Kitahara Et at AVIROL.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Meta-Transcriptomic Detection of Diverse and Divergent RNA Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Meta-transcriptomic detection of diverse and divergent 2 RNA viruses in green and chlorarachniophyte algae 3 4 5 Justine Charon1, Vanessa Rossetto Marcelino1,2, Richard Wetherbee3, Heroen Verbruggen3, 6 Edward C. Holmes1* 7 8 9 1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 10 Environmental Sciences and School of Medical Sciences, The University of Sydney, 11 Sydney, Australia. 12 2Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical 13 Research, Westmead, NSW 2145, Australia. 14 3School of BioSciences, University of Melbourne, VIC 3010, Australia. 15 16 17 *Corresponding author: 18 Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 19 Environmental Sciences and School of Medical Sciences, 20 The University of Sydney, 21 Sydney, NSW 2006, Australia. 22 Tel: +61 2 9351 5591 23 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Multiple Viral Infections in Agaricus Bisporus
Supplementary Information: Title: Multiple viral infections in Agaricus bisporus - Characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing Authors: Gregory Deakina,b,c,1, Edward Dobbsa,1, Ian M Jonesb, Helen M Grogan c , and Kerry S Burtona, * 1 Supplementary Tables Table S1. ORFans sequenced from samples of A. bisporus, their RNA length and Open Reading Frame (ORF) lengths. Name Contig Length ORF Length ORFan 1 C34 5078 513, 681, 1944 ORFan 2 C17 2311 426 ORFan 3 C19 1959 315 ORFan 4 C28 1935 315, 360 ORFan 5 C27 1110 528 ORFan 6 C38 1089 267, 276 ORFan 7 C24 927 258, 276, 324 ORFan 8 C31 703 291 The Name column corresponds to the proposed name for the discovered ORFan. The Contig column corresponds to contiguous RNA sequences assembled from the Illumina reads for each ORFan. The length and ORF length columns are in RNA bases and correspond respectively to the total length of the ORFan and length of ORFs above 250 bases. 2 Table S2. GenBank accession numbers for the virus and ORFan RNA molecules Accession number Virus name KY357487 Agaricus bisporus Virus 2 AbV2 KY357488 Agaricus bisporus Virus 3 AbV3 KY357489 Agaricus bisporus Virus 6 RNA1 AbV6 RNA1 KY357490 Agaricus bisporus Virus 6 RNA2 AbV6 RNA2 KY357491 Agaricus bisporus Virus 7 AbV7 KY357492 Agaricus bisporus Virus 5 AbV5 KY357493 Agaricus bisporus Virus 8 AbV8 KY357494 Agaricus bisporus Virus 9 AbV9 KY357495 Agaricus bisporus Virus 10 AbV10 KY357496 Agaricus bisporus Virus 11 AbV11 KY357497 Agaricus bisporus Virus 12 AbV12 KY357498 Agaricus bisporus -
Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia Longipalpis Using Genomic and Virus–Host Interaction Signatures
viruses Article Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus–Host Interaction Signatures Paula Fonseca 1 , Flavia Ferreira 2, Felipe da Silva 3, Liliane Santana Oliveira 4,5 , João Trindade Marques 2,3,6 , Aristóteles Goes-Neto 1,3, Eric Aguiar 3,7,*,† and Arthur Gruber 4,5,8,*,† 1 Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (P.F.); [email protected] (A.G-N.) 2 Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (F.F.); [email protected] (J.T.M.) 3 Bioinformatics Postgraduate Program, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] 4 Bioinformatics Postgraduate Program, Universidade de São Paulo, São Paulo 05508-000, Brazil; [email protected] 5 Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil 6 CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084 Strasbourg, France 7 Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus 45652-900, Brazil 8 European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany * Correspondence: [email protected] (E.A.); [email protected] (A.G.) † Both corresponding authors contributed equally to this work. Citation: Fonseca, P.; Ferreira, F.; da Silva, F.; Oliveira, L.S.; Marques, J.T.; Goes-Neto, A.; Aguiar, E.; Gruber, Abstract: Hematophagous insects act as the major reservoirs of infectious agents due to their intimate A. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
(NLMV1), a Novel Mitovirus Associated with a Phytopathogenic Botryosphaeriaceae
Arch Virol DOI 10.1007/s00705-017-3338-9 ANNOTATED SEQUENCE RECORD Determination of the complete genomic sequence of Neofusicoccum luteum mitovirus 1 (NLMV1), a novel mitovirus associated with a phytopathogenic Botryosphaeriaceae 1 2 1 1 Armelle Marais • Aure´lia Nivault • Chantal Faure • Se´bastien Theil • 2 1 2 Gwenae¨lle Comont • Thierry Candresse • Marie-France Corio-Costet Received: 8 January 2017 / Accepted: 13 February 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Neofusicoccum luteum species belongs to the the Narnaviridae family. The neofusicoccum luteus mito- Botryosphaeriaceae family and is involved in grapevine virus 1 (NLMV1) RdRp contains the six conserved motifs wood decay diseases. The present study reports the dis- previously reported for mitoviral RdRps. Our findings covery and the molecular characterization of a novel represent the first evidence that a mycovirus can infect N. mitovirus infecting this fungus. Double-stranded RNAs luteum, an important pathogenic fungus of grapevine. were purified from cultivated N. luteum and analysed by next generation sequencing. Using contigs showing BlastX homology with the RNA-dependent RNA polymerase (RdRp) gene of various members of the family Nar- Introduction naviridae, a single contig of approximately 1.2 kb was constructed. The genomic sequence was completed and Since the first discovery of viruses in Agaricus bisporus phylogenetic analyses indicated that this virus represents a [1], mycoviruses have been described in all major taxa new member of the genus Mitovirus, for which the name of of fungi. Most of them have either double-stranded or ‘‘Neofusicoccum luteum mitovirus 1’’ is proposed. The single-stranded RNA genomes, and a few have a DNA genome is 2,389 nucleotides long and, based on the fungal genome [2]. -
Metatranscriptomic Reconstruction Reveals RNA Viruses with the Potential to Shape Carbon Cycling in Soil
Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil Evan P. Starra, Erin E. Nucciob, Jennifer Pett-Ridgeb, Jillian F. Banfieldc,d,e,f,g,1, and Mary K. Firestoned,e,1 aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720; bPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; eDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720; fChan Zuckerberg Biohub, San Francisco, CA 94158; and gInnovative Genomics Institute, Berkeley, CA 94720 Contributed by Mary K. Firestone, October 25, 2019 (sent for review May 16, 2019; reviewed by Steven W. Wilhelm and Kurt E. Williamson) Viruses impact nearly all organisms on Earth, with ripples of influ- trophic levels (18). This phenomenon, termed “the viral shunt” (18, ence in agriculture, health, and biogeochemical processes. However, 19), is thought to sustain up to 55% of heterotrophic bacterial very little is known about RNA viruses in an environmental context, production in marine systems (20). However, some organic parti- and even less is known about their diversity and ecology in soil, 1 of cles released through viral lysis aggregate and sink to the deep the most complex microbial systems. Here, we assembled 48 indi- ocean, where they are sequestered from the atmosphere (21). Most vidual metatranscriptomes from 4 habitats within a planted soil studies investigating viral impactsoncarboncyclinghavefocused sampled over a 22-d time series: Rhizosphere alone, detritosphere on DNA phages, while the extent and contribution of RNA viruses alone, rhizosphere with added root detritus, and unamended soil (4 on carbon cycling remains unclear in most ecosystems. -
Three Ourmia-Like Viruses and Their Associated Rnas in Pyricularia
Virology 534 (2019) 25–35 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Three ourmia-like viruses and their associated RNAs in Pyricularia oryzae T Shuhei Ohkitaa,1, Yui Leea,1, Quyet Nguyena, Kenichi Ikedaa, Nobuhiro Suzukib, ∗ Hitoshi Nakayashikia, a Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, 657-8501, Japan b Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan ARTICLE INFO ABSTRACT Keywords: Three ourmia-like viruses, designated Pyricularia oryzae ourmia-like virus (PoOLV) 1 to 3, were identified in a Ourmia-like virus wheat-infecting isolate of P. oryzae. The sizes of the full-length PoOLV1-3 genomes were determined to be 2,528, Subviral RNA 1,671, and 2,557 nt. Interestingly, we also found two abundant single-stranded RNAs sharing their 5’ terminal 25 Mycovirus and 255 nt with PoOLV1 RNA and PoOLV3 RNA, respectively. The PoOLV1- and PoOLV3-associated RNAs (ARNA1 and ARNA3) were 639 and 514 nt in length, and possessed one and two small ORFs, respectively. In the field isolates of P. oryzae, PoOLVs and ARNAs were detectable at varying levels, and the levels of PoOLV1 and ARNA1 as well as those of PoOLV3 and ARNA3, were tightly correlated. In addition, gene silencing of PoOLV1 and PoOLV3 resulted in a reduction of ARNA1 and ARNA3, respectively. There results indicated that replication of ARNA1 and ARNA3 was associated with PoOLV1 and PoOLV3, respectively. 1. Introduction (Solorzano et al., 2000). In contrast, members of Mitovirus, the other genus in Narnaviridae, are thought to replicate in mitochondria since Ourmiavirus is a genus of plant viruses infecting melon, cherry, and they often use mitochondrial genetic code (Hong et al., 1998; Polashock cassava (Lisa et al., 1988; Turina et al., 2017). -
Downloaded from Genbank
bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Characterisation of the faecal virome of captive and wild Tasmanian 2 devils using virus-like particles metagenomics and meta- 3 transcriptomics 4 5 6 Rowena Chong1, Mang Shi2,3,, Catherine E Grueber1,4, Edward C Holmes2,3,, Carolyn 7 Hogg1, Katherine Belov1 and Vanessa R Barrs2,5* 8 9 10 1School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. 11 2Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, 12 University of Sydney, NSW 2006, Australia. 13 3School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins 14 Centre, University of Sydney, NSW 2006, Australia. 15 4San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA. 16 5Sydney School of Veterinary Science, University of Sydney, NSW 2006, Australia. 17 18 *Correspondence: [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Background: The Tasmanian devil is an endangered carnivorous marsupial threatened by devil 22 facial tumour disease (DFTD). -
Discovery of New Mycoviral Genomes Within Publicly Available Fungal Transcriptomic Datasets
bioRxiv preprint doi: https://doi.org/10.1101/510404; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Discovery of new mycoviral genomes within publicly available fungal transcriptomic datasets 1 1 1,2 1 Kerrigan B. Gilbert , Emily E. Holcomb , Robyn L. Allscheid , James C. Carrington * 1 Donald Danforth Plant Science Center, Saint Louis, Missouri, USA 2 Current address: National Corn Growers Association, Chesterfield, Missouri, USA * Address correspondence to James C. Carrington E-mail: [email protected] Short title: Virus discovery from RNA-seq data bioRxiv preprint doi: https://doi.org/10.1101/510404; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina.