Folding Funnel J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molten-Globule’ State Accumulates in Carbonic Anhydrase Folding
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 165, number 1 FEBS 1079 January 1984 ‘Molten-globule’ state accumulates in carbonic anhydrase folding D.A. Dolgikh, A.P. Kolomiets, I.A. Bolotina* and O.B. Ptitsyn+ Institute of Protein Research, USSR Academy of Sciences, 142292 Pushchino, Moscow Region and *Institute of Molecular Biology, USSR Academy of Sciences, II 7312 Moscow, USSR Received 17 October 1983 Kinetics of folding and unfolding of bovine carbonic anhydrase B were monitored by circular dichroism, viscometry and esterase activity. It was shown that kinetic intermediate states accumulating in folding process reveal a native-like compactness and secondary structure but have a symmetrized average environment of aromatic side groups and no esterase activity. These properties allow one to consider these intermediate states as the ‘molten-globule’ state of a protein molecule previously described by us for several equilibrium forms of bovine and human Lu-lactalbumins and bovine carbonic anhydrase B. Carbonic anhydrase B Protein folding Molten-globule state of protein molecules Folding intermediate 1, INTRODUCTION this model the increase of fluctuations is due to a slight increase of the molecular volume leading to Recently [l-3] we have described a new equilib- a sharp decrease of Van der Waals intramolecular rium state of a protein molecule, ‘compact globular interactions [4]. state with fluctuating tertiary structure’, using the Quite recently we have found that a similar in- examples of bovine and human a-lactalbumins. termediate state also exists in bovine carbonic an- Both proteins can be transformed into this state hydrase B at pH -3.6 [3,5]. -
Molecular Mechanisms of Protein Thermal Stability
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2016 Molecular Mechanisms of Protein Thermal Stability Lucas Sawle University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Biological and Chemical Physics Commons Recommended Citation Sawle, Lucas, "Molecular Mechanisms of Protein Thermal Stability" (2016). Electronic Theses and Dissertations. 1137. https://digitalcommons.du.edu/etd/1137 This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. Molecular Mechanisms of Protein Thermal Stability A Dissertation Presented to the Faculty of Natural Sciences and Mathematics University of Denver in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Lucas Sawle June 2016 Advisor: Dr. Kingshuk Ghosh c Copyright by Lucas Sawle, 2016. All Rights Reserved Author: Lucas Sawle Title: Molecular Mechanisms of Protein Thermal Stability Advisor: Dr. Kingshuk Ghosh Degree Date: June 2016 Abstract Organisms that thrive under extreme conditions, such as high salt concentra- tion, low pH, or high temperature, provide an opportunity to investigate the molec- ular and cellular strategies these organisms have adapted to survive in their harsh environments. Thermophilic proteins, those extracted from organisms that live at high temperature, maintain their structure and function at much higher tempera- tures compared to their mesophilic counterparts, found in organisms that live near room temperature. -
State Folding of Globular Proteins
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0290.v1 Peer-reviewed version available at Biomolecules 2020, 10, 407; doi:10.3390/biom10030407 Review The Molten Globule, and Two-State vs. Non-Two- State Folding of Globular Proteins Kunihiro Kuwajima,* Department of Physics, School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea ; [email protected] * Correspondence: [email protected] Abstract: From experimental studies of protein folding, it is now clear that there are two types of folding behavior, i.e., two-state folding and non-two-state folding, and understanding the relationships between these apparently different folding behaviors is essential for fully elucidating the molecular mechanisms of protein folding. This article describes how the presence of the two types of folding behavior has been confirmed experimentally, and discusses the relationships between the two-state and the non-two-state folding reactions, on the basis of available data on the correlations of the folding rate constant with various structure-based properties, which are determined primarily by the backbone topology of proteins. Finally, a two-stage hierarchical model is proposed as a general mechanism of protein folding. In this model, protein folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the molten globule state as a folding intermediate. The two-state folding is thus merely a simplified version of the hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate. -
The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions
computation Article The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions Joseph F. Rudzinski * ID and Tristan Bereau ID Max Planck Institute for Polymer Research, Mainz 55128, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6131-3790 Received: 21 December 2017; Accepted: 16 February 2018; Published: 26 February 2018 Abstract: Coarse-grained molecular simulation models can provide significant insight into the complex behavior of protein systems, but suffer from an inherently distorted description of dynamical properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and kinetic properties of a simulation model are linked in a rather simple way, given a certain level of physics present in the model. In this work, we extend these findings to a longer peptide, for which the representation of configuration space in terms of a full enumeration of sequences of helical/coil states along the peptide backbone is impractical. We verify the structural-kinetic relationships by scanning the parameter space of a simple native-biased model and then employ a distinct transferable model to validate and generalize the conclusions. Our results further demonstrate the validity of the previous findings, while clarifying the role of conformational entropy in the determination of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic properties of a particular class of models with varying energetic parameters but approximately fixed conformational entropy are determined by the overarching structural features of the ensemble, a shift in these kinetic observables occurs for models with a distinct representation of steric interactions. -
The Molten Globule Concept: 45 Years Later
ISSN 0006-2979, Biochemistry (Moscow), 2018, Vol. 83, Suppl. 1, pp. S33-S47. © Pleiades Publishing, Ltd., 2018. Original Russian Text © V. E. Bychkova, G. V. Semisotnov, V. A. Balobanov, A. V. Finkelstein, 2018, published in Uspekhi Biologicheskoi Khimii, 2018, Vol. 58, pp. 67-100. REVIEW The Molten Globule Concept: 45 Years Later V. E. Bychkova*, G. V. Semisotnov, V. A. Balobanov, and A. V. Finkelstein Institute of Protein Research, 142290 Pushchino, Moscow Region, Russia; E-mail: [email protected] Received June 15, 2017 Revision received July 18, 2017 Abstract—In this review, we describe traditional systems where the molten globule (MG) state has been detected and give a brief description of the solution of Levinthal’s paradox. We discuss new results obtained for MG-mediated folding of “non- traditional” proteins and a possible functional role of the MG. We also report new data on the MG, especially the dry molten globule. DOI: 10.1134/S0006297918140043 Keywords: protein self-organization folding, phase transitions in proteins, kinetics of protein folding, molten globule, for- mation and association of protein secondary structure, free-energy barrier, Levinthal’s paradox To the memory of Oleg B. Ptitsyn Forty-five years ago, Oleg B. Ptitsyn proposed a protein–protein interactions, etc. That review also cov- hypothesis of a stepwise mechanism of protein self- ered the equilibrium molten globule, phase transitions in organization [1]. The available data on renaturation of proteins, kinetics and mechanisms of protein folding, and globular proteins indicated that the primary structure of a the physiological role of the molten globule. protein carries information about its spatial organization The years after publication of this review have [2, 3]. -
DEPARTMENT of BIOLOGY Vladimir Uversky University of Southern Florida, Tampa “Intrinsic Disorder and Protein Structure-Function Continuum”
B DEPARTMENT OF BIOLOGY Vladimir Uversky University of Southern FloridA, Tampa “Intrinsic disorder and protein structure-function continuum” Friday, March 24, 2017 12:00 PM Chao Auditorium, Ekstrom Library Background: Proteins are often imagined as globular arrangements of polypeptides with well-defined, ordered structures and active sites that define and regulate their functions. This model of protein structure and function, termed the ‘lock and key’ model, explains the function of many proteins, but does not account for the growing population of proteins that lack well-defined secondary and tertiary structure motives, termed intrinsically disordered proteins (IDP). IDPs, unlike ordered, globular proteins, natively exhibit very little defined structure as a critical contributor to their function. The conformational plasticity of these proteins allows for specialized one- to-many interactions that are useful for regulation, molecular exclusion by force repulsion such as found at nuclear pores, or a growing number of other functionalities still being discovered. Furthermore, proteins may exist in intermediate forms. Rather than being strictly ordered or disordered, proteins may be partly disordered (molten globules), partly ordered (pre-molten globule), or have regions of intrinsic disorder that function as linkers, spacers, or post translational modification sites. Proteins, based on their environment, may transition between these different conformations resulting in activation or deactivation which may be either reversible or permanent. Figure 1: The Protein Structure Continuum (modified after References to Recent Papers and Related Uversky, V. 2002. Protein Sciences 11 (4):739-56). Reviews: (1) Uversky, V. 2016. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. Journal of Biological Chemistry 291 (13): 6681 – 6688. -
Chapter 6 Protein Structure and Folding
Chapter 6 Protein Structure and Folding 1. Secondary Structure 2. Tertiary Structure 3. Quaternary Structure and Symmetry 4. Protein Stability 5. Protein Folding Myoglobin Introduction 1. Proteins were long thought to be colloids of random structure 2. 1934, crystal of pepsin in X-ray beam produces discrete diffraction pattern -> atoms are ordered 3. 1958 first X-ray structure solved, sperm whale myoglobin, no structural regularity observed 4. Today, approx 50’000 structures solved => remarkable degree of structural regularity observed Hierarchy of Structural Layers 1. Primary structure: amino acid sequence 2. Secondary structure: local arrangement of peptide backbone 3. Tertiary structure: three dimensional arrangement of all atoms, peptide backbone and amino acid side chains 4. Quaternary structure: spatial arrangement of subunits 1) Secondary Structure A) The planar peptide group limits polypeptide conformations The peptide group ha a rigid, planar structure as a consequence of resonance interactions that give the peptide bond ~40% double bond character The trans peptide group The peptide group assumes the trans conformation 8 kJ/mol mire stable than cis Except Pro, followed by cis in 10% Torsion angles between peptide groups describe polypeptide chain conformations The backbone is a chain of planar peptide groups The conformation of the backbone can be described by the torsion angles (dihedral angles, rotation angles) around the Cα-N (Φ) and the Cα-C bond (Ψ) Defined as 180° when extended (as shown) + = clockwise, seen from Cα Not -
Formation of the Molten Globule-Like State of Cytochrome C Induced by N-Alkyl Sulfates at Low Concentrations
J. Biochem. 133, 93-102 (2003) DOI: 10.1093/jb/mvg008 Formation of the Molten Globule-Like State of Cytochrome c Induced by n-Alkyl Sulfates at Low Concentrations A. A. Moosavi-Movahedi*,1, J. Chamanil, Y. Goto2 and G. H. Hakimelahi3 1Institute of Biochemistry and Biophysics , University of Tehran, Tehran, Iran; 2Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871; and 3TaiGen Biotechnology, 7F 138 Hsin Ming Rd, Neihu Dist., Taipei, Taiwan Received September 9, 2002; accepted October 27, 2002 The molten globule state of cytochrome c is the major intermediate of protein folding. Elucidation of the thermodynamic mechanism of conformational stability of the mol ten globule state would enhance our understanding of protein folding. The formation of the molten globule state of cytochrome c was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS, at low concentrations. The refolding states of the protein were monitored by spectroscopic techniques including circular dichroism (CD), visible absorbance and fluorescence. The effect of n-alkyl sulfates on the struc ture of acid-unfolded horse cytochrome c at pH 2 was utilized to investigate the con tribution of hydrophobic interactions to the stability of the molten globule state. The addition of n-alkyl sulfates to the unfolded state of cytochrome c appears to support the stabilized form of the molten globule. The m-values of the refolded state of cyto chrome c by SOS, SDeS, SDS, and STS showed substantial variation. The enhance ment of m-values as the stability criterion of the molten globule state corresponded with increasing chain length of the cited n-alkyl sulfates. -
Hydration of Denatured and Molten Globule Proteins
© 1999 Nature America Inc. • http://structbio.nature.com articles Hydration of denatured and molten globule proteins Vladimir P. Denisov1, Bengt-Harald Jonsson2 and Bertil Halle1 The hydration of nonnative states is central to protein folding and stability but has been probed mainly by indirect methods. Here we use water 17O relaxation dispersion to monitor directly the internal and external hydration of α- lactalbumin, lysozyme, ribonuclease A, apomyoglobin and carbonic anhydrase in native and nonnative states. The results show that nonnative proteins are more structured and less solvent exposed than commonly believed. Molten globule proteins preserve most of the native internal hydration sites and have native-like surface hydration. Proteins denatured by guanidinium chloride are not fully solvent exposed but contain strongly perturbed occluded water. These findings shed new light on hydrophobic stabilization of proteins. The current view of protein folding and stability is largely based on SAXS and DLS data13–16 and the extensive exposure of hydropho- a generic structural classification into native (N), compact dena- bic residues suggested by the finding that the heat capacity of the tured or molten globule (MG), and unfolded or denatured (D) MG state is midway between that of the N and D states7 have been conformational states1–10. Whereas the N state has been character- taken to imply that hundreds of water molecules penetrate the MG ized at high resolution, many aspects of the D and MG states are protein (except for a relatively small hydrophobic core)5,7,8,17–19. still poorly understood. Considering the widely acknowledged Accordingly, theoretical models of the MG state invariably invoke importance of protein–solvent interactions for stability and fold- a substantial internal hydration20–22. -
Protein Misfolding in Human Diseases
Linköping Studies in Science and Technology Dissertation No. 1239 Protein Misfolding in Human Diseases Karin Almstedt Biochemistry Department of Physics, Chemistry and Biology Linköping University, SE-581 83 Linköping, Sweden Linköping 2009 The cover shows a Himalayan mountain range, symbolizing a protein folding landscape. During the course of the research underlying this thesis, Karin Almstedt was enrolled in Forum Scientium, a multidisciplinary doctoral program at Linköping University, Sweden. Copyright © 2009 Karin Almstedt ISBN: 978-91-7393-698-9 ISSN: 0345-7524 Printed in Sweden by LiU-Tryck Linköping 2009 Never Stop Exploring 83 ABSTRACT The studies in this thesis are focused on misfolded proteins involved in human disease. There are several well known diseases that are due to aberrant protein folding. These types of diseases can be divided into three main categories: 1. Loss-of-function diseases 2. Gain-of-toxic-function diseases 3. Infectious misfolding diseases Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to inherited mutations. The rare disease carbonic anhydrase II deficiency syndrome (CADS) can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. One mutation associated with CADS entails the His107Tyr (H107Y) substitution. We have demonstrated that the H107Y mutation is a remarkably destabilizing mutation influencing the folding behavior of HCA II. A mutational survey of position H107 and a neighboring conserved position E117 has been performed entailing the mutants H107A, H107F, H107N, E117A and the double mutants H107A/E117A and H107N/E117A. We have also shown that the binding of specific ligands can stabilize the disease causing mutant, and shift the folding equilibrium towards the native state, providing a starting point for small molecule drugs for CADS. -
CHAPTER 4 Proteins: Structure, Function, Folding
Recitation #2 Proteins: Structure, Function, Folding CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: – Structure and properties of the peptide bond – Structural hierarchy in proteins – Structure and function of fibrous proteins – Structure analysis of globular proteins – Protein folding and denaturation Structure of Proteins • Unlike most organic polymers, protein molecules adopt a specific three-dimensional conformation. • This structure is able to fulfill a specific biological function • This structure is called the native fold • The native fold has a large number of favorable interactions within the protein • There is a cost in conformational entropy of folding the protein into one specific native fold Favorable Interactions in Proteins • Hydrophobic effect – Release of water molecules from the structured solvation layer around the molecule as protein folds increases the net entropy • Hydrogen bonds – Interaction of N-H and C=O of the peptide bond leads to local regular structures such as -helices and -sheets • London dispersion – Medium-range weak attraction between all atoms contributes significantly to the stability in the interior of the protein • Electrostatic interactions – Long-range strong interactions between permanently charged groups – Salt-bridges, esp. buried in the hydrophobic environment strongly stabilize the protein • Levels of structure in proteins. The primary structure consists of a sequence of amino acids linked together by peptide bonds • and includes any disulfide bonds. The resulting polypeptide can be arranged into units of secondary structure, such as an α-helix. The helix is a part of the tertiary structure of the folded polypeptide, which is itself one of the subunits that make up the quaternary structure of the multi-subunit protein, in this case hemoglobin. -
Evolution, Energy Landscapes and the Paradoxes of Protein Folding
Biochimie 119 (2015) 218e230 Contents lists available at ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Review Evolution, energy landscapes and the paradoxes of protein folding Peter G. Wolynes Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA article info abstract Article history: Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem Received 15 September 2014 involved in folding however has been simplified through the evolution of folding energy landscapes that are Accepted 11 December 2014 funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal Available online 18 December 2014 frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy Keywords: landscape ideas also have allowed successful protein structure prediction algorithms to be developed. Folding landscape The selection constraint of having funneled folding landscapes has left its imprint on the sequences of Natural selection Structure prediction existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signaling a beautiful confluence of ge- nomics and chemical physics. © 2014 Elsevier B.V. and Societ e française de biochimie et biologie Moleculaire (SFBBM). All rights reserved. Contents 1. Introduction . ....................... 218 2. General evidence that folding landscapes are funneled . ....................... 221 3. How rugged is the folding landscape e physicochemical approach . ....................... 222 4.