The Influence of Certain Growth Hormones on Plant Growth at Cold Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Certain Growth Hormones on Plant Growth at Cold Temperatures Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1977 The Influence of Certain Growth Hormones on Plant Growth at Cold Temperatures Michael D. Salvesen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Salvesen, Michael D., "The Influence of Certain Growth Hormones on Plant Growth at Cold Temperatures" (1977). All Graduate Theses and Dissertations. 3492. https://digitalcommons.usu.edu/etd/3492 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ii ACKNOWLEDGMENTS I would like to thank Dr. Frank B. Salisbury for his assistance and continued encouragement and patience while serving as my major professor and advisor during the course of this study. Also special thanks to Dr. Herman H. Wiebe, and Dr. Schuyler D. Seeley for counsel and service rendered me while serving on my advisory committee. For the financial support that made this study possible, I would like to thank the National Aeronautics and Space Administration. I am grateful for the assistance and encouragement of my father­ in-law, Dr. George E. Stoddard and my wife, Karalee . Michael D. Salvesen iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES . iv LIST OF FIGURES v ABSTRACT . vi INTRODUCTION 1 REVIEW OF LITERATURE 3 Geographic adaptation 3 Stage and rate of growth 4 Soil moisture 6 Light 7 Externally applied hormones 8 Cellular influences 10 Cold injury and desiccation 14 Plant growth under the snow 15 Dehardening 15 MATERIALS AND METHODS 16 Growth under the snow 16 RESULTS AND DISCUSSION 23 Conditions, at the snow tunnel 23 Plant growth . 25 Soluble protein content 29 SUMMARY 31 LITERATURE CITED 32 APPENDIX 37 VITA 40 iv LIST OF TABLES Table Page 1. Average shoot length in em 38 2. Fresh weight per shoot in mg 38 3. Mg of soluble protein per ml of solution per gram of fresh weight • 39 v LIST OF FIGURES Figure Page 1. Tunnel uncovered 17 2. Tunnel partially covered .. 17 3. Tunnel covered 18 4. Aspen grove in Steep Hollow 18 5. Tray in tunnel 19 6. Central g r aph of soluble protein in mg/ml 21 7. Snow depth in Steep Hollow. Variation with time 23 8. Temperature in tunnel . Variation with time 25 9. Shoot length. Variation in time 26 10. Fresh weight. Variation in time 28 11. Soluble protein. Variation in time 30 vi ABSTRACT The Influence of Certain Growth Hormones on Plant Growth at Cold Temperatures by Michael D. Salvesen, Master of Science Utah State University, 1977 Major Professor: Dr. Frank B. Salisbury Department: Plant Science Studies were conducted to determine the effect of externally applied growth hormones on winter rye (Secale cereale var. cougar). The rye was grown under the snow in a specially prepared tunnel on a mountain side near Logan, Utah. These plants showed a remarkable ability to grow at 0°C. Three growth hormones, kinetin, gibberellic acid (GA), and auxin (indole-3-acetic acid) were externally applied to rye seedlings growing in the tunnel. These seedlings were later weighed, measured and tested for soluble protein content. The three hormone treatments had no signficant effects on the fresh weights or shoot lengths of the rye. GA however, had a significant effect on the soluble protein content of the young shoots. Shoots treated with GA showed a marked decrease in soluble protein content. Kinetin and IAA had no significant effect on the soluble protein content of t he rye. (45 pages) INTRODUCTION Many environmental conditions influence the cold tolerance of plants . These influences are logically manifest through their effect on metabolic processes. Even though research studies attempt to isolate environmental fact ors t o determine their individual effects, in nature they interact in complex combinations of several factors. Thus, some interpretive judgements are essential in reviewing published reports. Natural adaptation to environmental conditions is evident in plants native to various climatic regions. The influences of micro­ climates as well as macro-climates are readily apparent as one observes plant distribution within and among climatic regions. Cultured plants or those planted in nonnatural environments are often more susceptible to adverse c limatic conditions than plants in their natural environments . Hence, an understanding of the mechanisms of adaptation may have substantial economic as well as scientific value. The mechanisms by which plants become cold hardy is not well known (Alden and Hermann, 1971) . In Lyons review (1973) it is suggested that all types of chilling injury can be the result of a change in membrane permeability, while other (Mazure, 1969), have suggested that injury involves a complex of several interacting events. The complex nature of the mechanisms probably accounts for the lack of more definitive information in published reports. 2 Hormone participation in plant responses have been cited in the following areas of plant development: The growth and development of stems, roots, and leaves, formation of adventitious buds and roots, tubers, flowers and in fruit development and maturation, senescence, dormancy of buds and seeds, germination of seeds, and other phenomena (Salisbury & Ross, 1969). A study as initiated to determine some of the influences of cold temperatures and of growth regulators on growth and chemical composition of winter rye (Secale cereale var. cougar) . 3 REVIEW OF LITERATURE The natural environment includes several parameters: temperature, precipitation, soil fertility, soil moisture, light, and co-habitating plants and animals. Man's influences become important environmental factors when he enters a region. Each factor imposes its influences in a variable manner, sometimes periodic and sometimes quite sporatic. Periodic influences may be diurnal, seasonal or yearly. All influences affect individual plants differently, depending on the combination of and sequence of their presence. Low temperatures, more than any other environmental factor, influences the physiological and biochemical processes that impart cold hardiness to plants. Most plants begin to develop resistance to cold as temperature is gradually lowered below l0°C, if other environmental factors are also favorable for the development of cold hardiness. Duration of exposure to low temperatures and intensity of cold weather required for development of cold hardiness depend on the potential cold resistance of the plant as well as the· plant's past and current environment (Tumanov, 1964, 1967). Research studies to identify the influences and their metabolic mechanisms have been varied but far too limited to identify more than a few of the associated factors. Geographic adaptation The ability of plants to survive sub-freezing temperatures is of interest in the study of distribution, succession, and migration of 4 plants, because climate is of paramount importance in controlling plant distribution. Seasonal sub-freezing temperatures as a single environmental factor, however, may not limit natural altitude and polar migration of plants in cold climates. Inadequate heat during the growing season appears more limiting to plant distribution (Daubenmire, 1959). Large seasonal oscillations of other environmental factors, low productivity, and the youth of the ecosystems in polar climates are more limiting in the adaptation of plants than sub­ freezing temperatures (Dunbar, 1968). Seasonal sub-freezing tempera­ tures, however, force many plants to develop greater tolerance to cold than the minimum temperature of their ecological range. Many plants have an inherent ability to develop high resistance to cold but lack correct biological timing in new climates (Weiser, 1968). Plants from warm climates introduced to a cold environmen t may be susceptible to cold injury because they fail to develop sufficient cold hardiness, do not harden rapidly enough for protection from early cold weather, deharden too rapidly (which makes them vulnerable to freezing temperatures in late winter), or because of a combination of these conditions. Hardening cucumber seeds with 12 hours of exposur e daily to 0- 2°C for 10 to 15 days before germination is reported to enhance the cold hardiness of the young seedlings, particularly these of southern varieties (Velik, 1963). Stage and rate of growth Kappen (1964) found that sporophytes of evergreen and deciduous fern species were most sensitive to cold injury in the spring and that 5 cold resistance did not set in until the fronds were full-grown. Frost resistance of Mediterranian species was equal to the frost resistance of Central European plants in April. Sakae (1962, 1966) reported that cold hardiness of growing twigs of woody -plants that are extremely sensitive to frost injury cannot be improved by chilling to O ~C. Frost resistance developed even without exposure to low temperatures after growth ceased, however. Maximum resistance to cold can be induced in red osier dogwood (Corus stolonifera Michx.) in seven weeks at any stage during its annual cycle of development except one or two months after growth resumes in the spring. Clauson (1964) examined about fifty species of hepatics and found that freezing to -l0°C for four days destroyed undeveloped cells in young shoots, but fully developed cells survived the
Recommended publications
  • Eastern Deciduous Forest
    Eastern Deciduous Forest Physical description Most of the terrain is rolling except for the Ozark Mountains, which can be steep. The average annual precipitation ranges from approximately 35 inches to 90 inches and is usually well-distributed throughout the year. Summers are hot; winters are cold. Dominant vegetation Deciduous trees dominate the landscape across the Eastern Deciduous Forest ecoregion where there is a lack of disturbance. Depending on location, trees such as oaks, hickories, maples, American beech, basswood, buckeye, yellow poplar, walnut, and birches are common in the overstory and can be indicators of a climax successional stage. Prevalent midstory trees include flowering dogwood, sassafras, sourwood, eastern redbud, hophornbeam, American hornbeam, and striped maple. Common shrubs include arrowwood, black huckleberry, blueberries, hawthorn, pawpaw, spicebush, viburnums, and witchhazel. A wide variety of forbs and ferns may be found in the understory. Common evergreen trees on many sites undergoing succession include eastern redcedar and shortleaf pine. Figure 2. Deciduous forest cover occurs over the Eastern Deciduous Forest ecoregion, except where areas have been cleared for agriculture and livestock. Changes in the composition, structure and function of the Eastern Deciduous Forest have already occurred during the past 100 years with the loss of American chestnut and the near total exclusion of fire. Prior to fire suppression, savannas and woodlands dominated by oak and shortleaf pine were prevalent over much of this ecoregion. Well-interspersed with forested areas in the Eastern Deciduous Forest ecoregion are agricultural fields, pastures and hayfields, and fields undergoing succession. Virtually all of these “old- fields” have been cropped in the past, and the vast majority has since been planted to nonnative grasses, especially tall fescue.
    [Show full text]
  • Fall Color Is a Byproduct of the Physiological Response of Temperate-Zone Plants to Shortening Days
    Printed in: Southwest Horticulture (2001) 18(6):6 The Colors of Fall Ursula Schuch, Plant Sciences Department, University of Arizona, Tucson Cool nights and warm, sunny days signal the onset of fall, and perfect weather for the development of brilliant crimson, gold, copper or yellow foliage. Fall color is a byproduct of the physiological response of temperate-zone plants to shortening days. Best fall colors are generally seen in deciduous, broadleaf woody plants that originate in USDA zones 3 to 9. In Arizona, fall color is scarce in the low desert, but is displayed more generously at higher elevations. Chlorophyll is responsible for the green color of leaves or stems and enables plants to produce sugars through the process of photosynthesis. In green leaves, chlorophyll is the dominant pigment. Visible light is absorbed by pigments, and leaves appear green because chlorophyll absorbs red and blue light while transmitting and reflecting green light. Carotenoids are accessory pigments in the photosynthesis process with colors in shades of yellow to orange; however, they are much less abundant than chlorophyll. Starting in spring, when plant growth begins for temperate-zone plants, and throughout summer, chlorophyll is continuously produced in the growing leaves to enable maximum food production. This is the time of greatest stem elongation, new leaf production, and growth in girth. As summer transitions into fall, plants respond to shorter days with reduced stem elongation, initiation of leaf abscission, reduced chlorophyll production, and increased production of other pigments. This marks the onset of dormancy and the beginning of frost hardiness. The splendor of fall color begins when chlorophyll production declines in the leaves and when the less abundant carotenoids unveil yellow to orange hues, or anthocyanins flaunt colors of red and purple.
    [Show full text]
  • Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
    © 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions.
    [Show full text]
  • Temperate Deciduous Forest
    Temperate Deciduous Forest Found in Europe, the eastern part of the U.S.A., and China Temperate Deciduous Forest • Found below 50ºN latitude • 75 to 150 cm precipitation yearly Temperate Deciduous Forest • Wide range of temperatures with 4 seasons • Below freezing in winter to 30ºC in summer Temperate Deciduous Forest • Soil is rich in nutrients from layers of decomposing leaves Temperate Deciduous Forest • Layers of vegetation – Canopy – Understory – Forest floor Layers of Vegetation Canopy- tree tops that shade the ground below Understory- shrub layer Forest floor- dark and moist layer of dead leaves, twigs, and seeds Layers of Vegetation Canopy Layers of Vegetation Understory Layers of Vegetation Forest floor Life in the Temperate Deciduous Forest The mild climate and rich soil of the temperate deciduous forest supports a wide variety of plant and animal life. Plants of the Temperate Deciduous Forest Plant life is abundant. Examples: •Oak trees •Shrubs •Hickory trees •Wildflowers •Maple trees •Ferns Plants of the Temperate Deciduous Forest •Oak tree Plants of the Temperate Deciduous Forest •Hickory tree Plants of the Temperate Deciduous Forest •Maple tree Plants of the Temperate Deciduous Forest •Shrubs (Azalea) Plants of the Temperate Deciduous Forest •Shrubs (Holly) Plants of the Temperate Deciduous Forest •Wildflowers Plants of the Temperate Deciduous Forest •Wildflowers Plants of the Temperate Deciduous Forest •Ferns Plants of the Temperate Deciduous Forest ADAPTATIONS • Wildflowers grow on forest floor early in the spring before trees leaf-out and shade the forest floor • Many trees are deciduous (they drop/shed their leaves in the autumn, and grow new ones in spring). • Most deciduous trees have thin, broad, light-weight leaves that can capture a lot of sunlight to make a lot of food for the tree in warm weather.
    [Show full text]
  • Signs of Spring Fact Sheet 1. Deciduous Trees Lose Their Leaves In
    Signs of Spring Fact Sheet 1. Deciduous trees lose their leaves in the winter. Coniferous trees are also called evergreens because they keep their “leaves”, or needles, throughout the year. 2. In early spring, deciduous trees will start to grow buds at the end of their branches. These buds are baby leaves getting ready to emerge. During April and May, you will notice your deciduous trees exploding with leaves. These leaves help the tree take in sunlight and produce food for itself through photosynthesis. With coniferous trees, you will see different kinds of buds. Since the needles stay throughout the year, conifers use early spring to start developing their cones. These cones are actually how these trees reproduce and create more trees. 3. Acorns, samaras, and pinecones are all seeds from local trees. Acorns come from oak trees, samaras come from maple trees, and pinecones come from pine trees. Different trees have different ways of distributing seeds. Acorns fall close to the parent tree, but they often grow elsewhere because squirrels move them. When preparing for winter, squirrels will bury acorns all over and sometimes forget about them – resulting in new oak trees. Samaras have a different approach. They are designed to fly in the wind. The wind will carry those seeds farther away from the parent tree to prevent competition. With pinecones, the seeds are hidden within the cone to protect them from predators while they mature. Once the conditions are right, the cones will open and release the seeds where they will be carried by the wind. 4.
    [Show full text]
  • Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 P.M
    Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 p.m. Wed: 1:30-3:00 p.m. GENERAL INFORMATION Biology 345-01 (02): (Field Botany) is a course in plant taxonomy, plant geography, and plant ecology. Students will learn the principles of plant classification and, through first hand experience, the techniques of plant identification, collection, and preservation. Students also will be introduced to the fields of plant geography and plant ecology. Particular attention will be given to the taxonomy, geography, and ecology of plants growing in the North Central United States. Weekly field trips to nearby habitats will enable students to become familiar with many local species. This is a course for anyone who enjoys plants and wants to learn to identify them and learn more about them, as well as for students with a scientific interest in plant taxonomy and ecology. Note: this syllabus and other course materials can also be found on Moodle. READINGS: Readings from Barbour and Billings (2000), North American Terrestrial Vegetation, Cambridge U Press (in Bio Student Lounge); Judd et al. (2008), Plant Systematics: A Phylogenetic Approach, Sinauer Associates (in Bio Student Lounge); & readings to be assigned. LECTURES: MWF 10:50 - 11:50 a.m. in OR284. Please come to class on time!!!! LABORATORY/FIELD TRIPS/DISCUSSIONS: Thurs: 8:00 - 11:10 a.m. During September, and October we will usually take field trips during the weekly laboratory time. These will be local botanizing trips and will provide students with the opportunity to develop and practice their identification skills in the field.
    [Show full text]
  • Propagating Deciduous and Evergreen Shrubs, Trees and Vines
    PROPAGATING DECIDUOUS AND EVERGREEN SHRUBS, TREES, AND VINES WITH STEM CUTTINGS PNW0152 F. E. LARSEN, Professor of Horticulture, and W. E. GUSE, Teaching Assistant in Horticulture A Pacific Northwest Cooperative Extension Publication - Washington - Oregon - Idaho Deciduous plants lose their leaves each fall and are without leaves during the winter. Evergreen plants normally do not lose all their leaves at once and retain individual leaves for several years. Both types of plants have woody stems and are represented by many common shrubs and trees. Cuttings are detached vegetative plant parts that will develop into complete new plants by reproducing their missing parts. Cuttings might be made from stems, roots, or leaves, depending on the best method for each plant. Many deciduous plants, such as forsythia, honeysuckle, grape, currant, willow, and poplar, can be propagated from stem cuttings. Many evergreens, both broad- and narrow-leaved, also can be propagated this way. Narrow-leaved (called needles ) evergreens, such as low-growing juniper, arborvitae, and false cypress, root readily from cuttings. Broad- leaved evergreens—as camellia euonymus, and cherry laurel—are easily propagated in this way. This publication discusses propagating these types of plants from stem cuttings. Types of Cuttings Make cuttings of deciduous plants from stem sections or tips one year old or less. Choose stem tips to propagate evergreens. The basal part of a cutting is sometimes older wood. Tip cuttings probably are the most common type for use with deciduous plants during the growing season; they generally do not give the best results at any other part of the year. The tip section of a shoot is more subject to winter cold damage, may have flower buds rather than shoot buds, and may not have the proper internal nutritional and hormonal balance for good rooting during the dormant season.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • Daffodil Growing Guidelines for Your Unique
    Daffodil Growing Guidelines General Guidelines for Growing Daffodils Daffodils are some of the easiest plants to grow. Some daffodils will grow in most parts of the United States, but not all daffodils will grow everywhere. Jonquil hybrids and tazettas do better in the South, as do the little bulbocodium hybrids, while the poeticus hybrids are usually happier where it’s a little colder. For starters, buy your bulbs from a trusted source. A good bulb has a flower in it when it is sold for autumn planting. Bargain bulbs from other than reputable dealers are not bargains. Never buy or plant a soft daffodil bulb, because a soft bulb usually means basal rot or other disease. Daffodils will grow in light shade, but do better in full sun. Deep shade keeps them from blooming after the first year or two. They will grow well in most soils, but need plenty of moisture from the time they are planted until they finish growing in the late spring. A good soaking once a week is not too much. However, the soil must drain well. During the soil preparation, a complete fertilizer, low in nitrogen, (3 -6-6 or 5-10-10) should be worked in (about 1/4 cup per square foot). Be sure the fertilizer does not come in direct contact with the bulbs. Never use fresh manure. Forget the bonemeal; it takes too long to breakdown to ever be beneficial. Daffodils should be planted in September, or when the soil has cooled, or any time until the ground freezes. Most root growth is done in the fall and early winter.
    [Show full text]
  • Large Deciduous Trees Fact Sheet No
    Large Deciduous Trees Fact Sheet No. 7.419 Gardening Series|Trees and Shrubs by J.E. Klett and E. Hammond* Everyone enjoys the beauty a shade tree Growth rates vs. brittleness. As a general Quick Facts pro vides. Trees also reduce harsh winds, rule, fast-growing trees tend to be brittle moderate temperature extremes, and offset and can be damaged by limb breakage in • Trees provide shade, beauty poor air quality. storms. Plant these trees away from buildings, and protection from harsh sidewalks, driveways and utility lines. winter winds. Water requirements. Trees vary in water How to Select a Tree re quirements. Do not plant trees that have • Trees help moderate To select a tree, consider the following low water needs in heavily irrigated lawn temperature extremes and factors. areas or at the bottom of slopes. Plant trees offset poor air quality. Available space. The location you choose with high water requirements in locations • Plant trees on the basis for each tree should have enough space to where supplemental watering is pos sible and of space available, soil allow for growth without severe pruning. desired. In dry years, fall and winter watering conditions, proximity to Check for obstruc tions of buildings, overhead is critical to the health of trees. Trees under utility lines and tall fences. If lateral space drought stress are more susceptible to insect irrigation lines and water is limited, select a tree that has a narrow, and diseases. For details see 7.211, Fall and requirements. upright growth habit. Refer to height, branch Winter Watering. • Plant trees prone to storm spread and shape in the tree list shown in breakage away from Table 1.
    [Show full text]
  • Descriptive Field Investigation Fall Color Change
    Descriptive Field Investigation Fall Color Change Third Grade Descriptive Field Investigation Fall Color Change Overview Phenomenon –Leaves Changing Color in the Fall These lessons are specific to the fall season. Students are introduced to the phenomenon of leaves changing color in the fall. In these three lessons students, 1) observe leaves and sort them by their characteristic to explore the concept that trees’ leaves have unique characteristics that help identify the tree and are inherited from their parent tree(s); 2) identify deciduous and evergreen trees, 3) conduct an investigation to observe the hidden pigments in leaves. Students read and/or listen to videos to obtain information about how leaves change color. There are several optional investigations including submitting leaf color and leaf drop data to www.budburst.org. Project Learning Tee Lessons These lessons are adaptations of Project Learning Tree activities: Looking at Leaves #64, Name that Tree #68, Signs of Fall #78. 2 3/24/2020 Developed by Pacific Education Institute Descriptive Field Investigation - fall color change in leaves Next Generation Science Standards-3-Dimensions Dimensions from the Framework What Students are Doing Science and Engineering Practices Students ask questions when observing trees and leaves for fall color. They carry out investigations categorizing leaves • Asking questions by characteristics, observing trees for fall color, and • Planning and carrying out investigations exploring hidden colors in green leaves. Students construct • Constructing explanations explanations when they describe that different leaves/trees • Obtaining, evaluating, and have different characteristics and why leaves change color. communicating information Students obtain and communicate information when they read books and watch videos about why leaves change color and then explain in their own words.
    [Show full text]
  • A Glossary for Avian Conservation Biology
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Wilson Bull., 106(1), 1994, pp. 121-137 A GLOSSARY FOR AVIAN CONSERVATION BIOLOGY ROLF R. KOFORD,' JOHN B. DUNNING, JR.,2 CHRISTINE A. RIBIC,3 AND DEBORAH M. FINCH4 ABSTRACT.-This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary. The cited sources were not necessarily the first ones to use the terms. Many definitions were taken verbatim from the cited source material. Others were modified slightly to clarify the meaning. Definitions that were modified to a greater extent are indicated as being adapted from the originals. Terms that have been used in more than one way by different authors are listed with numbered alternative definitions if the definitions differ substantially. Received 30 March 1993, accepted 23 July 1993. GLOSSARY Accuracy: the closeness of computations or estimates to the exact or true value (Marriott 1990:2). After-hatching-year (AHY) bird: a bird in at least its second calendar year of life (Pyle et al. 1987:27; Canadian Wildlife Service and U.S. Fish and Wildlife Service 1991:5-47). After-second-year (ASY) bird: a bird in at least its third calendar year of life (Pyle et al. 1987:27; Canadian Wildlife Service and U.S.
    [Show full text]