Multiple Mycoviruses Identified In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial. -
Kitahara Et at AVIROL.Pdf
Title A unique mitovirus from Glomeromycota, the phylum of arbuscular mycorrhizal fungi Author(s) Kitahara, Ryoko; Ikeda, Yoji; Shimura, Hanako; Masuta, Chikara; Ezawa, Tatsuhiro Archives of Virology, 159(8), 2157-2160 Citation https://doi.org/10.1007/s00705-014-1999-1 Issue Date 2014-08 Doc URL http://hdl.handle.net/2115/59807 Rights The final publication is available at Springer via http://dx.doi.org/10.1007/s00705-014-1999-1 Type article (author version) File Information Kitahara_et_at_AVIROL.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Arch Virol, accepted for publication: Jan 21 2014 DOI: 10.1007/s00705-014-1999-1 Title: A unique mitovirus from Glomeromycota, the phylum of arbuscular mycorrhizal fungi Authors: Ryoko Kitahara, Yoji Ikeda, Hanako Shimura, Chikara Masuta, and Tatsuhiro Ezawa*. Address: Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 Japan Authors for correspondence: Tatsuhiro Ezawa Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 Japan Tel +81-11-706-3845; Fax +81-11-706-3845 Email [email protected] No. of table: N/A No. of figure: two No. of color figure for online publication: one (Fig. 1) Supplementary information: three figures and one table Kitahara et al. 1 Abstract 2 3 Arbuscular mycorrhizal (AM) fungi that belong to the phylum Glomeromycota associate 4 with most land plants and supply mineral nutrients to the host plants. One of the four viral 5 segments found by deep-sequencing of dsRNA in the AM fungus Rhizophagus clarus strain 6 RF1 showed similarity to mitoviruses and is characterized in this report. -
EPPO Reporting Service
ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 6 PARIS, 2020-06 General 2020/112 New data on quarantine pests and pests of the EPPO Alert List 2020/113 New and revised dynamic EPPO datasheets are available in the EPPO Global Database 2020/114 EPPO report on notifications of non-compliance Pests 2020/115 Anoplophora glabripennis found in South Carolina (US) 2020/116 Update on the situation of Popillia japonica in Italy 2020/117 Update of the situation of Tecia solanivora in Spain 2020/118 Dryocosmus kuriphilus found again in the Czech Republic 2020/119 Eradication of Paysandisia archon from Switzerland 2020/120 Eradication of Comstockaspis perniciosa from Poland 2020/121 First report of Globodera rostochiensis in Uganda Diseases 2020/122 First report of tomato brown rugose fruit virus in Poland 2020/123 Update of the situation of tomato brown rugose fruit virus in the United Kingdom 2020/124 Update of the situation of tomato brown rugose fruit virus in the USA 2020/125 Tomato brown rugose fruit virus does not occur in Egypt 2020/126 Eradication of tomato chlorosis virus from the United Kingdom 2020/127 Tomato spotted wilt virus found in Romania 2020/128 First report of High Plains wheat mosaic virus in Ukraine 2020/129 Update on the situation of Pantoea stewartii subsp. stewartii in Slovenia 2020/130 Update on the situation of Pantoea stewartii subsp. stewartii in Italy 2020/131 First report of Peronospora aquilegiicola, the downy mildew of columbines in Germany Invasive plants 2020/132 Lycium ferocissimum in the EPPO region: addition to the EPPO Alert List 2020/133 First report of Amaranthus tuberculatus in Croatia 2020/134 First report of Microstegium vimineum in Canada 2020/135 Disposal methods for invasive alien plants 2020/136 EPPO Alert List species prioritised 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 Web: www.eppo.int 75011 Paris E-mail: [email protected] GD: gd.eppo.int EPPO Reporting Service 2020 no. -
Elisabeth Mendes Martins De Moura Diversidade De Vírus DNA
Elisabeth Mendes Martins de Moura Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Titulo de Doutor em Ciências. Área de concentração: Microbiologia Orienta: Prof (a). Dr (a). Dolores Ursula Mehnert versão original São Paulo 2017 RESUMO MOURA, E. M. M. Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo. 2017. 134f. Tese (Doutorado em Microbiologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos nos ecossistemas aquáticos (mananciais) e em esgotos vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil. -
Taxonomy of the Order Mononegavirales: Second Update 2018
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 April 01. Published in final edited form as: Arch Virol. 2019 April ; 164(4): 1233–1244. doi:10.1007/s00705-018-04126-4. Taxonomy of the order Mononegavirales: second update 2018 A full list of authors and affiliations appears at the end of the article. Abstract In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV). Keywords artovirid; Artoviridae; artovirus; bornavirid; Bornaviridae; bornavirus; filovirid; Filoviridae; filovirus; ICTV; International Committee on Taxonomy of Viruses; lispivirid; Lispiviridae; lispivirus; mononegavirad; Mononegavirales; mononegavirus; mymonavirid;; Mymonaviridae; mymonavirus; nyamivirid; Nyamiviridae; nyamivirus; paramyxovirid; Paramyxoviridae; paramyxovirus; pneumovirid; Pneumoviridae; pneumovirus; rhabdovirid; Rhabdoviridae; rhabdovirus; sunvirid; Sunviridae; sunvirus; virus classification; virus nomenclature; virus taxonomy; xinmovirid; Xinmoviridae; xinmovirus *Corresponding author: JHK: Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes -
Entry and Early Infection of Non-Segmented Negative Sense Rna Viruses
University of Kentucky UKnowledge Theses and Dissertations--Molecular and Cellular Biochemistry Molecular and Cellular Biochemistry 2021 ENTRY AND EARLY INFECTION OF NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES Jean Mawuena Branttie University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2021.248 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Branttie, Jean Mawuena, "ENTRY AND EARLY INFECTION OF NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES" (2021). Theses and Dissertations--Molecular and Cellular Biochemistry. 54. https://uknowledge.uky.edu/biochem_etds/54 This Doctoral Dissertation is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Molecular and Cellular Biochemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
PDF Download
fmicb-11-621179 December 26, 2020 Time: 15:34 # 1 ORIGINAL RESEARCH published: 08 January 2021 doi: 10.3389/fmicb.2020.621179 Next-Generation Sequencing Reveals a Novel Emaravirus in Diseased Maple Trees From a German Urban Forest Artemis Rumbou1*, Thierry Candresse2, Susanne von Bargen1 and Carmen Büttner1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany, 2 UMR 1332 Biologie du Fruit et Pathologie, INRAE, University of Bordeaux, UMR BFP, Villenave-d’Ornon, France While the focus of plant virology has been mainly on horticultural and field crops as well as fruit trees, little information is available on viruses that infect forest trees. Utilization of next-generation sequencing (NGS) methodologies has revealed a significant number of viruses in forest trees and urban parks. In the present study, the full-length genome of a novel Emaravirus has been identified and characterized from sycamore maple Edited by: (Acer pseudoplatanus) – a tree species of significant importance in urban and forest Ahmed Hadidi, areas – showing leaf mottle symptoms. RNA-Seq was performed on the Illumina Agricultural Research Service, HiSeq2500 system using RNA preparations from a symptomatic and a symptomless United States Department of Agriculture, United States maple tree. The sequence assembly and analysis revealed the presence of six genomic Reviewed by: RNA segments in the symptomatic sample (RNA1: 7,074 nt-long encoding the viral Beatriz Navarro, replicase; RNA2: 2,289 nt-long encoding the glycoprotein precursor; RNA3: 1,525 nt- Istituto per la Protezione Sostenibile delle Piante, Italy long encoding the nucleocapsid protein; RNA4: 1,533 nt-long encoding the putative Satyanarayana Tatineni, movement protein; RNA5: 1,825 nt-long encoding a hypothetical protein P5; RNA6: Agricultural Research Service, 1,179 nt-long encoding a hypothetical protein P6). -
Marine Oomycetes of the Genus Halophytophthora Harbor Viruses Related to Bunyaviruses
fmicb-11-01467 July 15, 2020 Time: 14:45 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01467 Marine Oomycetes of the Genus Halophytophthora Harbor Viruses Related to Bunyaviruses Leticia Botella1,2*, Josef Janoušek1, Cristiana Maia3, Marilia Horta Jung1, Milica Raco1 and Thomas Jung1 1 Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia, 2 Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Ceske Budejovice, Czechia, 3 Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal We investigated the incidence of RNA viruses in a collection of Halophytophthora spp. from estuarine ecosystems in southern Portugal. The first approach to detect the presence of viruses was based on the occurrence of dsRNA, typically considered as a viral molecule in plants and fungi. Two dsRNA-banding patterns (∼7 and 9 kb) were observed in seven of 73 Halophytophthora isolates tested (9.6%). Consequently, two dsRNA-hosting isolates were chosen to perform stranded RNA sequencing for de novo virus sequence assembly. A total of eight putative novel virus species with genomic Edited by: affinities to members of the order Bunyavirales were detected and their full-length RdRp Ioly Kotta-Loizou, gene characterized by RACE. Based on the direct partial amplification of their RdRp Imperial College London, United Kingdom gene by RT-PCR multiple viral infections occur in both isolates selected. Likewise, Reviewed by: the screening of those viruses in the whole collection of Halophytophthora isolates Robert Henry Arnold Coutts, showed that their occurrence is limited to one single Halophytophthora species. -
Blueberry Latent Virus: an Amalgam of the Partitiviridae and Totiviridae
Virus Research 155 (2011) 175–180 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Blueberry latent virus: An amalgam of the Partitiviridae and Totiviridae Robert R. Martin a,b,∗, Jing Zhou c,d, Ioannis E. Tzanetakis c,d,∗∗ a Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA b Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA c Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA d Molecular and Cellular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA article info abstract Article history: A new, symptomless virus was identified in blueberry. The dsRNA genome of the virus, provisionally Received 30 June 2010 named Blueberry latent virus (BBLV), codes for two putative proteins, one without any similarities to Received in revised form 20 August 2010 virus proteins and an RNA-dependent RNA polymerase. More than 35 isolates of the virus from different Accepted 21 September 2010 cultivars and geographic regions were partially or completely sequenced. BBLV, found in more than 50% Available online 1 October 2010 of the material tested, has high degree of homogeneity as isolates show more than 99% nucleotide identity between them. Phylogenetic analysis clearly shows a close relationship between BBLV and members of Keywords: the Partitiviridae, although its genome organization is related more closely to members of the Totiviridae. Partitiviridae Totiviridae Transmission studies from three separate crosses showed that the virus is transmitted very efficiently by Amalgamaviridae seed. These properties suggest that BBLV belongs to a new family of plant viruses with unique genome dsRNA organization for a plant virus but signature properties of cryptic viruses including symptomless infection Detection and very efficient vertical transmission. -
Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment
Article Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment Basavaprabhu L. Patil*, Meenakshi Dangwal and Ritesh Mishra ICAR‐National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi 110012, India; [email protected] (M.D.); [email protected] (R.M.) * Correspondence: [email protected]; [email protected] Academic Editor: K. Andrew White Received: 16 May 2017; Accepted: 6 July 2017; Published: 11 July 2017 Abstract: Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV‐1) and Pigeonpea sterility mosaic virus 2 (PPSMV‐2), with genomes consisting of five and six negative‐sense RNA segments, respectively. The recently published genome sequences of both PPSMV‐1 and PPSMV‐2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV‐1 and PPSMV‐2, collected from ten locations representing six states of India. Both PPSMV‐1 and PPSMV‐2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV‐1 and PPSMV‐2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV‐2, is also associated with isolates of PPSMV‐1. Multiplex reverse transcription PCR (RT‐PCR) analyses show that PPSMV‐1 and PPSMV‐2 frequently occur as mixed infections. -
A New Emaravirus Discovered in Pistacia from Turkey
Virus Research 263 (2019) 159–163 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Short communication A new emaravirus discovered in Pistacia from Turkey T ⁎ Nihal Buzkana, , Michela Chiumentib, Sébastien Massartc, Kamil Sarpkayad, Serpil Karadağd, Angelantonio Minafrab a Dep. of Plant Protection, Faculty of Agriculture, University of Sütçü Imam, Kahramanmaras 46060, Turkey b Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, Bari 70126, Italy c Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium d Pistachio Research Institute, University Blvd., 136/C 27060 Sahinbey, Gaziantep, Turkey ARTICLE INFO ABSTRACT Keywords: High throughput sequencing was performed on total pooled RNA from six Turkish trees of Pistacia showing Emaravirus different viral symptoms. The analysis produced some contigs showing similarity with RNAs of emaraviruses. High throughput sequencing Seven distinct negative–sense, single-stranded RNAs were identified as belonging to a new putative virus in- Pistachio fecting pistachio. The amino acid sequence identity compared to homologs in the genus Emaravirus ranged from 71% for the replicase gene on RNA1, to 36% for the putative RNA7 gene product. All the RNA molecules were verified in a pistachio plant by RT-PCR and conventional sequencing. Although the analysed plants showeda range of symptoms, it was not possible to univocally associate the virus with a peculiar one. The possible virus transmission by mite vector needs to be demonstrated by a survey, to observe spread and potential effect on yield in the growing areas of the crop. Pistachio (Pistacia spp.) is an important crop worldwide, with a ampelovirus A) and a pistachio variant of a viroid (Citrus bark cracking global production of more than 1 million tons (FAOstat, 2016). -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.