Molecular Mechanisms of Protein Thermal Stability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Trypsin Thermostability in Pichia Pastoris Through Truncating
Liu et al. Microb Cell Fact (2018) 17:165 https://doi.org/10.1186/s12934-018-1012-x Microbial Cell Factories RESEARCH Open Access Enhanced trypsin thermostability in Pichia pastoris through truncating the fexible region Lin Liu1,2,3, Haoran Yu1,2,3,4, Kun Du1,2,3, Zhiyan Wang1,2,3, Yiru Gan1,2,3 and He Huang1,2,3* Abstract Background: High thermostability is required for trypsin to have wider industrial applications. Target mutagen- esis at fexible regions has been proved to be an efcient protein engineering method to enhance the protein thermostability. Results: The fexible regions in porcine trypsin were predicted using the methods including molecular dynamic simulation, FlexPred, and FoldUnfold. The amino acids 78–90 was predicted to be the highly fexible region simultane- ously by the three methods and hence selected to be the mutation target. We constructed fve variants (D3, D5, D7, D9, and D11) by truncating the region. And the variant D9 showed higher thermostability, with a 5 °C increase in Topt, T 10 5.8 °C rise in 50 , and a 4.5 °C rise in Tm, compared to the wild-type. Moreover, the half-life value of the variant D9 was also found to be dramatically improved by 46 min. Circular dichroism and intrinsic fuorescence indicated that the structures had no signifcant change between the variant D9 and the wild-type. The surface hydrophobicity of D9 was measured to be lower than that of wild-type, indicating the increased hydrophobic interaction, which could have contributed to the improved thermostability of D9. -
Of Sequence and Structure: Strategies of Protein Thermostability in Evolutionary Perspective
Of sequence and structure: Strategies of protein thermostability in evolutionary perspective Igor N. Berezovsky and Eugene I. Shakhnovich * Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 *Correspondence should be directed to Prof. Eugene I. Shakhnovich, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, phone: 617-495-4130, fax: 617-384-9228, e-mail:[email protected] 1 Abstract In this work we employ various methods of analysis (unfolding simulations and comparative analysis of structures and sequences of proteomes of thermophilic organisms) to show that organisms can follow two major strategies of thermophilic adaptation: (i) General, non-specific, structure-based, when proteomes of certain thermophilic organisms show significant structural bias toward proteins of higher compactness. In this case thermostability is achieved by greater overall number of stabilizing contacts, none of which may be especially strong, and (ii) Specific, sequence- based, whereby sequence variations aimed at strengthening specific types of interactions (e.g. electrostatics) are applied without significantly changing structures of proteins. The choice of a certain strategy is a direct consequence of evolutionary history and environmental conditions of particular (hyper) thermophilic species: ancient hyperthermophilic organisms that directly evolved in hot environment, pursued mostly structure-based strategy, while later evolved organisms whose -
The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions
computation Article The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions Joseph F. Rudzinski * ID and Tristan Bereau ID Max Planck Institute for Polymer Research, Mainz 55128, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6131-3790 Received: 21 December 2017; Accepted: 16 February 2018; Published: 26 February 2018 Abstract: Coarse-grained molecular simulation models can provide significant insight into the complex behavior of protein systems, but suffer from an inherently distorted description of dynamical properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and kinetic properties of a simulation model are linked in a rather simple way, given a certain level of physics present in the model. In this work, we extend these findings to a longer peptide, for which the representation of configuration space in terms of a full enumeration of sequences of helical/coil states along the peptide backbone is impractical. We verify the structural-kinetic relationships by scanning the parameter space of a simple native-biased model and then employ a distinct transferable model to validate and generalize the conclusions. Our results further demonstrate the validity of the previous findings, while clarifying the role of conformational entropy in the determination of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic properties of a particular class of models with varying energetic parameters but approximately fixed conformational entropy are determined by the overarching structural features of the ensemble, a shift in these kinetic observables occurs for models with a distinct representation of steric interactions. -
Thermodynamics of Protein Denaturation at Temperatures Over 100‹ °C: Cuta1 Mutant Proteins Substituted with Hydrophobic
www.nature.com/scientificreports OPEN Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins Received: 20 May 2015 Accepted: 28 September 2015 substituted with hydrophobic and Published: 26 October 2015 charged residues Yoshinori Matsuura1, Michiyo Takehira1, Yasumasa Joti2, Kyoko Ogasahara3, Tomoyuki Tanaka1, Naoko Ono1, Naoki Kunishima1 & Katsuhide Yutani1 Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties. The tertiary structures of proteins, which are vital for their physiological functions, -
A Molecular Dynamics Investigation of the Thermostability of Cold
Article Cite This: J. Chem. Inf. Model. XXXX, XXX, XXX−XXX pubs.acs.org/jcim A Molecular Dynamics Investigation of the Thermostability of Cold- Sensitive I707L KlenTaq1 DNA Polymerase and Its Wild-Type Counterpart † † ‡ § † Erica Modeste, Lily Mawby, Bill Miller, III, Eugene Wu, and Carol A. Parish*, † Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States ‡ Department of Chemistry, Truman State University, Kirksville, Missouri 63501, United States § Department of Biology, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States *S Supporting Information ABSTRACT: DNA polymerase I from Thermus aquaticus ). (Taq DNA polymerase) is useful for polymerase chain reactions because of its exceptional thermostability; however, its activity at low temperatures can cause amplification of unintended products. Mutation of isoleucine 707 to leucine (I707L) slows Taq DNA polymerase at low temperatures, which decreases unwanted amplification due to mispriming. In this work, unrestrained molecular dynamics (MD) o legitimately share published articles. simulations were performed on I707L and wild-type (WT) Taq DNA polymerase at 341 and 298 K to determine how the mutation affects the dynamic nature of the protein. The results suggest that I707L Taq DNA polymerase remains relatively immobile at room temperature and becomes more flexible at the higher temperature, while the WT Taq DNA polymerase demonstrates less substantial differences in dynamics at high and low temperatures. These results are in agreement with previous experimental results on the I707L mutant Taq DNA polymerase that show dynamic differences at high and low temperatures. The decreased mobility of the mutant at low temperature suggests that the mutant remains longer in the blocked conformation, and this may lead to reduced activity relative to the WT at 298 K. -
Insights on Protein Thermal Stability: a Graph Representation of Molecular Interactions
bioRxiv preprint doi: https://doi.org/10.1101/354266; this version posted August 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Insights on protein thermal stability: a graph representation of molecular interactions Mattia Miotto1,2,3, Pier Paolo Olimpieri1, Lorenzo Di Rienzo1, Francesco Ambrosetti1,4, Pietro Corsi5, Rosalba Lepore6,7, Gian Gaetano Tartaglia8,*, and Edoardo Milanetti1,2 1Department of Physics, Sapienza University of Rome, Rome, Italy 2Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy 3Soft and Living Matter Lab, Institute of Nanotechnology (CNR-NANOTEC), Rome, Italy 4Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands 5Department of Science, University Roma Tre, Rome, Italy 6Biozentrum, University of Basel, Klingelbergstrasse 50–70, CH-4056 Basel, Switzerland 7SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50–70, CH-4056 Basel, Switzerland 8Centre for Genomic Regulation (CRG) and Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA) *[email protected] ABSTRACT Understanding the molecular mechanisms of thermal stability is a challenge in protein biology. Indeed, knowing the temperature at which proteins are stable has important theoretical implications, which are intimately linked with properties of the native fold, and a wide range of potential applications from drug design to the optimization of enzyme activity. Here, we present a novel graph-theoretical framework to assess thermal stability based on the structure without any a priori information. In our approach we describe proteins as energy-weighted graphs and compare them using ensembles of interaction networks. -
Thermostable Enzymes As Biocatalysts in the Biofuel Industry
CHAPTER 1 Thermostable Enzymes as Biocatalysts in the Biofuel Industry Carl J. Yeoman,*,# Yejun Han,*,† Dylan Dodd,*,†,‡ Charles M. Schroeder,*,†,},} Roderick I. Mackie,*,†,# ,†,‡,#,1 and Isaac K. O. Cann* Contents I. Introduction 2 II. Thermostable Cellulases 5 A. Exoglucanases 7 B. Endoglucanases 11 C. Glucosidases and cellodextrinases 15 III. Thermostable Hemicellulases 19 A. Xylanases 19 B. Xylosidases 25 C. Glucuronidases 26 D. Endoarabinanases 27 E. a-L-Arabinofuranosidases 28 F. Esterases 30 G. Mannanases, mannosidases, and other auxiliary enzymes 32 IV. Structural Basis for Thermostability 35 V. Improving Thermostability and Biotechnological Applicability 36 * Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA { Energy Biosciences Institute, University of Illinois, Urbana, Illinois, USA { Department of Microbiology, University of Illinois, Urbana, Illinois, USA } Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, USA } Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, USA # Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA 1 Corresponding author. Advances in Applied Microbiology, Volume 70 # 2010 Elsevier Inc. ISSN 0065-2164, DOI: 10.1016/S0065-2164(10)70001-0 All rights reserved. 1 2 Carl J. Yeoman et al. VI. Discussion and Future Prospects 38 Acknowledgments 40 References 40 Abstract Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. -
Assaying Activity and Assessing Thermostability of Hyperthermophilic Enzymes
Methods in Enzymology, In Press Assaying activity and assessing thermostability of hyperthermophilic enzymes Roy M Daniel and Michael J Danson* Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand and *Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK Proofs to: R M Daniel, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand Fax: +64-7-8384324 Email [email protected] Running title: Assaying enzyme activity and thermostability 1. Introduction There is now a wide variety of intra- and extra-cellular enzymes available from organisms growing above 75°C, and having sufficient stability to allow assay well above this temperature. For some of these enzymes, to assay below even 95°C will involve measurement below the optimal growth temperature for the organism. The purpose of this chapter is to cover practical aspects of enzyme assay procedures that are specific to high temperatures. Since by far the commonest routine assessment of enzyme stability is activity loss, and because it is always unwise to measure enzyme activity without being confident of its stability during the assay, we include an outline of procedures for measuring enzyme activity loss/stability at high temperatures. There are a number of useful reviews of the effects of temperature upon enzyme activity [1], and these apply as much to reactions at 100°C as at 37°C. However, enzymes stable at 100°C have a number of advantages as research subjects. For example, they can be used to investigate enzymes that are particularly unstable when isolated from mesophiles, to slow reactions without the use of cryosolvents, and to probe the effect of temperature on enzyme and protein behavior over a very wide temperature range. -
Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. -
CHAPTER 4 Proteins: Structure, Function, Folding
Recitation #2 Proteins: Structure, Function, Folding CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: – Structure and properties of the peptide bond – Structural hierarchy in proteins – Structure and function of fibrous proteins – Structure analysis of globular proteins – Protein folding and denaturation Structure of Proteins • Unlike most organic polymers, protein molecules adopt a specific three-dimensional conformation. • This structure is able to fulfill a specific biological function • This structure is called the native fold • The native fold has a large number of favorable interactions within the protein • There is a cost in conformational entropy of folding the protein into one specific native fold Favorable Interactions in Proteins • Hydrophobic effect – Release of water molecules from the structured solvation layer around the molecule as protein folds increases the net entropy • Hydrogen bonds – Interaction of N-H and C=O of the peptide bond leads to local regular structures such as -helices and -sheets • London dispersion – Medium-range weak attraction between all atoms contributes significantly to the stability in the interior of the protein • Electrostatic interactions – Long-range strong interactions between permanently charged groups – Salt-bridges, esp. buried in the hydrophobic environment strongly stabilize the protein • Levels of structure in proteins. The primary structure consists of a sequence of amino acids linked together by peptide bonds • and includes any disulfide bonds. The resulting polypeptide can be arranged into units of secondary structure, such as an α-helix. The helix is a part of the tertiary structure of the folded polypeptide, which is itself one of the subunits that make up the quaternary structure of the multi-subunit protein, in this case hemoglobin. -
An Overview of the Protein Thermostability Prediction: Databases and Tools
Journal of Nanomedicine Research An Overview of the Protein Thermostability Prediction: Databases and Tools Review Article Abstract Thermophilic proteins are characterized as high thermal stability proteins while Volume 3 Issue 6 - 2016 mesophilic proteins are stable at lower temperatures. These types of proteins have numerous applications regarding protein engineering, drug design and industrial processes. Studies showed that thermal stability is strongly related to structural and sequential properties in thermophilic proteins. Some computational studies were being taken to identify the mentioned properties in heat resistant proteins. 1Department of Biophysics, Tarbiat Modares University (TMU), This paper reviews the studies of protein thermostability prediction and gives an Iran introduction to the thermal stability related tools and databases. 2Bioinformatics and Computational Omics Lab (BioCOOL), Trabiat Modares University (TMU), Iran Keywords: Rotein thermostability; Thermophilic proteins; Mesophilic proteins; Databases; computational methods; Bioinformatics *Corresponding author: Seyyed Shahriar Arab, Department of Biophysics, School of Biological Sciences, Tarbiat Modares University (TMU), Tehran, Iran, Email: Received: March 12, 2016| Published: July 05, 2016 Introduction Environmental temperature plays an important role in the cell life [1]. There are four classes of organism in relation to their optimal growth temperature namely hyperthermophile (>80◦C), thermophile (45-80◦C), mesophile (20-45◦C) and psychrophile (<20◦C material to resist changes in physical structure or chemical irreversibility,) [2]. Thermalor spatial stabilitystructure isstability defined of polypeptideas the ability chains of at high temperatures [3]. Studies showed that thermal stability of thermophilic proteins is related to a series of protein sequential and structural properties [4]. A small number of these mentioned properties are going to be introduced in this paper. -
Structure, Thermostability, and Conformational Flexibility of Hen Egg-White Lysozyme Dissolved in Glycerol
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 1262–1267, February 1999 Biochemistry Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol TATYANA KNUBOVETS*, JOHN J. OSTERHOUT†,PETER J. CONNOLLY†, AND ALEXANDER M. KLIBANOV*‡ *Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; and †Rowland Institute for Science, Cambridge, MA 02142 Contributed by Alexander M. Klibanov, December 9, 1998 ABSTRACT Hen egg-white lysozyme dissolved in glycerol structural fluctuations discernibly distinct from those in aque- containing 1% water was studied by using CD and amide ous solution. proton exchange monitored by two-dimensional 1H NMR. The far- and near-UV CD spectra of the protein showed that the MATERIALS AND METHODS secondary and tertiary structures of lysozyme in glycerol were similar to those in water. Thermal melting of lysozyme in Materials. Hen egg-white lysozyme (EC 3.2.1.17), thrice glycerol followed by CD spectral changes indicated unfolding crystallized, dialyzed, and lyophilized, was purchased from of the tertiary structure with a Tm of 76.0 6 0.2°C and no Sigma. Poly-DL-alanine (PDLA), also from Sigma, was purified appreciable loss of the secondary structure up to 85°C. This on Sephadex G-15 and lyophilized from D2O (Cambridge is in contrast to the coincident denaturation of both tertiary Stable Isotopes, Cambridge, MA). Glycerol (99.8% pure) was and secondary structures with Tm values of 74.8 6 0.4°C and purchased from Mallinckrodt. All other chemicals used in this 74.3 6 0.7°C, respectively, under analogous conditions in work were obtained from commercial suppliers and were of water.