow control, a pre- capillary sphincter at the transition between the penetrating arteriole and first order capillary, linking blood flow in capillaries to the arteriolar inflow. The sphincters are encircled by contractile mural cells, which are capable of bidirectional control of the length and width of the enclosed vessel segment. The hemodynamic consequence is that precapillary sphincters can generate the largest changes in the cerebrovascular flow resistance of all brain vessel segments, thereby controlling capillary flow while protecting the downstream capillary bed and brain tissue from adverse pressure fluctuations. Cortical spreading depolarization con- stricts sphincters and causes vascular trapping of blood cells. Thus, precapillary sphincters are bottlenecks for brain capillary blood flow. 1 Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark. 2 Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Neurosciences, University of California, San Diego, CA 92093, USA. 4 Department of Clinical Neurophysiology, Rigshospitalet, 2600 Glostrup, Denmark. 5These authors contributed equally: Søren Grubb, Changsi Cai, Bjørn O.
    [Show full text]
  • Celina Maria Dos Reis Parreira 2013
    DEPARTAMENTO DE CIÊNCIAS DA VIDA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA The role of miR-21 in the bone marrow microenvironment Dissertação apresentada à Universidade de Coimbra para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biologia Celular e Molecular, realizada sob a orientação científica do Professor Doutor Sérgio Dias (Universidade de Lisboa) e do Professor Doutor Carlos Duarte (Universidade de Coimbra). Celina Maria dos Reis Parreira 2013 1 2 Acknowledgements First of all, I would like to express my gratitude to Doctor Sérgio Dias for accepting to be my supervisor and for giving me the opportunity to carry out my master dissertation with the excellent group that he coordinates. I am grateful for all the knowledge transmitted and for the confidence placed in me. I would also like to thank my co-supervisor, Doctor Carlos Duarte, for the understanding and interest and also the commitment dedicated to the master in Cellular and Molecular Biology. I would like to thank the coordinator of the master in Cellular and Molecular Biology, Doctor Emília Duarte, for her commitment to the course and also for her willingness and useful discussions. I thank all my colleagues from the laboratory, for all the transmitted knowledge, support, help, advices and good moments shared in the lab. I want to thank specially Joana Afonso who was always available to help me, for the encouragement, friendship, confidence and the knowledge shared with me. I would also like to thank my master colleagues, especially João, Andreia and Raquel, for the share of difficulties throughout this year.
    [Show full text]
  • BLOOD Vessels in Anatomy Today Histology of Blood Vessels
    Human Anatomy Unit 3 CARDIOVASCULAR SYSTEM: BLOOD vessels In Anatomy Today Histology of Blood Vessels • Tunica intima – endothelium – loose CT + simple squamous epithelium • Tunica media – smooth muscle (not cardiac) – may have elastin • Tunica externa – adventitia – fibrous CT with elastin Histology of Blood Vessels Histology of Blood Vessels Types of Blood Vessels • Arteries – resistance vessels – high pressure – carry blood away from heart • Capillaries – exchange vessels • Veins – capacitance vessels – low pressure lines – carry blood to the heart Arteries • Characteristics – Smaller diameter than veins – thick tunica media – Lots of elastin • Function – carry blood away from the heart – not always oxygenated Types of Arteries • Elastic (Conducting) – Transport large volumes of blood – abundant elastin – Vasa vasorum • Muscular (Distribution) – Skeletal muscle and internal organs – distribute to “lobes” of an organ • Arterioles – Vasocontriction/vasodilation – Scattered smooth muscle fibers – small diameters, branch into capillaries – greatest resistance to blood flow Capillaries Capillaries • Structure – Tunica intima only (endothelium) – Precapillary sphincter – Metarteriole – Thoroughfare channel • Function – Diffusion and exchange of substances with tissues – Anastomosis Sinusoids • Liver, bone marrow, adrenal gland • Resemble fenestrated capillaries but have larger pores • Thinner basal lamina • Allow for bulk exchange • Low flow rate Portal Circuits • Parallel circuits – Artery – Capillary – Vein • Portal circuit – Artery – Capillary
    [Show full text]
  • 1. Arteries - Carry Blood Away from Heart
    Anatomy Lecture Objectives Chapter 19 Chapter 19 - Vascular System A. categories and general functions: 1. arteries - carry blood away from heart 2. capillaries - allow exchange of materials between blood and tissue fluid 3. veins - return blood to heart B. wall structure - most blood vessel walls have 3 layers lumen = space inside vessel 1. tunica intima / tunica interna endothelium - simple squamous e. subendothelial layer - loose c.t. (collagen) 2. tunica media a. smooth muscle - cells circularly arranged controlled by ANS and chemical factors constriction (smooth muscle contracts) decreases blood flow and increases systemic blood pressure dilation (smooth muscle relaxes) increases blood flow and decreases systemic blood pressure b. elastic c.t. 3. tunica adventitia / tunica externa c.t. attaches vessel to surrounding structures vasa vasorum nourish outer part of vessel wall Strong/Fall 2008 page 1 Anatomy Lecture Objectives Chapter 19 C. arteries 1. elastic (conducting) - large arteries near heart (aorta and major branches) conduct blood to muscular arteries low resistance tunica media = circular elastin sheets with few smooth m. cells recoil maintains blood pressure during diastole 2. muscular - middle-sized arteries, distal to elastic arteries distal to elastic arteries tunica media very thick; much smooth m. and some elastin regulate blood flow to organs have an internal and an external elastic lamina 3. arterioles - smallest arteries tunica media contains smooth m. only diameter controlled by ANS and chemical messengers diameter determines blood flow and blood pressure D. capillaries wall consists of endothelium and basal lamina (no tunica media or externa) 8 to 10 mm in diameter join and branch to form capillary beds cells are joined at spots around perimeter by tight junctions and desmosomes intercellular clefts are spaces between cells 1.
    [Show full text]
  • Blood & Cardiovascular System
    Blood & Cardiovascular System Chapters 10 & 11 Mrs. Joseph Composition of Blood • PLASMA – 55% – Water (solvent) +, + +2 +2 - - – Salts (electrolytes) – Na K , Ca , Mg , Cl , HCO3 osmotic balance, pH buffering, regulate membrane permeability – Plasma Proteins (Albumin, Fibrinogen, Globulins) – osmotic balance, pH buffering, clotting of blood, defense(anitbodies) and lipid transport – Substances transported by blood – nutrients, waste products, respiratory gases, hormones Composition of Blood CELL TYPE NUMBER (per FUNCTIONS • Formed mm3 of blood) Elements Transport O and (Cells) – Erythrocytes 4-6 million 2 help transport CO2 45% (RBC’s) Lives avg. 100-120 days Leukocytes 4-11 thousand Defense & (WBC’s) – basophils, Immunity eosinophils, neutrophils, lymphocyte, monocyte Platelets 250-500 Blood thousand Clotting ABO Blood Groups Blood Group RBC Plasma Blood that can antigens antibodies be received AB A & B NONE A, B, AB, O (universal recipient) B B Anti-A B, O A A Anti-B A, O O NONE Anti-A & O Anti-B (universal donor) ABO Blood Groups • Type A – Genotypes AA A O & AO • Type B – Genotypes BB B AB BO & BO • Type AB – Genotype AB O AO OO • Type O – Genotype OO • SEE Table 10.3 pg. 319 Hematopoiesis (Blood Cell Formation) • Occurs in RED BONE MARROW (myeloid tissue) • Stem cell – hemocytoblast lymphoid stem cells OR myeloid stem cells • Lymphoid stem cells lymphocytes • Myeloid stem cells erythrocytes, platelets, monocytes, neutrophils, eosinophils, basophils • See Figures 10.4 & 10.5 in book Hemostasis • Blood standing still – stoppage of blood flow • 3 Major Phases: – 1. Platelet plug forms – injury causes platelets to adhere and plug opening; fibrin clot with trapped red blood cells forms – 2.
    [Show full text]
  • Eolss Sample Chapters
    PHYSIOLOGY AND MAINTENANCE – Vol. III - Microcirculation - Sergey A. Polenov MICROCIRCULATION Sergey A. Polenov Pavlov Institute of Physiology, St. Petersburg, Russia Keywords: arteriole, arterio-venous anastomoses, autoregulation, calcitonin-gene- related peptide, capillary, fenestrae, hyperemia, kATPchannel, metabolic control, myogenic control, neural control, neuropeptide Y, nitric oxide, phospholipase C, precapillary sphincter, shear stress, substance P, tachykinins, terminal arterioles, venule Contents 1. Introduction 2. Classification and Structure of Microvessels 3. Control of Microcirculation 3.1. General Considerations 3.2. Local Control 3.2.1. Myogenic Control 3.2.2. Metabolic Control 3.2.3. Flow-Induced Vasodilation 3.2.4. Autoregulation 3.2.5. Active Hyperemia 3.2.6. Reactive Hyperemia 3.3. Neurohumoral Control 3.3.1. Sympathetic Adrenergic Control 3.3.2. Parasympathetic Cholinergic Control 3.3.3. Local Effector Function of Afferent Neurones 3.3.4. Endothelium-Derived Vasoactive Substances 3.3.5. Circulatory Hormones 3.3.6. Blood-Borne Substances 4. Transmicrovascular Exchange 5. Microcirculation and Pathology Glossary Bibliography Biographical Sketch SummaryUNESCO – EOLSS MicrocirculationSAMPLE represents the smallest functionalCHAPTERS unit of the vascular system. Microvessels are directly surrounded by the tissue and parenchymal cells to which they supply nutrients and from which they collect metabolites. This region of the circulation includes the arterioles, blood capillaries, and venules, as well as the lymphatic capillaries and interstitial spaces. There are numerous factors controlling microcirculation through changes in the diameter of microvessels. Local control (myogenic, metabolic, shear stress) allows the matching of blood flow to tissue needs. The major function of neural control is to maintain systemic blood pressure by altering vascular resistance and capacitance.
    [Show full text]
  • Shock Revised: 11/2013
    Emergency Medical Training Services Emergency Medical Technician – Paramedic Program Outlines Outline Topic: Shock Revised: 11/2013 (12 questions on trauma exam from this outline) DEFINITIONS • Aerobic metabolism is energy using oxygen into cells. • Anaerobic metabolism is energy not using oxygen. 18 times less effective than aerobic and produces acids. Results in accumulation of lactic acid. • Hemorrhage - disruption, or leak, in the vascular system. Results in internal or external bleeding. • Cardiac Output is amount of output per minute. Heart rate times stroke volume is cardiac output. • Stroke Volume is the amount ejected in one contraction of heart • Perfusion means movement • Hypoperfusion is inadequate movement of blood. Also known as SHOCK. • SHOCK IS DEFINED AS INADEQUATE TISSUE PERFUSION. • Hypotension means low BP. • Pulse Pressure is the difference between the systolic and diastolic numbers. FICK PRINCIPLE • Getting oxygen into lungs, into body, into cells, back to lungs and out. If one is not working we fall apart. Vasculature • Peripheral vascular resistance is the afterload. Meaning what the heart pumps against. Afterload is a measure of friction between the vessel walls and fluid (viscosity). • Vessel diameter is the main factor affecting the resistance of blood flow. • More pre-load results in a greater filling of the ventricles which results in a better stretching of fibers to get a better ejection factor. This is known as Frank Starling law of the heart. • Pooling of blood is always a concern if shock develops. Under normal conditions over 60% of blood volume is in the venous system. VESSELS • Artery is most muscular, carry blood away from heart.
    [Show full text]
  • Nomina Histologica Veterinaria
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Precapillary Sphincters Control Cerebral Blood Flow
    bioRxiv preprint doi: https://doi.org/10.1101/657486; this version posted June 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Precapillary sphincters control cerebral 2 blood flow 3 Søren Grubb1*, Changsi Cai1*, Bjørn O. Hald1, Lila Khennouf1,2, Jonas Fordsmann1, Reena Murmu1, Aske G. K. Jensen1,3, Stefan 4 Zambach1 & Martin Lauritzen1 5 1Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark. 2Department of 6 Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. 3Department of Neurosciences, 7 University of California, San Diego, CA 92093, USA 8 *These authors contributed equally to this work 9 Abstract 10 Active nerve cells produce and release vasodilators that increase their energy supply by dilating local blood vessels, a 11 mechanism termed neurovascular coupling, which is the basis of the BOLD (blood-oxygen-level-dependent) functional 12 neuroimaging signals. We here reveal a unique mechanism for cerebral blood flow control, a precapillary sphincter at the 13 transition between the penetrating arteriole and the first capillary that links blood flow in capillaries to the arteriolar inflow. 14 Large NG2-positive cells, containing smooth muscle actin, encircle the sphincters and rises in nerve cell activity cause astrocyte 15 and neuronal Ca2+ rises that correlate to dilation and shortening of the sphincter concomitant with substantial increases in the 16 RBC flux. Global ischemia and cortical spreading depolarization constrict sphincters and cause vascular trapping of blood 17 cells.
    [Show full text]