Cultivated Plant Taxonomy News 5

Total Page:16

File Type:pdf, Size:1020Kb

Cultivated Plant Taxonomy News 5 cultivated plant taxonomynews Issue 5 ■ August 2017 The new ICNCP Developments in Neosinocalamus 30 YEARS OF PLANT FINDER HORTAX CULTIVATED PLANT TAXONOMY GROUP CPT News ■ Why cultivated plant taxonomy matters James Armitage regulated, a process impossible without first EDITOR distinguishing and enumerating them. Recently I was fortunate enough to be invited to Culture. Cultivated plants are anchored to people, give a talk on behalf of Hortax at a symposium in places and events and, as with other artefacts of Berlin organised by cultivated plant conservation human history, worthy of study and explanation. charity Netzwerk Pflanzensammlungen. It is gratifying that I have the opportunity here to There is every reason to believe that this message thank my hosts for an enjoyable and illuminating is already gaining understanding and acceptance few days. and this issue of CPT News reports on some great progress for Hortax and the wider community of As is so often the case when I meet people cultivated plant taxonomy. Projects in the pipeline interested in cultivated plants, I was much include the relaunch of the Hortax website, the impressed by the unshakeable certainty in the importance of their work shown by my fellow delegates. How, I asked myself, might this individual conviction be translated into a collective message that could advance the Cultivated plants study and understanding of cultivated plants are anchored to in all aspects of their diversity. The answer, of course, is simple: clear and consistent people, places communication. and events. The study of cultivated plants takes many forms. Some people are interested in their appearance of a first volume of the Journal of classification, others in their cataloguing, Cultivated Plant Diversity and the hosting of a characterisation or conservation. Diverse as these‘ second European Cultivated Plant Taxonomists' disciplines are, the reasons why they are practised Forum, all major achievements for Hortax. and valued can be explained to the world in the same terms. Also in this edition, Dr John David gives an update on changes to the International Code of Biology. Plants in cultivation include unique Nomenclature for Cultivated Plants and Marco biodiversity and genetic combinations unknown Hoffman provides details of the publication of in nature, without consideration of which any two works helping to standardise plant names in biological system is incomplete. horticulture, while Junyi Shi, Yuxiao Zhang, Dequn Zhou and Jun Yao discuss five new cultivars of Ecology. Globally, the majority of people now live Neosinocalamus, as part of their exemplary work in urban zones where cultivated plants are the with the registration of bamboos. Please help dominant vegetation, forming ecosystems which circulate this newsletter by sharing it with your are unquantified and providing ecosystem services friends. ■ that are unqualified. Membership is entirely without charge. If you Law and logistics. Like other man-made would like to become a member of Hortax please commodities, cultivated plants are retailed and contact [email protected] 2 News Spectacular setting for VII International Symposium on the taxonomy of cultivated plants Singapore Botanic Gardens is to provide the beautiful backdrop to the next International Symposium on the Taxonomy of Cultivated Plants in 2019. Details are yet to be announced but a more fitting venue to discuss the importance of cultivated species of ivy are each described, the world is fed, they comprise plants than the renowned city with photographs of their native the major habitat-type in the within a garden could hardly be habitats, and a key to their environments where most imagined. The VI Symposium identification is provided. As well people now live, they are a was held in Beijing in July 2013. as the checklist, the monograph source of energy, essential includes accounts of nearly 200 in construction, landscape of the best cultivars, along with management, leisure and New monograph their versatile garden uses, each amenity. However, the illustrated with photographs. taxonomic work which allows on ivies us to understand this resource is The second in a new series Next in the pipeline is a without well-established outlets of monographs was recently comprehensive guide to into the academic literature. published by the RHS. A Wisteria, to be published in rhapsody on ivies, Hedera: 2018. This monograph will The requirement for a journal the Complete Guide explores explore the species, their cultural to meet this need has been the ecology, wildlife and significance, their often tortuous recognised previously and environmental value, and introduction to cultivation and in 2006 the first volume of innovative garden uses of the stunning range of cultivars Hanburyana was produced from this undervalued genus. Like available. It will also include the within the Botany Department Kniphofia, published in 2016, a most recent developments in of the Royal Horticultural Society complete checklist of cultivars molecular research on this genus. (RHS). A further six volumes of is included. In total, over 2,000 this journal were produced. cultivars, scientific names and synonyms are catalogued. The 12 Launch of new Four years after the last edition of Hanburyana, the journal taxonomic journal is being relaunched as a joint Cultivated plants are essential venture between Hortax and the Above. Gardens by the Bay, Singapore. to human health and wellbeing. RHS as the Journal of Cultivated Photo. RHS / Stephen Bennett. They are the means by which Plant Diversity. HORTAX 3 CULTIVATED PLANT TAXONOMY GROUP CPT News ■ Visit the new Hortax website A new version of the Hortax website is available now. More easily navigable and with a greater focus on news and events, it is the place to go for anyone with an interest in the classification of cultivated plants. The site structure has been simplified but retains all the information, advisory material and links to external resources as previously. Please visit www.hortax.org.uk and link from your own website. If you have any comments or queries please send them to [email protected] ■ Though there will only be a ♦ proposals to amend the small print run of each volume, International Code of Recent Publications the journal will be freely Nomenclature for Cultivated available to view online. Subject Plants Chase, M., Christenhusz, M., matter covered by the journal ♦ proposals to conserve names Mirenda, T. (2017). The Book will include: ♦ special edition conference of Orchids. London: Quarto. proceedings ♦ alien plants of horticultural ♦ studies on relationship and Leslie, A.C. (2016). The origin attribution International Dianthus ♦ checklists Register and Checklist. ♦ concepts and theories No fee will be charged to authors London: Royal Horticultural ♦ crop plants including land for publication. Society. races and crop’s wild relatives ♦ cultivated plant floristics If you do not receive copies of Matthews, L.J. (2016). Protea: ♦ garden inventories CPT News by email but would A Guide to Cultivated Species ♦ lists of registrations like to receive notification and Varieties. Honolulu: ♦ lists of standard specimens of issues of the Journal of University of Hawaii Press. ♦ monographic treatments of Cultivated Plant Diversity, please appropriate size write to hortaxgroup@gmail. McAllister, H., Marshall, R. ♦ new taxa com. If you would like further (2017). Hedera: The Complete ♦ nomenclatural housekeeping information about the Journal Guide. London: Royal ♦ opinion pieces of Cultivated Plant Diversity Horticultural Society. or to submit a paper please Above. Kniphofia rooperi. The contact the Editor in Chief Rukšāns, J. (2017). The World first ever checklist of Kniphofia ([email protected]). of Crocuses. Riga: Latvian was published in Hanburyana. Academy of Sciences. Photo. RHS / Katy Prentice. 4 ■ August 2017 Allen, should be changed to ■ European Kalmia Society [email protected] The link to their registration Changes for queries, while for sending page should be listed as www. registration material please use kalmia-society.org/registrar. [email protected] php?&lang=gb to ICRAs ■ American Peony Society ■ Gesneriad Society, Inc. The email for the registrar, Reiner The email for the Registrar, Jakubowski, is now registrar@ Irina Nicholson, is now ALAN LESLIE americanpeonysociety.org [email protected] ■ Arboretum Kalmthout ■ Heather Society A number of changes to ICRAs Foundation (Hamamelis) Registration contact details are have already accrued since the The contact details for the now The Honorary Secretary, publication of the 9th edition of Registrar, Abraham Rammeloo, The Heather Society, 84 Kinross the Cultivated Plant Code (2016). should be changed to Road, Rushington, Totton, Arboretum Kalmthout, Heuvel Southampton SO40 9BN, UK ■ African Violet Society of 8, B-2920 Kalmthout, Belgium. with an email of secretary@ America, Inc. Email: abraham.rammeloo@ heathersociety.org The fax number relating to arboretumkalmthout.be Saintpaulia registrations is now ■ Heliconia Society (+1) 409 839 4329 ■ Beijing Botanic Garden has a International (Costaceae) new link to its registration page: The contact details for the ■ American Hemerocallis (www.malusregister.org/Web). Registrar, David Skinner, should Society be changed to 1411 Lucy Street, The registration page link should ■ Blahnik, Ing. Zdeněk Tallahassee, Florida 32308, USA. be revised to www.daylilies.org/ (Lonicera) Email: [email protected] DaylilyDB/regform.php
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Eastern Deciduous Forest
    Eastern Deciduous Forest Physical description Most of the terrain is rolling except for the Ozark Mountains, which can be steep. The average annual precipitation ranges from approximately 35 inches to 90 inches and is usually well-distributed throughout the year. Summers are hot; winters are cold. Dominant vegetation Deciduous trees dominate the landscape across the Eastern Deciduous Forest ecoregion where there is a lack of disturbance. Depending on location, trees such as oaks, hickories, maples, American beech, basswood, buckeye, yellow poplar, walnut, and birches are common in the overstory and can be indicators of a climax successional stage. Prevalent midstory trees include flowering dogwood, sassafras, sourwood, eastern redbud, hophornbeam, American hornbeam, and striped maple. Common shrubs include arrowwood, black huckleberry, blueberries, hawthorn, pawpaw, spicebush, viburnums, and witchhazel. A wide variety of forbs and ferns may be found in the understory. Common evergreen trees on many sites undergoing succession include eastern redcedar and shortleaf pine. Figure 2. Deciduous forest cover occurs over the Eastern Deciduous Forest ecoregion, except where areas have been cleared for agriculture and livestock. Changes in the composition, structure and function of the Eastern Deciduous Forest have already occurred during the past 100 years with the loss of American chestnut and the near total exclusion of fire. Prior to fire suppression, savannas and woodlands dominated by oak and shortleaf pine were prevalent over much of this ecoregion. Well-interspersed with forested areas in the Eastern Deciduous Forest ecoregion are agricultural fields, pastures and hayfields, and fields undergoing succession. Virtually all of these “old- fields” have been cropped in the past, and the vast majority has since been planted to nonnative grasses, especially tall fescue.
    [Show full text]
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • BIOL/APBI 324 – Introduction to Seed Plant Taxonomy
    This syllabus is a general representation of the course as previously offered and is subject to change. BIOL/APBI 324 – Introduction to Seed Plant Taxonomy General Course Syllabus (as of September 2019) About the Course: Course Description: An introduction to seed plant taxonomy emphasizing descriptive morphology and identification. Each student will be required to submit a plant collection. Correct understanding of the actual relationships between plants, rather than superficial resemblance, is the basis of comparative biology required to analyze the diversity of plant forms. The species diversity of plants is considerable, and this course will pay particular attention to very diverse and important groups such as the grasses and the orchids, focusing on reasons for their evolutionary success. Identification skills will be inculcated by the lectures working in tandem with the laboratory sessions. This course aims to give students a good working knowledge of plant taxonomy as a preparation for work in any biological discipline. Course Format: Lecture and Laboratory Credits: 3 Pre-requisites: BIOL 121 Course Learning Objectives: By the end of this course, students will be able to: • Achieve a good working knowledge of concepts, principles, and recent discoveries in plant taxonomy. • Gain an overview of seed plant diversity, including the most species-rich plant families and so be able to place any botanical information in the overall context of plant diversity. • Learn ways in which their knowledge can be applied to ecology and evolutionary biology. • Gain an appreciation of how current research in the field is being done by reading recent research papers. Textbooks and Additional Resources: Laboratory fee: $25; please bring to first lab.
    [Show full text]
  • Ethylene in Floriculture
    technically speaking BY ERIK RUNKLE Ethylene in Floriculture Ethylene is a hormone that influences growth and development of plants throughout their life cycle. It is a colorless gas that is active at very low concentrations, even at parts per billion (which is 0.001 part per million). For most crops, ethylene inhibits extension growth, promotes branching, stimulates leaf senescence, and aborts flowers and flower buds. Ethylene can be a harmful contaminant in greenhouses, as well as during shipping of young plants to greenhouses and finished (flowering) plants to the retail market. However, there are situations when ethylene can elicit desirable responses in greenhouse crop production. This article summarizes inadvertent and intentional ethylene exposure to floriculture crops. Unwanted ethylene in greenhouses. Plants naturally produce ethylene, but this alone is not a concern Figure 1. If growth of plants is stunted, flowering is delayed, in greenhouses because concentrations are so low. or leaves start to twist or curl, ethylene contamination may be Ethylene contamination usually occurs when there is the problem. Check unit heaters to ensure adequate oxygen is insufficient oxygen provided to unit heaters (resulting in provided for complete combustion of fuels, and that the exhaust is incomplete combustion of fuels), or when the exhaust is sufficiently ventilated. inadequately vented. The effects of ethylene depend on the concentration, duration of exposure, temperature, State) as well as by private consultants has shown that Collate is and species. At a relatively high concentration, such as effective at lower drench rates, such as 20 to 40 ppm on bedding 1 or 2 ppm, symptoms of ethylene exposure are quite plants and 200 to 250 ppm on potted daffodils.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Floral Notes Newsletter
    A Publication of the UMass Extension Greenhouse Crops & Floriculture Program Floral Notes Newsletter Volume 28, No. 6 http://extension.umass.edu/floriculture May-June 2016 In This Issue New Fungicide Products for Greenhouse Ornamental Production ..................................................... 2 Take Steps to Prevent and Control Botrytis in Greenhouse Crops ....................................................... 3 Retail Care: Watering, Cleaning, Fertilizing ...................................................................................... 5 Garden Mums - Early Season ........................................................................................................... 6 Silicon for Greenhouse Floriculture Crops? ...................................................................................... 6 New Advances for Biological Controls for Indoor and Outdoor Production of Ornamentals Co‐sponsored by UConn Extension and UMass Extension Floriculture Program Tuesday, June 21, 2016 Room 331, Student Union, University of Connecticut, Storrs, CT New Developments You Can Use from Bio‐control Research John Sanderson, Cornell University, Ithaca, NY Bio‐control Developments on a Global Level Ron Valentin, Bioline Agrosciences, Oxnard, CA Biological Control Agents (BCA) Use in Perennial Growing, Roger McGaughey, Pioneer Gardens, Deerfield, MA Good Garden Bugs: Identifying Native Predators and Parasitoids, Common in Outdoor Ornamental Production Mary Gardiner, Ohio State University, Wooster, OH Encouraging Beneficials to Enhance Biological
    [Show full text]
  • Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
    TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Genomic Analysis of the Tribe Emesidini (Lepidoptera: Riodinidae)
    Zootaxa 4668 (4): 475–488 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4668.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:211AFB6A-8C0A-4AB2-8CF6-981E12C24934 Genomic analysis of the tribe Emesidini (Lepidoptera: Riodinidae) JING ZHANG1, JINHUI SHEN1, QIAN CONG1,2 & NICK V. GRISHIN1,3 1Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, and 3Howard Hughes Medical Insti- tute, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050; [email protected] 2present address: Institute for Protein Design and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, HSB J-405, Seattle, WA, USA 98195; [email protected] Abstract We obtained and phylogenetically analyzed whole genome shotgun sequences of nearly all species from the tribe Emesidini Seraphim, Freitas & Kaminski, 2018 (Riodinidae) and representatives from other Riodinidae tribes. We see that the recently proposed genera Neoapodemia Trujano, 2018 and Plesioarida Trujano & García, 2018 are closely allied with Apodemia C. & R. Felder, [1865] and are better viewed as its subgenera, new status. Overall, Emesis Fabricius, 1807 and Apodemia (even after inclusion of the two subgenera) are so phylogenetically close that several species have been previously swapped between these two genera. New combinations are: Apodemia (Neoapodemia) zela (Butler, 1870), Apodemia (Neoapodemia) ares (Edwards, 1882), and Apodemia (Neoapodemia) arnacis (Stichel, 1928) (not Emesis); and Emesis phyciodoides (Barnes & Benjamin, 1924) (not Apodemia), assigned to each genus by their monophyly in genomic trees with the type species (TS) of the genus.
    [Show full text]
  • Fall Color Is a Byproduct of the Physiological Response of Temperate-Zone Plants to Shortening Days
    Printed in: Southwest Horticulture (2001) 18(6):6 The Colors of Fall Ursula Schuch, Plant Sciences Department, University of Arizona, Tucson Cool nights and warm, sunny days signal the onset of fall, and perfect weather for the development of brilliant crimson, gold, copper or yellow foliage. Fall color is a byproduct of the physiological response of temperate-zone plants to shortening days. Best fall colors are generally seen in deciduous, broadleaf woody plants that originate in USDA zones 3 to 9. In Arizona, fall color is scarce in the low desert, but is displayed more generously at higher elevations. Chlorophyll is responsible for the green color of leaves or stems and enables plants to produce sugars through the process of photosynthesis. In green leaves, chlorophyll is the dominant pigment. Visible light is absorbed by pigments, and leaves appear green because chlorophyll absorbs red and blue light while transmitting and reflecting green light. Carotenoids are accessory pigments in the photosynthesis process with colors in shades of yellow to orange; however, they are much less abundant than chlorophyll. Starting in spring, when plant growth begins for temperate-zone plants, and throughout summer, chlorophyll is continuously produced in the growing leaves to enable maximum food production. This is the time of greatest stem elongation, new leaf production, and growth in girth. As summer transitions into fall, plants respond to shorter days with reduced stem elongation, initiation of leaf abscission, reduced chlorophyll production, and increased production of other pigments. This marks the onset of dormancy and the beginning of frost hardiness. The splendor of fall color begins when chlorophyll production declines in the leaves and when the less abundant carotenoids unveil yellow to orange hues, or anthocyanins flaunt colors of red and purple.
    [Show full text]
  • Principles of Plant Taxonomy, V.*
    THE OHIO JOURNAL OF SCIENCE VOL. XXVIII MARCH, 1928 No. 2 PRINCIPLES OF PLANT TAXONOMY, V.* JOHN H. SCHAFFNER, Ohio State University. After studying the taxonomy of plants for twenty-five years the very remarkable fact became evident that there is no general correspondence of the taxonomic system with the environment, but as the great paleontologist, Williams, said in 1895: "environmental conditions are but the medium through which organic evolution has been determinately ploughing its way." Of course, the very fact that there is a system of phylogenetic relationships of classes, orders, families, and genera and that these commonly have no general correspondence to environment shows that, in classifying the plant material, we must discard all notions of teleological, utilitarian, and selective factors as causative agents of evolution. The general progressive movement has been carried on along quite definite lines. The broader and more fundamental changes appeared first and are practically constant, and on top of these, .potentialities or properties of smaller and smaller value have been introduced, until at the end new factors of little general importance alone are evolved. These small potentialities are commonly much less stable than the more fundamental ones and thus great variability in subordinate characters is often present in the highest groups. We must then think of the highest groups as being full of hereditary potentialities while the lower groups have comparatively few. As stated above, there is a profound non-correspondence of the .taxonomic system and the various orthogenetic series with the environment. The system of plants, from the taxonomic point of view, is non-utilitarian.
    [Show full text]