Surveys of the Offshore Fisheries Resources of Pakistan – 2010

Total Page:16

File Type:pdf, Size:1020Kb

Surveys of the Offshore Fisheries Resources of Pakistan – 2010 FAO Fisheries and Aquaculture Circular No. 1065 RAP/C1065 (En) ISSN 2070-6065 SURVEYS OF THE OFFSHORE FISHERIES RESOURCES OF PAKISTAN – 2010 Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Circular No. 1065 RAP/C1065 (En) SURVEYS OF THE OFFSHORE FISHERIES RESOURCES OF PAKISTAN – 2010 by L. Paul Fanning FAO Fishery Resources Appraisal in Pakistan project Karachi, Pakistan M. Wasim Khan FAO Fishery Resources Appraisal in Pakistan project Karachi, Pakistan Samina Kidwai National Institute of Oceanography Karachi, Pakistan and Gavin J. Macauley Institute of Marine Research Bergen, Norway FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Karachi, 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-106904-2 All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to: [email protected] or to the Chief, Publishing Policy and Support Branch Office of Knowledge Exchange, Research and Extension FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy © FAO 2011 iii PREPARATION OF THIS DOCUMENT This report was prepared during and immediately after the subject surveys were conducted in late 2010. Many of the survey participants contributed to various sections of this report. The authors and other contributors were as indicated below. Paul Fanning (author) FAO Overall editor, Survey narratives and fish catch sections Tariq Hanif MFD Fish catch sections Muhsan Kalhoro MFD Fish catch sections Wasim Khan (author) MFD Survey narratives and fish catch sections Samina Kidwai (author) NIO Oceanography Gavin Macauley (author) IMR Pelagic survey acoustics Magne Olsen CDCF, IMR Pelagic survey acoustics, Pelagic survey oceanography Mohsin Tabrez NIO Oceanography Badar Usmany MFD Taxonomy Thomas Wenneck IMR Acoustics , Demersal survey oceanography Diana Zaera CDCF,IMR Demersal survey fish catch sections, Acoustics, Mapping Fanning L.P., M.W. Khan, S. Kidwai and G.J. Macauley. Surveys of the offshore fisheries resources of Pakistan – 2010. FAO Fisheries and Aquaculture Circular. No. 1065. Karachi, FAO. 2011. 87 pp. ABSTRACT In October and November 2010, the R/V Dr. Fridtjof Nansen conducted two offshore fisheries resource surveys in Paksitan’s waters. These included sampling by acoustics, pelagic trawling, demersal trawling and collected a suite of concurrent biological and physical oceanography observations. Preliminary analyses presented in this cruise report include the distribution maps, catch rate estimates and raw abundance information for many stocks of interest to fisheries. Further analysis and comparison with historical data will be provided in later reports. The mesopelagic biomass estimated from these preliminary analyses is substantially lower than in previous surveys and further investigations in this regard are required. Of interest in the overview of some key oceanographic parameters is the presence of an hypoxic layer in deep waters (offshelf) which has been reported in earlier surveys and oceanographic studies. Some evidence of flood-induced productivity was also detected in the near-shelf waters off Sindh. iv v CONTENTS PREPARATION OF THIS DOCUMENT.............................................................................................................. iii ABSTRACT............................................................................................................................................................ iii FIGURES .................................................................................................................................................................vi ACKNOWLEDGEMENTS .................................................................................................................................. viii LIST OF ACRONYMS AND ABBREVIATIONS .................................................................................................ix FOREWORD ............................................................................................................................................................x 1. INTRODUCTION ................................................................................................................................................1 Objectives..................................................................................................................................................................1 Participation ..............................................................................................................................................................1 Overview of activities ...............................................................................................................................................2 2. METHODS ...........................................................................................................................................................3 Fish sampling ............................................................................................................................................................3 Acoustic sampling and analysis ................................................................................................................................4 Acoustic equipment ..............................................................................................................................................4 Design...................................................................................................................................................................4 Allocation of acoustic backscatter to species category .........................................................................................5 Distribution...........................................................................................................................................................7 Estimation of biomass...........................................................................................................................................7 Demersal sampling and analysis ...............................................................................................................................8 Design...................................................................................................................................................................8 Biomass estimation.............................................................................................................................................10 Oceanographic sampling.........................................................................................................................................11 Multibeam bathymetric data collection...................................................................................................................12 3. PELAGIC SURVEY...........................................................................................................................................13 Pelagic survey narrative ..........................................................................................................................................13 Survey effort............................................................................................................................................................13 Results.....................................................................................................................................................................14 Catch rate estimates ............................................................................................................................................14 Distribution.........................................................................................................................................................14 Mesopelagic biomass estimation ........................................................................................................................18 4. DEMERSAL SURVEY......................................................................................................................................20 Narrative..................................................................................................................................................................20
Recommended publications
  • P.P. Manoj Kumar.Pmd
    52 J. Mar. Biol. Ass. India, 50 (1) : 52 - 56, January - June 2008 P.P. Manojkumar Observations on the food of Nemipterus mesoprion (Bleeker, 1853) from Malabar coast P. P. Manojkumar Calicut Research Centre of Central Marine Fisheries Research Institute,West Hill, Calicut – 673005, India. E-mail: [email protected] Abstract Food of the threadfin bream Nemipterus mesoprion from the fishing grounds off Malabar coast were studied based on 3361 specimens. The studies showed that the fish is a demersal carnivore, subsisting mainly on crustaceans, teleosts, molluscs, polychaetes and miscellaneous food items. The trophic spectrum of N. mesoprion composed of 26 food items. Fish in all size groups preferred crustaceans. Penaeid prawns, Acetes spp. and deep-sea prawns were the dominant crustaceans in the diet. Anchovies, scads, lizardfishes and whitefish were the teleosts that formed the major diet component. N. mesoprion showed preference for teleosts as they grew. Copepods, crabs and squilla were seen mostly in the stomach of juveniles and pre- adult fishes. Teleosts were the major food during January-March and in all the other months crustaceans were dominant in the food. Feeding intensity was poor during most of the months. Keywords: Nemipterus mesoprion, demersal carnivore, Malabar coast Introduction in the length range of 89-249 mm were analysed. The total length and maturity stages of the fish Threadfin breams are one of the major demersal were recorded and the stomach contents were finfish resources exploited along the Indian coast. analysed. Index of Relative Importance (IRI) of They are caught by trawlers upto a depth of 120 prey was estimated following Pinkas et al.
    [Show full text]
  • Download Full-Text
    Journal of Agricultural and Marine Sciences Vol. 20 (2015): 47-53 Reveived 5 May 2014 Accepted 19 Feb 2015 RESEARCH PAPER Protein resources and aquafeed development in the Sultanate of Oman Stephen Goddard 1* and Fahad Saleh Ibrahim 2 موارد الربوتني وتطوير أعﻻف اﻷحياء املائية يف سلطنة عمان ستيفن جودارد1* وفهد صاحل ابراهيم2 Abstract. The continued growth of intensive aquaculture is dependent on the development of sustainable protein sources to replace conventional fish meals in aquafeeds. Practical alternatives are plant-derived protein, protein from micro-organisms and protein from under-utilized marine resources. The challenges are to find alternative ingredients with high protein, suitable amino acid content, high palatability and absence of anti-nutritional factors. There is consid- erable biotechnology-based research in this area, including genetic modification of plant-based proteins, use of probi- otics to enhance digestibility and the renewed application of fermentation technologies to produce single cell proteins. Research in Oman is focused on the utilization of marine protein resources. Fisheries by-catch and processing waste have been evaluated as liquid hydrolysates and as meals for inclusion in aquafeeds and new research is planned on the utilization of meso-pelagic fish (myctophids), which occur in abundance in the Arabian Sea and the Sea of Oman. Initial studies have been conducted on the biochemical composition of the lantern fish,Benthosema pterotum, which revealed favorable protein, amino acid and long-chain PUFA content. Potential limiting factors were high levels of saturated lipids and the heavy metals arsenic and cadmium. These results will be discussed within a general review of marine resources and aquafeed development in Oman.
    [Show full text]
  • Bioinvasions in the Mediterranean Sea 2 7
    Metamorphoses: Bioinvasions in the Mediterranean Sea 2 7 B. S. Galil and Menachem Goren Abstract Six hundred and eighty alien marine multicellular species have been recorded in the Mediterranean Sea, with many establishing viable populations and dispersing along its coastline. A brief history of bioinvasions research in the Mediterranean Sea is presented. Particular attention is paid to gelatinous invasive species: the temporal and spatial spread of four alien scyphozoans and two alien ctenophores is outlined. We highlight few of the dis- cernible, and sometimes dramatic, physical alterations to habitats associated with invasive aliens in the Mediterranean littoral, as well as food web interactions of alien and native fi sh. The propagule pressure driving the Erythraean invasion is powerful in the establishment and spread of alien species in the eastern and central Mediterranean. The implications of the enlargement of Suez Canal, refl ecting patterns in global trade and economy, are briefl y discussed. Keywords Alien • Vectors • Trends • Propagule pressure • Trophic levels • Jellyfi sh • Mediterranean Sea Brief History of Bioinvasion Research came suddenly with the much publicized plans of the in the Mediterranean Sea Saint- Simonians for a “Canal de jonction des deux mers” at the Isthmus of Suez. Even before the Suez Canal was fully The eminent European marine naturalists of the sixteenth excavated, the French zoologist Léon Vaillant ( 1865 ) argued century – Belon, Rondelet, Salviani, Gesner and Aldrovandi – that the breaching of the isthmus will bring about species recorded solely species native to the Mediterranean Sea, migration and mixing of faunas, and advocated what would though mercantile horizons have already expanded with be considered nowadays a ‘baseline study’.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Minimum Legal Size Proposed for Commercially Exploited Marine Finfish and Shellfish Resources of Tamil Nadu
    Mar. Fish. Infor. Serv., T & E Ser., No. 232, 2017 3 Minimum Legal Size proposed for commercially exploited marine finfish and shellfish resources of Tamil Nadu *M. Sivadas,1 Shoba Joe Kizhakudan1, P. T. Sarada1, A. Margaret Muthu Rathinam1, E. M. Chhandaprajnadarsini1, P. P. Manoj Kumar2, I. Jagdis2, M. Kavitha2, R. Saravanan3, K. N. Saleela4, S. Surya4 and P. Laxmilatha1 1Madras Research Centre of ICAR-Central Marine Fisheries Research Institute, Chennai 2Tuticorin Research Centre of ICAR-Central Marine Fisheries Research Institute, Thoothukudi 3Mandapam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Mandapam 4Vizhinjam Research Centre of ICAR-Central Marine Fisheries Research Institute, Vizhinjam *email: [email protected] Marine fisheries in Tamil Nadu have undergone to the stock if the minimum size permitted for trade tremendous change in terms of fishing pattern, fishing is more than the size at first maturity (SFM). method, extension of fishing grounds, composition Notwithstanding this, any minimum size –even one of fish catch and consequent increase in the total that is set below the minimum spawning size – will fish catch in recent years. The recent demand from increase the proportion of animals surviving to industries involved in fish meal and fish oil encourages spawning size provided that the size protected would targeted fishing for by-catch resulting in heavy landing otherwise have formed part of the retained catch. of low value by-catch in certain places along Tamil Thus the MLS does not necessarily have to be the Nadu coast. These by-catch are often dominated by size at which animals spawn, although the closer it is juveniles of many commercially important marine to this size, the more effective it becomes (Hill, 1990, finfishes and shell fishes.
    [Show full text]
  • Geographic Drivers of Diversification in Loliginid Squids with an Emphasis on the Western Atlantic Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211896; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Original Article Geographic drivers of diversification in loliginid squids with an emphasis on the western Atlantic species Gabrielle Genty1*, Carlos J Pardo-De la Hoz1,2*, Paola Montoya1,3, Elena A. Ritschard1,4* 1Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá D.C, Colombia. 2Department of Biology, Duke University, Durham, North Carolina, 27708, United States of America 3Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D.C., Colombia 4Department of Neuroscience and Developmental Biology, University of Vienna, Austria * These authors contributed equally to this work. Correspondence author: Gabrielle Genty, [email protected] Acknowledgements We would like to thank Daniel Cadena and Andrew J. Crawford for their suggestions and guidance during the early stages of this investigation. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211896; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 ABSTRACT Aim: Identifying the mechanisms driving divergence in marine organisms is challenging as opportunities for allopatric isolation are less conspicuous than in terrestrial ecosystems.
    [Show full text]
  • Fish Movement in the Red Sea and Implications for Marine Protected Area Design
    Fish Movement in the Red Sea and Implications for Marine Protected Area Design Thesis by Irene Antonina Salinas Akhmadeeva In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2021 2 EXAMINATION COMMITTEE PAGE The thesis of Irene Antonina Salinas Akhmadeeva is approved by the examination committee. Committee Chairperson: Prof. Michael L. Berumen Committee Co-Chair: Dr. Alison Green Committee Members: Dr. Darren Coker, Prof. Rusty Brainard 3 COPYRIGHT © April 2021 Irene Antonina Salinas Akhmadeeva All Rights Reserved 4 ABSTRACT Fish Movement in the Red Sea and Implications for Marine Protected Area Design Irene Antonina Salinas Akhmadeeva The Red Sea is valued for its biodiversity and the livelihoods it provides for many. It now faces overfishing, habitat degradation, and anthropogenic induced climate-change. Marine Protected Areas (MPAs) became a powerful management tool to protect vulnerable species and ecosystems, re-establish their balance, and enhance marine populations. For this, they need to be well designed and managed. There are 15 designated MPAs in the Red Sea but their level of enforcement is unclear. To design an MPA it is necessary to know if it will protect species of interest by considering their movement needs. In this thesis I aim at understanding fish movement in the Red Sea, specifically home range (HR) to inform MPA size designation. With not much empirical data available on HR for Red Sea fish, I used a Machine Learning (ML) classification model, trained with empirical literature HR measurements with Maximum Total Length (L Max), Aspect Ratio (AR) of the caudal fin, and Trophic Level as predictor variables.
    [Show full text]
  • Report of the Technical Meeting on the Lessepsian Migration and Its Impact
    EastMed TECHNICAL DOCUMENTS 04 REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 Hellenic Ministry of Foreign Affairs ITALIAN MINISTRY OF AGRICULTURE, FOOD AND FORESTRY POLICIES Hellenic Ministry of Rural Development and Food GCP/INT/041/EC – GRE – ITA Athens (Greece), 7-9 December 2010 i The conclusions and recommendations given in this and in other documents in the Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or donors concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. ii Preface The Project “Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean- EastMed is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by Greece, Italy and EC. The Eastern Mediterranean countries have for long lacked a cooperation framework as created for other areas of the Mediterranean, namely the FAO sub-regional projects AdriaMed, MedSudMed, CopeMed II and ArtFiMed. This fact leaded for some countries to be sidelined, where international and regional cooperation for fishery research and management is concerned.
    [Show full text]
  • Cephalopod Reproductive Strategies Derived from Embryonic Shell Size
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12341 Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa Vladimir Laptikhovsky1,∗, Svetlana Nikolaeva2,3,4 and Mikhail Rogov5 1Fisheries Division, Cefas, Lowestoft, NR33 0HT, U.K. 2Department of Earth Sciences Natural History Museum, London, SW7 5BD, U.K. 3Laboratory of Molluscs Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia 4Laboratory of Stratigraphy of Oil and Gas Bearing Reservoirs Kazan Federal University, Kazan, 420000, Russia 5Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow, 119017, Russia ABSTRACT An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small-egged taxa, as is also seen in simultaneously evolving fish taxa. Key words: embryonic shell, initial chamber, hatchling, egg size, Cephalopoda, Ammonoidea, reproductive strategy, Nautilida, Coleoidea.
    [Show full text]
  • The Bigfin Reef Squid)
    Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 5-11-2013 Phylogeography of Sepioteuthis lessoniana (the bigfin eefr squid) and Uroteuthis duvauceli (the Indian squid). Alexis M. Bergman Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Bergman, Alexis M., "Phylogeography of Sepioteuthis lessoniana (the bigfin er ef squid) and Uroteuthis duvauceli (the Indian squid)." (2013). Honors Theses. Paper 353. This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Phylogeography of Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid). Alexis Bergman A thesis submitted to the University Honors Program in partial fulfillment of the requirements for the Honors Degree Southern Illinois University April 18, 2013 2 Abstract Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid) are two squid species found in largely overlapping regions in the Indian and Pacific Oceans. While both squids are important to fisheries throughout their ranges, very little taxonomic work has been done on either of them. Previous studies have led scientists to believe that S. lessoniana is actually a species complex (for example, there appear to be three species of “S. cf. lessoniana” in Japanese waters alone). The similarly broad geographic range of U. duvauceli suggests that this species could also harbor substantial cryptic genetic diversity. In order to evaluate genetic variation within these two species, regions of two mitochondrial genes—the large subunit ribosomal RNA gene (16S) and the cytochrome oxidase I gene (COI)—from specimens caught in regions throughout the northern Indian and western Pacific Oceans were sequenced and compared.
    [Show full text]