Perspectives in Biochemistry Dominant Forces in Protein Folding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective and Specific Ion Binding on Proteins at Physiologically-Relevant
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 3126–3132 journal homepage: www.FEBSLetters.org Selective and specific ion binding on proteins at physiologically-relevant concentrations ⇑ Linlin Miao a, Haina Qin a, Patrice Koehl a,b, Jianxing Song a,c, a Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore b Department of Computer Science and Genome Center, University of California, Davis, CA 95616, USA c Department of Biochemistry, Yong Loo Lin School of Medicine and National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore article info abstract Article history: Insoluble proteins dissolved in unsalted water appear to have no well-folded tertiary structures. Received 30 July 2011 This raises a fundamental question as to whether being unstructured is due to the absence of salt Revised 25 August 2011 ions. To address this issue, we solubilized the insoluble ephrin-B2 cytoplasmic domain in unsalted Accepted 29 August 2011 water and first confirmed using NMR spectroscopy that it is only partially folded. Using NMR HSQC Available online 6 September 2011 titrations with 14 different salts, we further demonstrate that the addition of salt triggers no signif- Edited by Miguel De la Rosa icant folding of the protein within physiologically relevant ion concentrations. We reveal however that their 8 anions bind to the ephrin-B2 protein with high affinity and specificity at biologically-rel- evant concentrations. Interestingly, the binding is found to be both salt- and residue-specific. Keywords: Insoluble protein Ó 2011 Federation of European Biochemical Societies. -
Molecular Mechanisms of Protein Thermal Stability
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2016 Molecular Mechanisms of Protein Thermal Stability Lucas Sawle University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Biological and Chemical Physics Commons Recommended Citation Sawle, Lucas, "Molecular Mechanisms of Protein Thermal Stability" (2016). Electronic Theses and Dissertations. 1137. https://digitalcommons.du.edu/etd/1137 This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. Molecular Mechanisms of Protein Thermal Stability A Dissertation Presented to the Faculty of Natural Sciences and Mathematics University of Denver in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Lucas Sawle June 2016 Advisor: Dr. Kingshuk Ghosh c Copyright by Lucas Sawle, 2016. All Rights Reserved Author: Lucas Sawle Title: Molecular Mechanisms of Protein Thermal Stability Advisor: Dr. Kingshuk Ghosh Degree Date: June 2016 Abstract Organisms that thrive under extreme conditions, such as high salt concentra- tion, low pH, or high temperature, provide an opportunity to investigate the molec- ular and cellular strategies these organisms have adapted to survive in their harsh environments. Thermophilic proteins, those extracted from organisms that live at high temperature, maintain their structure and function at much higher tempera- tures compared to their mesophilic counterparts, found in organisms that live near room temperature. -
Peptide Chemistry up to Its Present State
Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31. -
A Global Review on Short Peptides: Frontiers and Perspectives †
molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology, -
The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions
computation Article The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions Joseph F. Rudzinski * ID and Tristan Bereau ID Max Planck Institute for Polymer Research, Mainz 55128, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6131-3790 Received: 21 December 2017; Accepted: 16 February 2018; Published: 26 February 2018 Abstract: Coarse-grained molecular simulation models can provide significant insight into the complex behavior of protein systems, but suffer from an inherently distorted description of dynamical properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and kinetic properties of a simulation model are linked in a rather simple way, given a certain level of physics present in the model. In this work, we extend these findings to a longer peptide, for which the representation of configuration space in terms of a full enumeration of sequences of helical/coil states along the peptide backbone is impractical. We verify the structural-kinetic relationships by scanning the parameter space of a simple native-biased model and then employ a distinct transferable model to validate and generalize the conclusions. Our results further demonstrate the validity of the previous findings, while clarifying the role of conformational entropy in the determination of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic properties of a particular class of models with varying energetic parameters but approximately fixed conformational entropy are determined by the overarching structural features of the ensemble, a shift in these kinetic observables occurs for models with a distinct representation of steric interactions. -
Amino Acids-The Molecular Building Blocks of Life
Understanding the structure-property relationships of amino acids-the molecular building blocks of life Aravindhan Ganesan Dissertation submitted in fulfillment of requirements for the degree of Doctor of Philosophy Environmental and Biotechnology Centre Faculty of Life & Social Sciences Swinburne University of Technology Victoria, Australia 2013 ©2013 Aravindhan Ganesan Abstract Amino acids are significant molecular building blocks of proteins. Only 20 natural amino acids, whose structures differ in their side chain ‘R-’ groups, control the structures, functions and selectivity of almost all the proteins in biology. The structure-properties of the amino acids must be revealed, in order to understand the methodical behind the nature’s choices in using them as ‘building blocks’. There are several molecular level details of the amino acids, which are still unknown or limitedly known. In this project, the electronic structures, properties and dynamics of the aliphatic and the aromatic amino acids under isolated and defined environmental conditions are studied quantum mechanically. A rich tool chest of ab initio and density functional theory (DFT) methods has been employed. The impacts of alkyl side chain groups on the structure-properties of the aliphatic amino acids are revealed in the gas phase. A number of properties including geometries, molecular dipole moments, ionization energies and spectra, charge re-distributions, vibrational spectra (IR and Raman), vibrational optical activity spectra (VOA), molecular orbitals and momentum spectra are investigated. Dual space analyses (DSA) has been employed as an efficient analytical tool to understand the electronic structures of the amino acids in both the coordinate space and momentum space. Our quantum chemical calculations are validated against the synchrotron-sourced and other experiments, whenever possible. -
CHAPTER 4 Proteins: Structure, Function, Folding
Recitation #2 Proteins: Structure, Function, Folding CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: – Structure and properties of the peptide bond – Structural hierarchy in proteins – Structure and function of fibrous proteins – Structure analysis of globular proteins – Protein folding and denaturation Structure of Proteins • Unlike most organic polymers, protein molecules adopt a specific three-dimensional conformation. • This structure is able to fulfill a specific biological function • This structure is called the native fold • The native fold has a large number of favorable interactions within the protein • There is a cost in conformational entropy of folding the protein into one specific native fold Favorable Interactions in Proteins • Hydrophobic effect – Release of water molecules from the structured solvation layer around the molecule as protein folds increases the net entropy • Hydrogen bonds – Interaction of N-H and C=O of the peptide bond leads to local regular structures such as -helices and -sheets • London dispersion – Medium-range weak attraction between all atoms contributes significantly to the stability in the interior of the protein • Electrostatic interactions – Long-range strong interactions between permanently charged groups – Salt-bridges, esp. buried in the hydrophobic environment strongly stabilize the protein • Levels of structure in proteins. The primary structure consists of a sequence of amino acids linked together by peptide bonds • and includes any disulfide bonds. The resulting polypeptide can be arranged into units of secondary structure, such as an α-helix. The helix is a part of the tertiary structure of the folded polypeptide, which is itself one of the subunits that make up the quaternary structure of the multi-subunit protein, in this case hemoglobin. -
Plant Proteomics As a Tool for Elucidating the Molecular Mechanisms Underlying Signaling and Plant Interactions with the Environment
PALACKÝ UNIVERESITY OLOMOUC Faculty of Science Plant proteomics as a tool for elucidating the molecular mechanisms underlying signaling and plant interactions with the environment Mgr. Martin Černý, Ph.D. MENDEL UNIVERSITY IN BRNO Faculty of AgriSciences Department of Molecular Biology and Radiobiology HABILITATION THESIS Study field: Biochemistry Brno 2021 Děkuji všem, kteří se přímo i nepřímo zasloužili o tuto práci. Mé rodině a přátelům za podporu a trpělivost. Těm, kteří se mnou spolupracovali a těm, co ve spolupráci pokračovali a pokračují i přes řadu experimentů, které nevedly k očekávaným cílům. V neposlední řadě patří poděkování prof. Břetislavu Brzobohatému, bez kterého by tato práce nevznikla. Contents 1. Introduction ....................................................................................................................... 1 2. Fractionation techniques to increase plant proteome coverage ......................................... 4 2.1. Tissue separation ........................................................................................................ 5 2.2. Subcellular plant proteome ......................................................................................... 7 2.3. Separations at the protein level ................................................................................... 9 2.4. Separation at the peptide level .................................................................................. 11 2.5. Comparison of fractionation techniques .................................................................. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Biochemical Kinds And
UNIVERSITY OF CALIFORNIA, SAN DIEGO Biochemical Kinds and Selective Naturalism A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Philosophy (Science Studies) by Joyce Catherine Havstad Committee in charge: Professor William Bechtel, Chair Professor Craig Callender Professor Nancy Cartwright Professor Cathy Gere Professor James Griesemer 2014 © Joyce Catherine Havstad, 2014 All rights reserved. The Dissertation of Joyce Catherine Havstad is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2014 iii DEDICATION for my parents iv TABLE OF CONTENTS Signature Page…………………………………………………………………….. iii Dedication…………………………………………………………………………. iv Table of Contents………………………………………………………………….. v List of Figures……………………………………………………………………... viii Vita………………………………………………………………………………… x Abstract of the Dissertation………………………………………………………... xi Introduction………………………………………………………………………... 1 References……………………………………………………………………... 7 Chapter 1: Messy Chemical Kinds………………………………………………… 8 Section 1: Introduction………………………………………………………… 8 Section 2: Microstructuralism about Chemical Kinds…………………………. -
Models and Mechanisms of Hofmeister Effects in Electrolyte
Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein Cite this: Chem. Soc. Rev., 2014, 43,7358 systems revisited Andrea Salis*ab and Barry W. Ninhamb Specific effects of electrolytes have posed a challenge since the 1880’s. The pioneering work was that of Franz Hofmeister who studied specific salt induced protein precipitation. These effects are the rule rather the exception and are ubiquitous in chemistry and biology. Conventional electrostatic theories (Debye– Hu¨ckel, DLVO, etc.) cannot explain such effects. Over the past decades it has been recognised that addi- tional quantum mechanical dispersion forces with associated hydration effects acting on ions are missing from theory. In parallel Collins has proposed a phenomenological set of rules (the law of matching water affinities, LMWA) which explain and bring to order the order of ion–ion and ion–surface site interactions at a qualitative level. The two approaches appear to conflict. Although the need for inclusion of quantum Creative Commons Attribution 3.0 Unported Licence. dispersion forces in one form or another is not questioned, the modelling has often been misleading and inappropriate. It does not properly describe the chemical nature (kosmotropic/chaotropic or hard/soft) of the interacting species. The success of the LMWA rules lies in the fact that they do. Here we point to the Received 30th April 2014 way that the two apparently opposing approaches might be reconciled. Notwithstanding, there are more DOI: 10.1039/c4cs00144c challenges, which deal with the effect of dissolved gas and its connection to ‘hydrophobic’ interactions, the problem of water at different temperatures and ‘water structure’ in the presence of solutes. -
Thermodynamics of Denaturation of Barstar: Evidence for Cold Denaturation and Evaluation of the Interaction with Guanidine Hydrochloride+
3286 Biochemistry 1995, 34, 3286-3299 Thermodynamics of Denaturation of Barstar: Evidence for Cold Denaturation and Evaluation of the Interaction with Guanidine Hydrochloride+ Vishwas R. Agashe and Jayant B. Udgaonkar* National Centre for Biological Sciences, TIFR Centre, P.O. Box 1234, Indian Institute of Science Campus, Bangalore 56001 2, India Received October 17, 1994; Revised Manuscript Received December 19, 1994@ ABSTRACT:Isothermal guanidine hydrochloride (GdnHC1)-induced denaturation curves obtained at 14 different temperatures in the range 273-323 K have been used in conjunction with thermally-induced denaturation curves obtained in the presence of 15 different concentrations of GdnHCl to characterize the thermodynamics of cold and heat denaturation of barstar. The linear free energy model has been used to determine the excess changes in free energy, enthalpy, entropy, and heat capacity that occur on denaturation. The stability of barstar in water decreases as the temperature is decreased from 300 to 273 K. This decrease in stability is not accompanied by a change in structure as monitored by measurement of the mean residue ellipticities at both 222 and 275 nm. When GdnHCl is present at concentrations between 1.2 and 2.0 M, the decrease in stability with decrease in temperature is however so large that the protein undergoes cold denaturation. The structural transition accompanying the cold denaturation process has been monitored by measuring the mean residue ellipticity at 222 nm. The temperature dependence of the change in free energy, obtained in the presence of 10 different concentrations of GdnHCl in the range 0.2-2.0 M, shows a decrease in stability with a decrease as well as an increase in temperature from 300 K. -
Conformational Entropy of Alanine Versus Glycine in Protein Denatured States
Conformational entropy of alanine versus glycine in protein denatured states Kathryn A. Scott*†, Darwin O. V. Alonso*, Satoshi Sato‡, Alan R. Fersht‡§, and Valerie Daggett*§ *Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610; and ‡Medical Research Council Centre for Protein Engineering and Department of Chemistry, Cambridge University, Hills Road, Cambridge CB2 2QH, United Kingdom Contributed by Alan R. Fersht, December 18, 2006 (sent for review November 22, 2006) The presence of a solvent-exposed alanine residue stabilizes a helix by use a number of different models for the denatured state. Small kcal⅐mol؊1 relative to glycine. Various factors have been sug- peptides are used as models for a denatured state with minimal 2–0.4 gested to account for the differences in helical propensity, from the influence from the rest of the protein: AXA and GGXGG, higher conformational freedom of glycine sequences in the unfolded where X is either Ala or Gly. We also use high-temperature state to hydrophobic and van der Waals’ stabilization of the alanine unfolding simulations carried out as part of the dynameomics side chain in the helical state. We have performed all-atom molecular project (www.dynameomics.org) (20) to model denatured states dynamics simulations with explicit solvent and exhaustive sampling of intact proteins. The results are of direct importance in the of model peptides to address the backbone conformational entropy interpretation of ⌽-values for protein folding derived from Ala difference between Ala and Gly in the denatured state. The mutation 3 Gly scanning of helices whereby the changes in free energies of Ala to Gly leads to an increase in conformational entropy equiv- of activation for folding on mutation of alanine to glycine are alent to Ϸ0.4 kcal⅐mol؊1 in a fully flexible denatured, that is, unfolded, compared with the corresponding changes in free energy of state.