ISSN 0869-5938, Stratigraphy and Geological Correlation, 2018, Vol. 26, No. 7, pp. 771–782. © Pleiades Publishing, Ltd., 2018.

Middle Oxfordian–Lower Kimmeridgian Calcareous Nannoplankton and Foraminifers in Oblast, European Part of M. A. Ustinova* Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, , 119017 Russia *e-mail: [email protected] Received April 6, 2017; in final form, September 12, 2017

Abstract⎯Middle Oxfordian–lower Kimmeridgian calcareous nannoplankton and foraminifers were first studied from the core log of the well drilled in . Nannoplankton is well preserved; in total, nearly 25 species were identified. Zone NJ15 was distinguished on the basis of nannoplankton. Coccoliths of representatives of the genus Watznaueria, which are mostly cospomopolitan species, are dominant quantita- tively. A sharp prevalence of W. britannica coccoliths indicates unstable habitat conditions in near-surface waters and their mesotrophy. Foraminifers typical of the Opthalmidium strumosum–Lenticulina brestica and Lenticulina kuznetsovae–Epistomina praetatariensis zones were studied as accompanying microfauna for substantiation of the age of country deposits.

Keywords: Jurassic system, calcareous nannoplankton, foraminifers, Oxfordian, lower Kimmeridgian, Iva- novo oblast DOI: 10.1134/S0869593818070055

INTRODUCTION MATERIALS AND METHODS The material for research works was the core of The Upper Jurassic calcareous nannoplankton of Well 1, collected by A.G. Olfer’ev in the early 2000s the Russian Plate is still poorly studied. Some data on and later provided to the author by A.G. Alekseev the nannoplankton from the middle Oxfordian–lower (Moscow State University). Kimmeridgian substages of the Gorodishche section In total, we studied 12 samples weighing 20–30 g ( Region) were presented by Nikifor- each, collected with an interval of 1.0 m from the ova (1986) and Cooper (1987). In this section, Bown Jurassic part of the core section of Well 1. Well-pre- et al. (1988) distinguished stratotypes of Zones NJ16– served nannoplankton and foraminifers occur in all NJ17. Later, the data on nannoplankton distribution samples. Coccolithophora were extracted with a stan- in the Volgian deposits of this region (Gorodishche dard procedure (Bown and Cooper, 1998). They were and Kashpir sections) were supplemented in the fol- studied under a BiOptik light polarized microscope at lowing works (Kessels et al., 2003; Ruffel et al., 2002). ×1000 magnification in the laboratory of biostratigra- phy and paleogeography of the oceans of the Geolog- The Oxfordian nannoplankton in the European part ical Institute of the Russian Academy of Sciences. of Russia was studied to a lesser extent. Matveev pub- Images were taken using a light microscope (crossed lished data on nannoplankton from the lower Oxford- nicols) and MV 2300 Vega Tescan electron scanning ian interval in the Dubki section (Saratov Volga microscope at the Geological Institute of the Russian Region) and the middle–upper Oxfordian section in Academy of Sciences. The relative amount of nanno- the Ioda River ( oblast) (Kiselev et al., 2013; plankton was determined in the following way: Matveev, 2007, 2009). The author studied nanno- much, 5–15 specimens per one field of vision; fre- plankton from the Oxfordian deposits uncovered by quent, 1–4 specimens per field of vision; rare, wells in the city of Moscow (Ustinova, 2009; Ustinova 2‒5 specimens per 2–5 fields of vision; little, 1 speci- men per more than 10 fields of vision. The relative and Radugina, 2004). The calcareous nannoplankton amount of species throughout the entire specimen (a in Ivanovo oblast was not studied previously. There are cover glass 4 cm2) was estimated under a light micro- no data published on the Kimmeridgian–Oxfordian scope. Foraminifers occur in samples in a small foraminifers of the given area, while in adjacent areas amount, which is due to a small weight of samples. (first of all in oblast) foraminifers of this age However, their species composition made it possible are well studied. This work aims to fill this gap. to distinguish zones and to clarify the age, earlier

771 772 USTINOVA established by Olfer’ev, which subdivided the section RESULTS into formations on the basis of the lithological features of deposits. Nannoplankton. Throughout the section, there are Biscutum dubium (Noël), Cretarhabdus conicus Bram- lett et Martini, Cyclagelosphaera margerelii Noёl, CHARACTERISTICS OF THE SECTION С. tubulata (Grün et Zweili), Ethmorhabdus gallicus Noël, Hexapodorhabdus cuvilleri Noël, Polypodorhab- Well no. 1 was drilled near a farm in the village of dus escaigii Noёl, Staurolithites quadriarculla (Noël) Ovechkino ( district, Ivanovo oblast) in the Wilcoxon, 1972, Stradnerlithus geometricus (Górka) watershed, 14 km to the west of the settlement of Bown et Cooper, Stephanolithion bigotii bigotii Deflan- Staraya Vichuga (Fig. 1). The absolute mark of the well dre, Zeugrhabdotus erectus (Deflandre in Deflandre et head is 145.0 m. The description of the section and col- Fert), Z. fissus Grün et Zweili, Watznaueria barnesae lection of samples were performed by A.G. Olfer’ev. (Black), W. britannica (Stradner) Reinhardt, W. fos- The upper 12.1 m interval (Beds 1–4) is composed of sacincta (Black) Bown in Bown et Cooper, and W. aff. Quaternary loams. manivitae Bukry. The Oxfordian part of the section is Bed 5. Interval 12.1–21.4 m. Aleurite is coarse, characterized by the occurrence of Axopodorhabdus dark gray, clayey, micaceous, with thin subhorizontal cylindratus (Noёl) Wise et Wind, Lotharingius cruci- intercalations of light aleurite, platy. Bed 5 can be centralis (Medd) Grün et Zweili, Lotharingius sp., attributed most likely to the upper Hauterivian Podorhabdus grassei Noël and Retecapsa cf. R. schizo- Savel’evo Formation (Olfer’ev, 2013). brachiata (Gartner) Grün in Grün et Allemann, Stau- Bed 6. Interval 21.4–23.6 m. Clay is dark gray, cal- rolithites stradneri (Rood et al.), and Anfractus harri- careous, ductile, lumpy, with clay-type phosphorite sonii Medd (Plates I, II). In the Kimmeridgian inter- concretions up to 2 cm in diameter. val, Staurolithites lumina Bown and Axopodorhabdus rahla (Noёl) Grün et Zweili occur as single specimens Bed 7. Interval 23.6–28.0 m. Clay is dark gray, (Fig. 2, Plate I). lighter compared to the overlying bed, calcareous, indistinctly laminated and lumpy. The contact with The above-described complex can be attributed to the underlying bed is distinct. Beds 6 and 7 can be Zone NJ15 Cyclagelosphaera margerelii in the Boreal attributed to the Makar’evo Formation, covering the Realm (Bown and Cooper, 1998), covering the inter- uppermost part of the upper Oxfordian–lower Kim- val from the upper part of the lower Oxfordian meridgian (Unifitsirovannaya…, 2012). (ammonite Cordatum Zone) to the terminal part of the upper Kimmeridgian (ammonite Autissiodorensis Bed 8. Interval 28.0–29.3 m. Clay is gray, thinly Zone) (Bown and Cooper, 1998; Bown et al., 1988). aleuritic, indistinctly platy, with ferruginous oolites, The stratotype of this zone was distinguished in the with fine shell detritus. This bed is attributed by section of a well drilled in Denver, southeastern Olfer’ev to the Moscovian Formation, but in other . This zone is also distributed in southern areas of the Moscow syneclise within this formation, England and northern France (Bown et al., 1988). It is ferruginous oolites have not been found (Unifitsiro- characterized by the occurrence of Watznaueria bri- vannaya …, 2012). The lower contact is distinct. The tannica (dominant species), Axopodorhabdus cylindra- similar section was described by A.P. Ivanov in 1910 tus, Biscutum dubium, Cyclagelosphaera margerelii, near the villages of Pushkino and Ivannikovo (Kost- Ethmorhabdus gallicus, Polypodorhabdus escaigii, roma oblast) (Starodubtseva and Mitta, 2012). Stephanolithion bigotii bigotii, Staurolithites stradneri, Bed 9. Interval 29.3–34.0 m. Clay is gray with and Zeugrhabdotus erectus. In terms of distribution of brownish tint, insignificantly micaceous, with ochre- Lotharingius crucicentralis in the core section, the colored spots and stains, with concretions of solid occurrence of the lower subzone NJ15а is proposed, oolitic marl. At the base is an intercalation of ferrugi- while the upper subzone NJ15b cannot be reliably nous glauconitic sand with abundant ferruginous identified (Bown and Cooper, 1998). Stratotypes of oolites. The lower contact is distinct. This bed is the subzones NJ15a and NJ15b are located in Ober- attributed by A.G. Olfer’ev to the Velikodvorskaya langheim, southwestern Germany (Bown et al., 1988). Formation of the middle Callovian. According to the published data, the subzone NJ15a Bed 10. This interval, revealed by A.G. Olfer’ev, is occurs in England, northeastern France, Spain, and missing in the lithological description of the well. Clay Switzerland (Colombie et al., 2014; Lees et al., 2004). is aleuritic, reddish brown with beige tint and thin blu- Within the Russian plate, the subzone NJ15a can be ish gray stains, with calcareous nodules up to 1 cm in distinguished in several wells drilled in the city of Mos- diameter. In the lower part of the bed is coarse clayey cow (Ustinova and Radugina, 2004). However, in aleurite. This bed is attributed to the Yur’evetskaya other wells from this region, this zone cannot be dis- Formation of the Sludkinsky Horizon of the Olenek tinguished with confidence (Ustinova, 2009). Stage. According to Slastenov and Markov (2010), the Foraminifers. The age of country deposits deter- thickness of this formation in the studied well is esti- mined on the basis of the foraminiferal assemblage is mated to be 31 m. highly different from the age obtained by Olfer’ev on

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 MIDDLE OXFORDIAN–LOWER KIMMERIDGIAN CALCAREOUS NANNOPLANKTON 773

36° E 42°

N Totma 60° 60° Suda R.

Kubena R.

Sukhona R. Sokol Cherepovets R. Vologda

Mologa R.

Rybinsk Reservoir Kostroma R. Kostroma Unzha R. Yaroslavl Medveditsa R.

Vichuga Ivanovo Shuya Pereslavl- Moscow R. Zalessky

Kovrov Vladimir 56° 56°

Oka R. MOSCOW 04080 km

36° 42°

Well no. 1 Osinovka Ovechkino

Kamenka R. 012 km

Fig. 1. The locality of Well 1, drilled in Ivanovo oblast.

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 774 USTINOVA manivitae L. crucicentralis aff. sp. R. schizobrachiata Bed cf. Stage cf. cf. Substage Lithology Sample no. Thickness, m Nannoplankton zones Nannoplankton (Bown and Cooper, 1998) and Cooper, (Bown Axopodorhabdus cylindratus Axopodorhabdus Anfractus harrisonii Anfractus rahla Axopodorhabdus Zeugrhabdotus erectus Zeugrhabdotus fissus Biscutum dubium Biscutum constans Biscutum tubulata Cyclagelosphaera Lotharingius escaigii Polypodorhabdus quadriarculla Staurolithites bigotii Stephanolithion bigotii geometricus Stradnerlithus barnesae Watznaueria britannica Watznaueria fossacincta Watznaueria Watznaueria conicus Cretarhabdus Lotharingius crucicentralis Podorhabdus grassei Podorhabdus Lotharingius lumina Staurolithites Cyclagelosphaera margerelii Cyclagelosphaera gallicus Ethmorhabdus Retecapsa cuvilleri Hexapodorhabdus stradneri Staurolithites

K1ht 5

1 6 2

3 Lower NJ15b Kimmeridgian 7 4 NJ15

5 6 8 7 8

9

Oxfordian 9 10 Middle–upper NJ15a 11

12

1234 5 6 7 89 Fig. 2. Distribution of calcareous nannoplankton species in the section of Well 1. (1) Clays; (2) calcareous clays; (3) aleurites; (4) marl concretions; (5) phosphorites; (6–9) relative amount of nannoplankton in visual field (v.f.): (6) 5–15 specimens in one v.f., (7) 1–4 specimens in one v.f., (8) 2–5 specimens in 2–5 v.f., (9) 1 specimen per more than 10 v.f. Stratigraphic subdivision is given after (Olfer’ev, 2012). K1ht—Lower Cretaceous, Hauterivian Stage.

Plate I. Middle Oxfordian–lower Cimmeredgian calcareous nannoplankton from the Well 1 section, crossed nicols, unless stated otherwise. (1) Staurolithites lumina Bown in Bown et Cooper, 1998, distal side (Sample 2); (2) Staurolithites quadriarculla (Noёl, 1965), distal side, Sample 7; (3) Zeugrhabdotus erectus (Deflandre, 1954), distal side, Sample 6; (4) Zeugrhabdotus fissus Grün et Zweili, 1980), distal side, Sample 8; (5) Stephanolithion bigotii bigotii Deflandre, 1939, distal side, parallel nicols, Sample 8; (6) Anfractus harrisonii Medd, 1979, distal side, Sample 8; (7) Biscutum dubium (Noёl, 1965), distal side, Sample 8; (8) Cretarhabdus conicus Bramlett et Martini, distal side, Sample 6; (9, 10) Retecapsa cf. R. schizobrachiata (Gartner, 1968), distal side: (9) Sample 8, (10) Sample 6; (11) Polypodorhabdus escaigii Noёl, 1965, distal side, Sample 6; (12) Ethmorhabdus gallicus Noёl, 1965, distal side, Sample 11; (13) Cyclagelosphaera tubulata (Grün et Zweili, 1980), distal side, Sample 4; (14) Cyclagelosphaera margerelii Noёl, 1965, distal side, Sample 6; (15) Lotharingius crucicentralis (Medd, 1971), distal side, Sample 11; (16) Lotharingius cf. crucicentralis (Medd, 1971), distal side, Sample 4; (17) Lotharingius sp., distal side, Sample 11; (18) Watznaueria barnesae (Black, 1959), distal side, Sample 6; (19, 20) Watznaueria britannica (Stradner, 1963), distal side: (19) Sample 6, an average specimen; (20) Sample 4, a large specimen; (21) Watznaueria fossacincta (Black, 1971), distal side, Sample 4; (22, 23) Watznaueria aff. manivitae Bukry, 1969, distal side: (22) Sample 11, (23) Sample 8; (24, 25) indefinable organic remains: (24) crossed nicols, (25) parallel nicols.

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 MIDDLE OXFORDIAN–LOWER KIMMERIDGIAN CALCAREOUS NANNOPLANKTON 775

Plate I

1 23 4 5

5 µm 2.5 µm5 µm5 µm5 µm

6 7 8910

2.5 µm 5 µm 5 µm 5 µm 5 µm

11 12 13 14 15 2.5 µm 5 µm 5 µm 5 µm5 µm

16 17 18 19 20 5 µm 5 µm 5 µm 5 µm 5 µm

25 21 22 23 24 5 µm10 µm10 µm10 µm10 µm

the basis of the lithology of deposits towards rejuvena- Mjatl., E. unzhensis Azb., Geinitzinita nodulosa (Furss. tion. The foraminiferal assemblage in Beds 8–9 is rep- et Pol.), Labalina milioliniformis (Paalz.), Lenticulina resented by the following species (Fig. 3, Plate III): compressaeformis Paalz., L. muensteri (Wisn.), L. pirja- Citharina effrenata Azb., C. mosquensis Uhlig, C. orni- tiensis Pjatk., L. repanda Kapt., L. russiensis (Mjatl.), tocephala (Wisn.), Epistomina ex gr. mosquensis Uhlig, L. simplex (d’Orb.), L. sublenticularis (Schwag.), E. nemunensis Grig., E. parastelligera Hofk., E. uhligi L. tumida Mjatl., L. ex gr. uralica (Mjatl.), Lingulino-

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 776 USTINOVA dosaria? tuberosa Schwag., Marginulinopsis? procera (1998) for the middle Oxfordian–lower Kimmeridg- Kapt., Nodosaria fontinensis Terq., N. ex gr. euglypha ian deposits in the Boreal Realm of Western Siberia. Schwag., N. penium Wisn., N. pseudohispida Gerke in The boundary of subzones of the standard scale lies in Bass., Opthalmidium strumosum (Gümb.), Pseudola- the uppermost part of the upper Oxfordian ammonite marckina ex gr. dainae Starts., Ps. tutkowskii (Mjatl.), Regulare Zone (Bown and Cooper, 1998; Bown et al., Oolina apiculata (Reuss)., Lituotuba bulbifera (Paalz.), 1988). The sediments of the studied interval were Spirillina tenuissima Gümb., Ramulina maricula Azb, accumulated in a shallow water basin, extending in the Saracenaria expleta Azb. Finds of such species as submeridional direction (Sazonov and Sazonova, Opthalmidium strumosum, Labalina milioliniformis, 1967), with a normal salinity and stable calm hydrody- Epistomina nemunensis, and E. uhligi allow one to namic regime, against the background of eustatic rise attribute this assemblage to the middle–upper of the sea level in comparison with the recent level by Oxfordian Opthalmidium strumosum–Lenticulina brestica Zone, widespread in the European part of 50 m (Colpaert et al., 2017; Sahagian et al., 1996). Russia, Kazakhstan, and the Southwestern Baltics There is no unambiguous opinion about paleo- (Azbel et al., 1991; Grigyalis, 1985; Mesezhnikov ecological preferences of the nannoplankton studied. et al., 1989). The stratotype of this zone is the outcrop For example, W. barnesae is a cosmopolitan species, on the Unzha River in the town of Makariev, widely distributed in the Jurassic and Cretaceous Kostroma oblast (Azbel et al., 1991; Colpaert et al., periods and adapted to the most diverse habitat con- 2017; Mesezhnikov et al., 1989). ditions. Some authors consider that this species used The early Kimmeridgian age of Beds 6–7 was sub- the r-strategy of reproduction and was adapted to stantiated by the occurrence of such species as Citha- unstable and mesotrophic living conditions in near- rina parallela (Biel. et Poźar.), Epistomina praeta- surface waters (Colombie et al., 2014). Other tariensis Umansk., Pseudolamarckina dainae Starts., authors, on the contrary, consider that W. barnesae is and Mironovella foveata Umansk., typical of the Len- characterized by the K-strategy of reproduction and ticulina kuznetsovae–Epistomina praetatariensis Zone (Fig. 3, Plate III). This zone was distinguished in adaptiveness to oligotrophic conditions (Borneman, the European part of Russian and Kazakhstan (Azbel 2003; Mutterlose et al., 2005). The predominance of et al., 1991). In the stratotype (section in the area of W. britannica in the nannoplanktonic assemblage, Makariev), the occurrence of species Epistomina prae- preferring the r-strategy of reproduction, indicates tatariensis is recorded in the Kimmeridgian, but in the unstable habitat conditions in subsurface waters and core sections, there are only rare finds in the underly- lower mesotrophic conditions (Colombie et al., 2014; ing Opthalmidium strumosum–Lenticulina brestica Giraud, 2009; Tremolada et al., 2006). Variations in Zone (Mesezhnikov et al., 1989). However, the upper the W. britannica–W. barnesae/W. fossacin cta percent Ravni Zone of the upper Oxfordian used in the above ratio are probably evidence of instability of trophic con- work also includes, as recently noted by Rogov (2016), ditions of near-surface waters (Fig. 4). Other research- analogs of the lower Kimmeridgian Bauhini Zone; ers attribute W. ba rn esa e, W. britannica, W. fossacincta, and, thus, there is still no reliable evidence of the and C. margerelii to eutrophic species (Lees et al., occurrence of species E. praetatariensis in the upper 2004; Pittet and Mattioli, 2002). Oxfordian deposits. As for foraminifers, the species identified in the studied deposits are attributed to the active epifauna, DISCUSSION AND CONCLUSIONS which fed on sediments, plant food, and detritus (rep- The calcareous nannoplankton of the middle resentatives of genera Epistomina, Pseudolamapckina, Oxfordian–lower Kimmeridgian substages was stud- Lenticulina) (Colpaert et al., 2017; Olóriz et al., 2003; ied in detail in Ivanovo oblast for the first time. In Reolid et al., 2008). Predominance of epistomins in terms of the species composition, one can distinguish the assemblage is evidence of relatively shallow depth Zone NJ15, which was identified by Bown and Cooper (Startseva, 1975; Sugarman et al., 1999).

Plate II. Middle Oxfordian–lower Cimmeredgian calcareous nannoplankton from the Well 1 section under scanning electron microscope (SEM). (1) Staurolithites stradneri (Rood et al., 1971), proximal side, Sample 2; (2) Staurolithites quadriarculla (Noёl, 1965), proximal side, Sample 2; (3) Staurolithites lumina Bown, 1998, distal side, Sample 2; (4, 5) Zeugrhabdotus erectus (Deflan- dre, 1954): (4) distal side, Sample 11; (5) proximal side, Sample 2; (6) Stephanolithion bigotii bigotii Deflandre, 1939, proximal side, Sample 11; (7) Stradnerlithus geometricus (Górka, 1957), proximal side, Sample 11; (8, 9) Biscutum dubium (Noёl, 1965), Sample 2: (8) distal side, (9) proximal side; (10) Polypodorhabdus escaigii Noёl, 1965, proximal side, Sample 11; (11) Retecapsa cf. R. schizobrachiata (Gartner, 1968), distal side, Sample 11; (12) Axopodorhabdus cylindratus (Noёl, 1965), proximal side, Sam- ple 11; (13) Axopodorhabdus rahla (Noёl, 1965), lateral view, Sample 2; (14, 15) Ethmorhabdus gallicus Noёl, 1965, Sample 2: (14) distal side, (15) proximal side; (16, 17) Hexapodorhabdus cuvilleri Noёl, 1965, Sample 11: (16) distal side, (17) proximal side; (18) Cyclagelosphaera margerelii Noёl, 1965, distal side, Sample 11; (19) Watznaueria barnesae (Black, 1959), distal side, Sample 2; (20) Watznaueria fossacincta (Black, 1971), distal side, Sample 2; (21) Watznaueria britannica (Stradner, 1963), distal side, Sam- ple 11.

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 MIDDLE OXFORDIAN–LOWER KIMMERIDGIAN CALCAREOUS NANNOPLANKTON 777

Plate II

1 2 3 4 5 2.5 µm 2.5 µm 2.5 µm 2.5 µm 2.5 µm

6 78 9 5 µm 2.5 µm 2.5 µm 2.5 µm

10 11 12 13 5 µm 5 µm5 µm5 µm

14 15 16 17 5 µm 5 µm5 µm 2.5 µm

18 19 20 21 5 µm5 µm5 µm5 µm

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018

778 USTINOVA

Foraminiferal zones Foraminiferal praetatariensis kuznetsovae–E. L. brestica strumosum–L. O.

Marginulina buskensis Marginulina 1

Lenticulina kuznetsovae Lenticulina Epistomina praereticulata Epistomina

1 Saracenaria pravoslavlevi Saracenaria

Pseudolamarckina dainae Pseudolamarckina 12 2

Paulina Paulina sp. 111 Planularia tricarinella Planularia 11

3 Mironovella foveata Mironovella

Citharina parallela Citharina 22

Saracenaria feriata Saracenaria 1

Epistomina praetatariensis Epistomina 21 29 52 26 10 ecimens. S.—Savel’evo Formation.

Ramulina maricula Ramulina 1

Oolina apiculata Oolina 1

Epistomina unzhensis Epistomina 3 1

Nodosaria pseuhispida Nodosaria 1

procera Marginulinopsis ? 1 1

Lenticulina simplex Lenticulina 22

Lenticulina russiensis Lenticulina 1

Lenticulina repanda Lenticulina 3

Geinitzinita nodulosa Geinitzinita 1111

uralica Lenticulina

ex gr. ex 1

euglypha Nodosaria ex gr. ex 1

tuberosa Lingulonodosaria ? ? 1 1

Lenticulina sublenticularis Lenticulina 1

Lenticulina pirjatiensis Lenticulina 1

Lenticulina compressaeformis Lenticulina 1 1

Citharina effrenata Citharina 1

Spirillina tenuissima Spirillina 1 1

Orthella bulbifera Orthella 1

Nodosaria penium Nodosaria 1 Nodosaria fontinensis Nodosaria 1

2 Labalina milioliniformis Labalina Fig. 2. Numbers in points—the of sp near number legend See 1.

Citharina ornitocephala Citharina 1 1

dainae Pseudolamarckina ex gr. gr. ex 22 2 1 10

Opthalmidium strumosum Opthalmidium 162 55 63 79

Lenticulina tumida Lenticulina 1 1

Lenticulina muensteri Lenticulina 1 3 3

Epistomina uhligi Epistomina 32 2

Epistomina parastelligera Epistomina 11 1 1 1 10 11

Epistomina nemunensis Epistomina 13 1 3 56 4 2

mosquensis Epistomina ex gr. ex 44 37 42 11 33 8 2 22

Citharina mosquensis Citharina 1 Sample no. Sample

1 2 3 4 9 5 6 7 8

11 12 10

Thickness, m Thickness,

Lithology Bed

5 6 7 8 9

Distribution of foraminiferal species in the core section of Well of Well section in the species core Distribution of foraminiferal

Formation Makar’evskaya Moscovian S.

Substage Lower Middle–upper

Fig. 3.

Stage Oxfordian ht Kimmeridgian 1 K

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 MIDDLE OXFORDIAN–LOWER KIMMERIDGIAN CALCAREOUS NANNOPLANKTON 779 10 % % 60 W. britannicaW. Z. erectus 50 40 / 30 20 W. fossacineta W. 10 70 coccolithophora in the core section of Well 1. 10 20 % C. margereli barnesae W. The relative content of specific of content species The relative 10 20 Fig. 4.

Species diversity Species

Sample no. Sample of species Number 1 2 3 4 5 6 7 8 9

11 12 10

Thickness, m Thickness,

Lithology Bed

5 6 7 8 9

Substage Lower Middle–upper

Kimmeridgian Oxfordian Stage ht 1 K

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 780 USTINOVA

Plate III

12 3 4 5 6 200 µm 200 µm 100 µm 200 µm 200 µm 200 µm

7 8 9 10 11 500 µm 200 µm 200 µm 200 µm 200 µm

12 13 14 15 200 µm 200 µm 200 µm 200 µm

16 17 18 19 200 µm 200 µm 200 µm 200 µm

20 21 22 23 200 µm 200 µm 200 µm 200 µm

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 MIDDLE OXFORDIAN–LOWER KIMMERIDGIAN CALCAREOUS NANNOPLANKTON 781

Plate III. Middle Oxfordian–lower Cimmeredgian foraminifers from the Well 1 section. (1, 2) Opthalmidium strumosum (Gümb.), lateral view, Sample 8; (3) Labalina milioliniformis (Paalz.), lateral view, Sample 10; (4) Lingulonodosaria? tuberosa Schwag., lateral view, Sample 8; (5) Pseudonodosaria tutkowskii (Mjatl.), lateral view, Sample 11; (6) Ramulina maricula Azb., lat- eral view, Sample 6; (7) Citharina parallela (Biel. et Poźar.), lateral view, Sample 2; (8) Citharina ornitocephala (Wisn.), lateral view, Sample 8; (9) Citharina mosquensis Uhlig, lateral view, Sample 12; (10) Saracenaria feriata Grig., lateral view, Sample 4; (11) Saracenaria expleta Azb., lateral view, Sample 7; (12) Lenticulina kuznetsovae Umansk., lateral view, Sample 1; (13–15) Epi- stomina ex gr. mosquensis Uhlig: (13) dorsal view, Sample 1; (14) ventral view, Sample 2; (15) umbilical view, Sample 12; (16, 17) Epistomina unzhensis Azb.: (16) dorsal view, Sample 7; (17) ventral view, Sample 7; (18, 19) Epistomina praetatariensis (Umansk.), Sample 2: (18) dorsal view, (19) ventral view; (20, 21) Pseudolamarckina dainae Starts., Sample 2: (20) dorsal view, (21) ventral view; (22, 23) Mironovella foveata K. Kuzn. et Umansk: (22) dorsal view, Sample 1; (23) ventral view, Sample 2.

ACKNOWLEDGMENTS Grigyalis, A.A., Zonal’naya stratigrafiya baltiiskoi yury po foraminiferam (metody analiza foraminiferovykh zon) (Fora- I would like to express my heartfelt gratitude to miniferal-Based Zonal Stratigraphy of the Baltic Jurassic A.S. Alekseev for providing the material for research (Methods of Analysis of Foraminiferal Zones)), Moscow: works and to reviewers E.A. Shcherbinina, M.A. Rogov, Nedra, 1985 [in Russian]. and V.A. Zakharov for valuable recommendations and Kessels, K., Mutterlose, J., and Ruffel, A., Calcareous nan- remarks. nofossils from Late Jurassic sediments of the Volga Basin This work was supported by the Russian Founda- (Russian Platform): evidence for productivity-controlled tion for Basic Research (projects no. 15-05-04700, black shales deposition, J. Earth Sci., 2003, vol. 92, 18-05-00501) and by the Geological Institute of the pp. 743–757. Russian Academy of Sciences, project no. 116032510034 Kiselev, D., Rogov, M., Glinskikh, L., et al., Integrated (project of the Federal Agency for Scientific Organi- stratigraphy of the reference section for the Callo- zations no. 0135-2014-0034). vian/Oxfordian boundary in European Russia, Volumina Jurassica, 2013, vol. XI, pp. 59–96. Reviewers V.A. Zakharov, M.А. Rogov, and Е.А. Shcherbinina Colpaert, C., Nikitenko, B.L., and Khafaeva, S.N., Stratig- raphy and ecostratigraphic distribution of foraminiferal morphogroups from the Upper Jurassic of the Makar’yev section (Unzha River, Volga River basin), Russ. Geol. Geo- REFERENCES phys., 2017, vol. 58, no. 1, pp. 70–86. Azbel’, A.Ya., Grigyalis, A.A., and Kuznetsova, K.I., Juras- Lees, J.A., Bown, P.R., Young, J.R., and Riding, J.B., Evi- sic System. Upper Series. The European part of the USSR, dence for annual records of phytoplankton productivity in in Prakticheskoe rukovodstvo po mikrofaune SSSR. T. 5. For- the Kimmeridge Clay Formation coccolith stone bands aminifery mezozoya (Practical Guide to Microfauna of the (Upper Jurassic Dorset, UK), Mar. Micropaleontol., 2004, USSR, Vol. 5: Mesozoic Foraminifers), Leningrad: Nedra, vol. 52, pp. 29–49. 1991, pp. 64–76. Bornemann, A., Case studies of Mesozoic calcareous nan- Matveev, A.V., Callovian–Oxfordian calcareous nano- nofossils: implications for palaeoecology, calcareous nan- plankton of Dubki section (Saratov Volga Region), Nauchn. nofossil morphology and carbonate accumulation, Disser- Mater. II Vseross. soveshch. “Yurskaya sistema: problemy bio- tation zur Erlangung des Grades eines Doktors der Naturwis- stratigrafii i paleobiogeografii” (Proc. II All-Russ. Conf. senschaften der Fakultat fur Geowissenschaften der Ruhr- “Jurassic System of Russia: Problems of Stratigraphy and Universitat Bochum, Bochum, 2003. Paleogeography”), Yaroslavl’, 2007. Bown, P.R. and Cooper, M.K.E., Jurassic, in Calcareous Matveev, A.V., Oxfordian calcareous nanoplankton of the Nannofossil Biostratigraphy, Cambridge: Kluwer Acad. Ioda River section (Yaroslavl Region), Nauchn. mater. Publ., 1998, pp. 34–85. III Vseross. soveshch. “Yurskaya sistema: problemy biostra- tigrafii i paleobiogeografii” (Proc. III All-Russ. Conf. Bown, P.R., Cooper, M.K., and Lord, A.R., A calcareous “Jurassic System of Russia: Problems of Stratigraphy and nannofossils biozonation scheme for the Early to Mid Paleogeography”), Zakharov, V.A., Ed., Saratov, 2009, Mesozoic, Newsl. Stratigr., 1988, vol. 20, pp. 91–114. pp. 142–143. Colombie, C., Giraud, F., Schnyder, J., et al., Timing of sea level, tectonics and climate events during the upper most Mesezhnikov, M.S., Azbel’, A.Ya., Kalacheva, E.D., and Oxfordian (Planula zone) of the Iberian ramp (northeast Rotkite, L.M., Middle and Upper Oxfordian of the Russian Spain) Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, Platform, in Tr. Mezhved.stratigr. kom. (Proc. Interdepart- vol. 412, pp. 17–31. ment. Stratigr. Com.), 1989, vol. 19, pp. 1–183. Cooper, M.C.E., New calcareous nannofossil taxa from the Mutterlose, G., Bornemann, A., and Herrle, J., Mesozoic Volgian Stage (Upper Jurassic) lectostratotype site at Goro- calcareous nannofossils—state of the art, Paläontol. Zeitsch., dische, USSR, Neues Jahr. Geol. Paläeont., Monatsh., 1987, 2005, vol. 79, no. 1, pp. 113–133. pp. 606–612. Nikiforova, E.V., Nannofossil-Based Subdivision of Upper Giraud, F., Calcareous nannofossil productivity and car- Kimmeridgian and Volgian Deposits in Middle Reaches of bonate production across the Middle–Late Jurassic transi- the Volga River, in Yurskie otlozheniya Russkoi platformy tion in the French Subalpine Basin, Geobios, 2009, vol. 42, (Jurassic Deposits of the Russian Platform), Leningrad: pp. 699–714. Nedra, 1986, pp. 172–180.

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018 782 USTINOVA

Olferiev, A.G., Lower Cretaceous stratigraphic subdivisions Starodubtseva, I.A. and Mitta, V. V., The lost localities: of Moscow Basin. 1. Berriasian – Hauterivian, Bull. Mosk. Jurassic sections of the Upper Volga Region, in Nauka i O-va Ispyt. Prir., Otd. Geol., 2013, vol. 88, no. 2, pp. 79–88. prosveshchenie. Sb. nauchn. tr. GGM RAN (Science and Olóriz, F., Riolid, M., and Rodriguez-Tovar, F.J., Palaeo- Education. Coll. Sci. Papers of Vernadsky State Geol. geographic and stratigraphic distribution of mid-late Museum RAS), Ekaterinburg: OOO UIPTs, 2012., Oxfordian foraminiferal assemblages in the Prebetic Zone pp. 323–334. (Betic Cordillera, Southern Spain), Geobios, 2003, vol. 36, Startseva, G.N., On the palaeoecology of Late Jurassic for- pp. 733–747. aminifers in the Middle Volga Region, in Obraz zhizni i Pittet, B. and Mattioli, E., The carbonate signal and calcar- zakonomernosti rasseleniya sovremennoi i iskopaemoi mikro- eous nannofossils distribution in an Upper Jurassic section fauny (Mode of Existence and Regularities of Distribution (Balingen–Tieringen, Late Oxfordian, Southern Ger- on Recent and Fossil Microfauna), Moscow: Nauka, 1975, many), Palaeoecol., Palaeoclimatol., Palaeogeogr., 2002, pp. 201–204. vol. 179, pp. 71–96. Sugarman, P.G., Miller, K.G., Olsson, R.K., et al., The Reolid, M., Nagy, J., Rodriguez-Tovar, F.J., and Olóriz, F., Cenomanian/Turonian carbon burial event, Bass River, NJ, Foraminiferal assemblages as palaeoenvironmental bioindi- USA: geochemical paleoecological and sea-level changes, cators in Late Jurassic epicontinental platforms: relation J. Foraminifer. Res., 1999, vol. 29, no. 4, pp. 438–452. with trophic conditions, Acta Paleontol. Polon., 2008, vol. 53, no. 4, pp. 705–722. Tremolada, F., Erba, E., van de Schootbrugge, B., and Rogov, M.A., New zonal and infrazonal scales for the Kim- Mattioli, E., Calcareous nannofossil changes during the meridgian in Western Siberia based on cardioceratid late Callovian–early Oxfordian cooling phase, Mar. Micro- ammonites, Stratigr. Geol. Correl., 2016, vol. 24, no. 5, paleontol., 2006, vol. 59, pp. 197–209. pp. 503–526. Unifitsirovannaya regional’naya stratigraficheskaya skhema Ruffell, A.H., Price, G.D., Mutterlose, J., et al., Palaeocli- yurskikh otlozhenii Vostochno-Evropeiskoi platformy. mate indicators (clay minerals, calcareous nannofossils, Ob’’yasnitel’naya zapiska (Unified Stratigraphic Scheme of stable isotopes) compared from two successions in the late the Jurassic Deposits of the East European Platform. Jurassic of the Volga Basin (SE Russia), Geol. J., 2002, Explanatory Note), Mitta, V.V., Ed., Moscow: Paleontol. vol. 37, pp. 17–33. Inst. RAN, VNIGNI, 2012 [in Russian]. Sahagian, D., Pinous, O., Olferiev, A., and Zakharov, V., Ustinova, M.A., The distribution of calcareous nannofos- Eustatic curve for the Middle Jurassic–Cretaceous based sils and foraminifers in the Callovian, Oxfordian, and Vol- on Russian Platform and Siberian stratigraphy: zonal reso- gian deposits in the southwest of Moscow, Stratigr. Geol. lution, AAPG Bull., 1996, vol. 80, pp. 1433–1458. Correl., 2009, vol. 17, no. 2, pp. 204–217. Sazonova, I.G. and Sazonov, N.T., Paleogeografiya Russkoi platformy v yurskoe i rannemelovoe vremya (Paleogeography Ustinova, M.A., and Radugina, S.V., Subdivision of the of the Russian Platform in the Jurassic and Early Creta- Callovian and Oxfordian in Moscow: implications of cal- ceous Time), Leningrad: Nedra, 1967 [in Russian]. careous nannofossils and foraminifers, Bull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2004, vol. 79, no. 3, pp. 20–25. Slastenov, Yu.L. and Markov, D.S., Geologiya Ivanovskoi oblasti (Geology of the Ivanovo Region), Shuya: Shuisk. Gos. Ped. Univ., 2010 [in Russian]. Translated by D. Voroshchuk

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 26 No. 7 2018