NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017

Total Page:16

File Type:pdf, Size:1020Kb

NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017 NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017 Cardiovascular 3 & 4: Mechanical Actions of the Heart and Determinants of Cardiac Output An essential component for the operation of the heart is the action of the valves. The valves insure that blood moves in only one direction. The opening and closing of the heart valves is controlled simply by the pressure gradients on the two sides of the valves. The two arteriovenous (AV) valves, the tricuspid and mitral valves, are comprised of flaps of connective tissue. On the ventricular side, the valves are attached to collagen cords called the cordae tendinae. The opposite ends of the cords are attached to the moundlike extensions of ventricular muscle called papillary muscles. The cordae tendinae prevent the flaps of the valve from getting stuck against the ventricular wall during ventricular filling and from being forced into the atria during ventricular systole. In contrast, the aortic and pulmonary semilunar valves have three cuplike leaflets that fill with blood, and which snap closed when backward pressure is placed on them. Special tethering such as the chordae tendinae are not required to insure that the semilunar valves close properly. The closing of the heart valves generates vibrations, which result in the heart sounds that physicians often monitor during examinations. The major heart sounds are commonly referred to as “lub-dub”. The softer “lub” is associated with closing of the tricuspid and mitral valves, and the “dub” comes from the closing of the semilunar valves. Careful assessment of the heart sounds can be done using a stethoscope; the procedure is referred to a auscultation. Through careful monitoring, two additional heart sounds are revealed. The third heart sound is associated with turbulent blood flow into the ventricle near the beginning of ventricular filling, and the fourth heart sound is produced by additional turbulent flow into the ventricle during atrial contraction. The heart sounds become abnormal if the valves are diseased. Two general types of abnormal heart sounds can be classified: a murmur and a gallop. Murmurs are heart sounds in addition to the four that are normally present, and gallops are augmented third or fourth heart sounds. Murmurs often occur when valves fail to close properly, producing regurgitation or movement of blood in the wrong direction. For example, if an AV valve does not close properly, blood will move from the ventricle into the atrium during systole. This turbulent movement of blood can be heard as an additional heart sound. Gallops often occur when the AV valves do not open properly or are narrowed (stenosed), resulting in excessive turbulence during movement of blood from the atria into the ventricles. Gallops can also occur when the ventricles are very stiff. 9/18/17 & 9/20/17 Page 1 Cardio 3-4 Clinical Notes: Echocardiography The beating heart can be imaged in real time using echocardiography. This technique employs ultra- sound that is emitted from a piezoelectric crystal. The waves are reflected back to the crystal, and re- sult in the production of electric impulses that are recorded. The characteristics of the reflected waves are dependent on the properties of the tissue that the waves pass through. A computer can interpret the electrical impulses generated by the vibrating pizoelectric crystal, and construct an image from these signals. There are three general placements for the echocardiograph transducer: • Transthoracic echocardiogram (TTE), in which a transducer is moved over dif- ferent locations on the chest or abdomen. • Transesophageal echocardiogram (TEE), in which the transducer is passed down the esophagus to provide clearer pictures of the heart. • Intracardiac echocardiogram, in which the transducer is inserted into the cardiac vessels. The following diagram shows two common planes imaged using transthoracic echocardiography: 9/18/17 & 9/20/17 Page 2 Cardio 3-4 Another way of describing the cardiac cycle is through a pressure-volume graph. Between points A and B in this graph, the ventricles are filling with blood. The AV valves open when the pressure in the atria exceeds that in the ventricles. After the AV valves open, ventricular pressure increases slightly as vol- ume increases. At the end of this part of the cardiac cycle, the atria contract and the ventricles contain the maximal amount of blood that they will have during the cardiac cycle (end diastolic volume, shown at point B). Note that although end diastolic volume is typically about 135 ml, it can be more or less under certain conditions. For example, when heart rate is very high (and filling time is low), end diastolic volume often drops. When cardiac return increases, EDV also increases. In the next phase of the cardiac cycle, the ventricles begin to contract. Very rapidly, pressure in the ventricles exceeds that in the atria and the AV valves close. Subsequently, ventricular pressure increases but ventricular volume stays constant (hence, an isovolumetric contraction). When pressure in the ventricles is great enough, the semilunar valves open and blood is ejected into the aorta and pulmonary arteries (point C). Ventricular pressure continues to increase while ventricular volume drops. Eventually, the ventricles begin to relax, and the semilunar valves close. Note that ventricular volume is not zero at this time, but instead end-systolic volume is about 65 ml. This volume is variable, however, and can decrease if ventricular contractility increases. The ventricle then relaxes, but because the ventricular pressure exceeds atrial pressure the AV valves are closed. This is the isovolumetric relaxation phase of the cardiac cycle. When ventricular pressure drops below atrial pressure, the AV valves open and ventricular filling starts again. Note that if MAP increases, more pressure is needed in the left ventricle to open the aortic valve. Ejection fraction (EF) is defined as the fraction of end diastolic volume that is ejected out of the ventricle during each contraction. EF = SV/EDV If SV=70ml and EDV=135ml Then EF=70/135 or 0.52 9/18/17 & 9/20/17 Page 3 Cardio 3-4 Yet another means of depicting the cardiac cycle is shown above. This diagram includes both electrical and mechanical events that occur in the heart. Such a diagram is called the “Wiggers diagram” after the physiologist who first published it (Carl Wiggers). We have not discussed one pressure tracing in the Wigger’s diagram: a recording of pressure in the left atrium. Three waves are evident: the a, c, and v waves. The a wave is caused by atrial contraction. The c wave is caused by ventricular contraction, and is due to 1) the small backflow of blood from the ventricle to the atrium when the mitral valve closes and 2) the bulging of the closed mitral valve backward into the atrium when ventricle pressure increases. The v wave is due to blood flowing from the veins into the atrium during ventricular contraction, which cannot leave because the mitral valve is shut. When the mitral valve opens, atrial pressure drops, demarking the peak of the v wave. It is important for you to understand the relationships between MAP, aortic valve opening, and end systolic volume. If total peripheral resistance increases, then the pressure in the left ventricle must increase more to open the aortic valve (since MAP is higher [MAP=CO*TPR], and the pressure in the left ventricle must exceed that in the aorta for the valve to open). In addition, the valve closes earlier when the ventricle begins to relax. As a consequence, stroke volume diminishes. 9/18/17 & 9/20/17 Page 4 Cardio 3-4 When stroke volume diminishes, there is more blood left in the ventricle at the end of systole (end systolic volume increases). This increased volume is added to the volume transferred from the left atrium to left ventricle after the mitral valve opens. As a consequence, end diastolic volume increases. Thus, the next ventricular contraction is stronger due to the Frank-Starling effect. In essence, if TPR is high, then the heart must work harder and use more ATP to maintain constant cardiac output. Cardiac output is the amount of blood pumped from the ventricles per unit time. As mentioned in the first lecture, cardiac output at rest is about 5 L/min. This value is derived through the following calculation. The resting heart beats at about 70 times/min, and each ventricular ejection is about 70 ml (EDV-ESV). Thus, 70 beats/min * 0.07 L/beat = 4.9 L/min. You should be familiar with the formula to compute cardiac output, and how cardiac output relates to mean arterial pressure. MAP = CO * TPR MAP=(SV*HR) * TPR SV= Stroke Volume HR=Heart Rate MAP=((EDV-ESV)*HR) * TPR Cardiac output can be changed tremendously during some conditions. For example, during exercise it can rise from 5 L/min to 35 L/min. Let us consider how this happens. Obviously, an increase in stroke volume or heart rate can increase cardiac output. During the last lecture, we noted that intrinsic heart rate is actually 90-100 beats/min, but is tonically suppressed to about 70 beats/minute by the parasympathetic nervous system. Thus, one way of increasing heart rate is by “withdrawing” parasympathetic drive on the heart. Heart rate can be increased further by the actions of the sympathetic nervous system. Recall that binding of NE or EPI to beta receptors on autorhythmic cells increases their firing rate, driving heart rate faster. Furthermore, the catecholamines enhance conduction through the AV node, bundle of His, and Purkinje fibers. However, there is an upward limit on heart rate. If the heart beats too rapidly, there is insufficient time for filling. This condition is calledtachycardia .
Recommended publications
  • Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
    Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins
    [Show full text]
  • Physiology Lessons for Use with the Biopac Student Lab Lesson 5
    Physiology Lessons Lesson 5 for use with the ELECTROCARDIOGRAPHY I Biopac Student Lab Components of the ECG Richard Pflanzer, Ph.D. Associate Professor Emeritus Indiana University School of Medicine Purdue University School of Science William McMullen Vice President BIOPAC Systems, Inc. BIOPAC® Systems, Inc. 42 Aero Camino, Goleta, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web: www.biopac.com Manual Revision PL3.7.5 03162009 BIOPAC Systems, Inc. Page 2 Biopac Student Lab 3.7.5 I. INTRODUCTION The main function of the heart is to pump blood through two circuits: 1. Pulmonary circuit: through the lungs to oxygenate the blood and remove carbon dioxide; and 2. Systemic circuit: to deliver oxygen and nutrients to tissues and remove carbon dioxide. Because the heart moves blood through two separate circuits, it is sometimes described as a dual pump. In order to beat, the heart needs three types of cells: 1. Rhythm generators, which produce an electrical signal (SA node or normal pacemaker); 2. Conductors to spread the pacemaker signal; and 3. Contractile cells (myocardium) to mechanically pump blood. The Electrical and Mechanical Sequence of a Heartbeat The heart has specialized pacemaker cells that start the electrical sequence of depolarization and repolarization. This property of cardiac tissue is called inherent rhythmicity or automaticity. The electrical signal is generated by the sinoatrial node (SA node) and spreads to the ventricular muscle via particular conducting pathways: internodal pathways and atrial fibers, the atrioventricular node (AV node), the bundle of His, the right and left bundle branches, and Purkinje fibers (Fig 5.1).
    [Show full text]
  • Heart Rate Information Sheet Finding Your Pulse Taking Your Pulse
    Heart rate In this activity you will measure your heart rate and investigate the effect that other things have on your heart rate. Information sheet You can measure your heart (pulse) rate anywhere on your body where a major artery is close to the surface of your skin. The easiest places are: • on the front of your forearm • just above your wrist on your thumb side • on the side of your neck about half way between your chin and your ear. Finding your pulse Try to locate your pulse in one of these places, using the tips of your index and middle fingers. You should feel a gentle, regular beat. This is your heart rate. Do not use your thumb, as your thumb has a pulse of its own. Taking your pulse When you find your pulse, use a stopwatch or a watch with a second hand to count how many beats there are in a full minute (60 seconds). In most situations, taking your pulse rate over one minute will give a reasonably accurate result, but if you want to take your pulse after exercise, you should do so over a much shorter time interval. After exercise your pulse rate will be changing rapidly. To get a reasonably accurate result, start to measure the rate immediately after the exercise and count the number of beats in 10 seconds. Multiply this number by six to find your heart rate. For an adult, a normal resting heart rate is between 60–100 beats a minute. The fitter you are, the lower your resting heart beat will be.
    [Show full text]
  • Heart to Heart - STEAM Activity
    Heart to Heart - STEAM Activity Purpose: ​ The main objective of this exercise is to introduce how the human heart works. This lesson will be divided into four different lessons, including an introduction to heart anatomy, heart beats and pulses, and the circulatory system. We will be using coloring activities, stethoscopes, and handmade pumps to reinforce the concepts seen in this lesson. Vocabulary ● Artery: A blood vessel that carries blood high in oxygen content away from the heart to ​ the farthest reaches of the body. ● Vein: a Blood vessel that carries blood low in oxygen content from the body back to the ​ heart. ● Atrium: One of the two upper cavities of the heart that passes blood to the ventricles. ​ ● Ventricles: One of the two lower chambers of the heart that receives blood from the ​ atria. ● Valves: Tissue-paper thin membranes attached to the heart wall that constantly open and ​ close to regulate blood flow. ● Pulse: A rhythmical, mechanical throbbing of the arteries as blood pumps through them. ​ ● Heart Rate: The number of times per minute that the heart contracts - the number of ​ heart beats per minute (bpm). ● Taquicardia: A high resting heart rate that is usually higher than 100 beats per minute. ​ ● Bradycardia: A low resting heart rate that is usually lower than 60 beats per minute. ​ ● Circulation: The movement of blood through the vessels of the body by the pumping ​ action of the heart. It distributes nutrients and oxygen and removes waste products from all parts of the body. ● Pulmonary Circulation: The portion of the circulatory system that carries deoxygenated ​ ​ ​ blood from the heart to the lungs and oxygenated blood back to the heart.
    [Show full text]
  • Blood Vessels: Part A
    Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand
    [Show full text]
  • Toolbox-Talks--Blood-Pressure.Pdf
    TOOLBOX Toolbox Talk #1 TALKS Blood Pressure vs. Heart Rate While your blood pressure is the force of your blood moving through your blood vessels, your heart rate is the number of times your heart beats per minute. They are two separate measurements and indicators of health. • For people with high blood pressure (HBP or hypertension), there’s no substitute for measuring blood pressure. • Heart rate and blood pressure do not necessarily increase at the same rate. A rising heart rate does not cause your blood pressure to increase at the same Quarter: rate. Even though your heart is beating more times a minute, healthy blood BLOOD vessels dilate (get larger) to allow more blood to flow through more easily. PRESSURE When you exercise, your heart speeds up so more blood can reach your muscles. It may be possible for your heart rate to double safely, while your blood pressure may respond by only increasing a modest amount. Talk Number: Heart Rate and Exercise 1 In discussions about high blood pressure, you will often see heart rate Blood mentioned in relation to exercise. Your target heart rate is based on age and Pressure can help you monitor the intensity of your exercise. vs. • If you measure your heart rate (take your pulse) before, during and after Heart Rate physical activity, you’ll notice it will increase over the course of the exercise. • The greater the intensity of the exercise, the more your heart rate will increase. • When you stop exercising, your heart rate does not immediately return to your normal (resting) heart rate.
    [Show full text]
  • Bio 104 Cardiovascular System
    29 Bio 104 Cardiovascular System Lecture Outline: Cardiovascular System Hole’s HAP [Chapters 14, 15, 16] Blood: Introduction (Chapter 14) - - - - A. Characteristics of Blood 1. Blood Volume - - - 2. Blood Composition a. Blood Cells Red blood cells White blood cells Platelets b. Plasma 3. Origin of Blood Cells - - 30 Bio 104 Cardiovascular System B. Red Blood Cells 1. Characteristics - - - oxyhemoglobin - deoxyhemoglobin - 2. Red Blood Cell Counts 4.6 – 6.2 4.2. – 5.4 reflects blood’s ___________________________ 3. Red Blood Cell Production low blood oxygen ________________________ RBC production vitamin B12, folic acid, Fe are necessary Dietary Factors Affecting RBC Production 31 Bio 104 Cardiovascular System 4. Life Cycle of RBC lifespan worn out RBCs destroyed by Hb heme and globin 5. Anemia Def. = C. White Blood Cells 1. Functions & Types diapedesis positive chemotaxis granulocytes - - - agranulocytes - - 32 Bio 104 Cardiovascular System 2. White Blood Cell Counts 5, 000 - 10,000 leukopenia leukocytosis differential WBC count Granulocytes Agranulocytes Neutrophils (segs, PMNs, bands) Monocytes Eosinophils Lymphocytes Basophils D. Platelets - cell fragments -130,000 - 360,000 - helps control _______________ Plasma A. Characteristics 33 Bio 104 Cardiovascular System B. Plasma Proteins C. Gases and Nutrients Gases Nutrients - - - - - - D. Nonprotein Nitrogenous Substances Urea - Uric acid - Amino acids – Creatine – Creatinine – BUN – E. Plasma Electrolytes Absorbed from the _____________ or released as by-products
    [Show full text]
  • Integration of Detailed Modules in a Core Model of Body Fluid Homeostasis and Blood Pressure Regulation
    Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation. Alfredo Hernández, Virginie Le Rolle, David Ojeda, Pierre Baconnier, Julie Fontecave-Jallon, François Guillaud, Thibault Grosse, Robert Moss, Patrick Hannaert, Randall Thomas To cite this version: Alfredo Hernández, Virginie Le Rolle, David Ojeda, Pierre Baconnier, Julie Fontecave-Jallon, et al.. Integration of detailed modules in a core model of body fluid homeostasis and blood pres- sure regulation.. Progress in Biophysics and Molecular Biology, Elsevier, 2011, 107 (1), pp.169-82. 10.1016/j.pbiomolbio.2011.06.008. inserm-00654821 HAL Id: inserm-00654821 https://www.hal.inserm.fr/inserm-00654821 Submitted on 27 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation Alfredo I. Hernández1,2, Virginie Le Rolle1,2, David Ojeda1,2, Pierre Baconnier3, Julie Fontecave-Jallon3, François Guillaud4, Thibault Grosse5,6, Robert G. Moss5,6, Patrick Hannaert4, S. Randall Thomas5,6 1INSERM, U642, Rennes, F-35000, France; 2Université de Rennes 1, LTSI, Rennes, F-35000, France; 3 UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525 (Equipe PRETA), Grenoble, F-38041, France 4INSERM U927.
    [Show full text]
  • Regulation of the Systemic Circulation*
    CIRCULATORY PHYSIOLOGY SECTION 6: REGULATION OF THE SYSTEMIC CIRCULATION* Summary: This set of notes integrates what we have learned about vascular and cardiac function into a whole so that we can see how the entire circulation is regulated. These are very important concepts and their mastery will move you a long way towards a real understanding of the operation of the circulatory system. I. The Systemic Vascular System -- The influence of cardiac output on the partition of blood between the venous and arterial sides of the systemic circulation. A. Earlier we have indicated that at rest most of the blood in the systemic circulation is located in the venous side. This is in part due to the relatively high capacitance of the venous system when compared to the arterial system. This gives a reserve of blood that can be used when demands for respiratory gas circulation increase as in exercise. B. When there is no circulation (death or experimental interruption of the cardiac output), there is still a blood pressure in both the arterial and venous systems. 1. As we indicated earlier, this is due to the elastic forces stored in the walls of the vessels -- since in the absence of a hemorrhage the vessels contain enough fluid to increase their volume beyond resting volume, there must be a pressure even if the blood is not moving. 2. This low pressure is referred to as the mean circulatory pressure (Guyton) and for normal blood volumes is about 7mmHg (know this value). 3. Due to the greater compliance of the venous system, the greatest relative proportion of the total blood volume will reside in the venous system when operating at the mean circulatory pressure (i.e., when the heart is stopped).
    [Show full text]
  • Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
    & Experim l e ca n i t in a l l C Aliya, J Clinic Experiment Cardiol 2011, 2:11 C f a Journal of Clinical & Experimental o r d l DOI: 10.4172/2155-9880.1000170 i a o n l o r g u y o J Cardiology ISSN: 2155-9880 Review Article Open Access Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G. College, Kakatiya University, Warangal, India Abstract Heart is one of the most important organs present in human body which pumps blood throughout the body using blood vessels. With each heartbeat, blood is sent throughout the body, carrying oxygen and nutrients to all the cells in body. The cardiac cycle is the sequence of events that occurs when the heart beats. Blood pressure is maximum during systole, when the heart is pushing and minimum during diastole, when the heart is relaxed. Vasodilation caused by relaxation of smooth muscle cells in arteries causes an increase in blood flow. When blood vessels dilate, the blood flow is increased due to a decrease in vascular resistance. Therefore, dilation of arteries and arterioles leads to an immediate decrease in arterial blood pressure and heart rate. Cardiac output is the amount of blood ejected by the left ventricle in one minute. Cardiac output (CO) is the volume of blood being pumped by the heart, by left ventricle in the time interval of one minute. The effects of vasodilation, how the blood quantity increases and decreases along with the blood flow and the arterial blood flow and resistance on cardiac output is discussed in this reviewArticle.
    [Show full text]
  • Ventricular End-Diastolic Volume (Ml)
    Stroke Volume and Heart Failure Black/Blue: text. Red: very important. Green: Doctor’s notes. Pink: formulas. Yellow: numbers. Gray: notes and explanation. Physiology Team 436 – Cardiovascular Block Lecture 9 Lecture: If work is intended for initial studying. Review: If work is intended for revision. 1 Objectives Study Smart: focus on mutual topics. From the students’ guide: Explain how cardiac contractility affect stroke volume. Calculate CO using Fick’s principle equation. Explain pathophysiology of heart failure and differentiate between left and right failure. Explain how the pathophysiology associated with heart failure results in typical signs and symptoms. 2 Stroke Volume Stroke volume: is the volume of blood pumped (ejected) by each ventricle per beat (during each ventricular systole), and it is about 70-80 ml/beat. Factors Affecting It: 1- End diastolic volume (EDV) (Preload): • It is: the volume of blood present in each ventricle at the end of ventricular diastole. • Preload: load on the muscle in the relaxed state. Indices of left ventricular • Normal amount: 120-130 ml, can be increased during diastole preload: (filling of ventricles) to a volume of (120-130mL). 1- Left ventricle end diastolic • Applying preload to a muscle causes: volume Or pressure (LVEDV) 1- The muscle to stretch. 2- Right atrial pressure 2- The muscle to develop passive tension. More relaxation time, more filling, more volume. EDV Depends on: A- Filling time: the duration of ventricular diastole. B- Venous return: the rate of blood flow during ventricular diastole. 3 Stroke Volume and Factors Affecting it 1- End diastolic volume (EDV) 2- End systolic volume (ESV) (Residual): (Preload): It is: volume of blood present (that remains) in Mechanism: each ventricle at the end of ventricular systole.
    [Show full text]
  • Determination of Cardiac Output by Equating Venous Return Curves with Cardiac Response Curves
    Determination of Cardiac Output By Equating Ve- nous Return Curves With Cardiac Response Curves1 ARTHUR C. GUYTQN From the Department of Physiology and Biophysics, School of Medicine, University of Mississippi, University, Mississippi HE CONCEPT that the heart responds with increasing cardiac output when there occurs increasing venous return was popularized by Starling and, in- deed, has come to be known as Starling’s law. There are many different forms in which Starling’s law can be expressed,including the relationship of cardiac output to right atria1 pressure, the relationship of cardiac output to the degree of distention of the right ventricle at the end of diastole, the relationship of cardiac work to right atria1 pressure or right ventricular distention, the relationship of left ventricular work to right atria1 pressure or right ventricular distention, etc. For the determina- tion of cardiac output, the form of Starling’s law which will be used in the present discussion is the relationship of cardiac output to mean right atria1 pressure, and this type of cruve will be called the “cardiac responsecurve” to right atria1 pressure. It is well known that many factors in the peripheral circulatory system combine together to determine the rate of venous return to the heart. These include the quantity of blood available, the degree of vascular resistance in various parts of the peripheral circulatory system, and the back pressure from the right atrium. It is with these factors that this paper is especially concerned, and it is hoped that this presentation will demonstrate how cardiac output is determined by equating the peripheral circulatory factors with the cardiac responsecurves.
    [Show full text]