Plasmodium Berghei

Total Page:16

File Type:pdf, Size:1020Kb

Plasmodium Berghei SEXUAL AND SPOROGONIC DEVELOPMENT OF PLASMODIUM BERGHEI Anne Louise Dearsly A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College Imperial College Department of Pure and Applied Biology Prince Consort Road London October 1990 THE SEXUAL AND SPOROGONIC DEVELOPMENT OF PLASMODIUM BERGHEI. Plasmodium berghei infections were studied in vivo and in vitro and the production of gametocytes and ookinetes following 3, 8 and 14 sequential blood passages monitored. This allowed the definition of optimal conditions for the collection of parasite material for the study of the gametocyte and ookinete stages. The study also led to the identification of reliable indicators of ookinete production. A method was developed using mitomycin Cto obtain enriched/purified gametocyte populations. Giemsa stained smears of infected mouse blood showed an immediate drop in the asexual parasitaemia while the immediate numbers of gametocytes remained unaffected. Treated gametocytes went on to produce ookinetes in culture that were infective to mosquitoes and readily purified by Nycodenz centrifugation. Ookinete cultures were treated with metabolic inhibitors of DNA, RNA and protein synthesis and the effect on the morphological development was studied at both the light and electron microscope level. The effect of the inhibitors on protein synthesis was also studied by radiolabelling in the presence of the drugs and the differences between asexual and sexual stage protein synthesis determined. The synthesis of the 21kD transmission blocking protein was followed from the early asexual trophozoite to the mature ookinete. The time of the initial synthesis and expression on the surface of the parasite was established. Attempts to identify the trigger were made and indicated that synthesis is induced by gametogenesis and not fertilization. Glucosamine/mannose labelling of the protein and preliminary detergent extraction with triton X-114 were carried out to further characterise the protein. 2 Contents Page Acknowledgements ............................................................................. 13 Abbreviations ............................................................................................... 14 Chapter 1 General Introduction 1.1 Malaria and its control ................................................ 16 1.2 The Parasite ............................................................................ 16 1.3 The Plasmodial Life Cycle ..................................................... 16 1.3.1 Gametocyte Density................................................. 23 1.3.2 Blood Factors...................................................... 23 1.3.3 Host Immune Factors............................................. 24 1.4 Antimalarial Vaccines ........................................................... 26 1.5 Plasmodium berghei .............................................................. 27 1.6 The Biochemistry of Plasmodium ....................................... 27 1.7 Overview and Aims ..................................................... 30 Chapter 2 The Sexual Development of Plasmodium berghei in vivo and in vitro 2.1 Introduction ......................................................................................... 33 2.2 Materials and Methods ........................................................................ 36 2.2.1 In vivo Infection ................................................................... 36 2.2.2 Red blood cell count ................................................................ 36 2.2.3 Parasitaemia ............................................................................ 36 2.2.4 Exflagellation .......................................................................... 37 2.2.5 Culture Medium .................................................................... 37 2.2.5.1 Complete Ookinete Culture Medium ....................... 37 2.2.5.2 Methionine-free RPMI 1640 ..................................... 37 2.2.5.3 Serum-free Ookinete Medium ................................. 37 2.2.5.4 Gametocyte Culture Medium .................................... 38 2.2.5.5 Serum-free Gametocyte Medium ........................ 38 2.2.6 Ookinete Production .............................................................. 38 2.3 Results.................................................................................................... 39 2.3.1 Comparison of Asexual and Mixed Clones of P.berghei ...... 39 2.3.2 Asexual Parasitaemia ............................................................. 39 2.3.3 Red Blood Cell Count ............................................................ 39 3 Page 2.3.4 Sexual Parasitaemia ....................................................... 43 2.3.5 Production of Gametocytes During the Course of an Infection .................................................................................. 43 2.3.6 The Effect of Blood Passage on Gametocyte Production 37 and Activity .................................................................... 43 2.3.7 Ookinete Production .............................................................. 53 2.3.8 Sexual Stage Parasites as Indicators of Ookinete Production .............................................................................. 56 2.3.9 The Effect of Red Blood Cell Count on Ookinete Formation in vitro ................................................................ 56 2.3.10 The Effect of Asexual Parasites on Ookinete Formation in vitro ................................................................................... 58 2.4 Discussion ..................................................................................... 59 2.4.1 Conclusions ....................................................................... 67 Chapter 3 The Enrichment of Plasmodium berghei Gametocytes in vivo and ookinetes in vitro 3.1 Introduction ......................................................................................... 69 3.2 Materials and Methods ....................................................................... 70 3.2.1 Parasites ............................................................................ 70 3.2.2 Gametocyte Production ......................................................... 70 3.2.3 The Effect of the Duration of Mitomycin C Treatment ...... 70 3.2.4 Ookinete Culture ................................................................... 71 3.2.5 Ookinete Purification .................................................... 71 3.2.6 Mosquito Feeds ............................................................. 72 3.2.7 Radiolabelling of the Nucleic Acids ..................................... 72 3.3 Results ................................................................................................... 74 3.3.1 Mitomycin C treatment of P.berghei Parasites ................... 74 3.3.1.1 Effect of Time ............................................................. 74 3.3.1.2 Effect of Mitomycin C Concentration ........................ 74 3.3.2 Further Purification of Treated Parasites ...................... 79 3.3.3 Viability of Mitomycin C Treated Gametocytes .................. 79 3.3.4 Effect of Mitomycin C on the Incorporation of 32p into Nucleic Acids .......................................................................... 79 3.4 Discussion .................................................................................... 84 3.4.1 Conclusions ...................................................................... 87 4 Page Chapter 4 The Effect of Metabolic Inhibitors on the Development of Plasmodium berzhei Gametocvtes and Ookinetes 4.1 Introduction ........................................................................................ 89 4.2 Materials and Methods ....................................................................... 93 4.2.1 Micro Drug Culture Technique ......................................... 93 4.2.2 Electron Microscopy ............................................................ 95 4.2.3 35S-Methionine Labelling of Ookinete Cultures .............. 96 4.2.4 Analysis of Protein Samples ..................................... 96 4.2.5 SDS-PAGE ..................................................................... 99 4.2.6 Coomassie Blue Staining of Gels .............................. 100 4.2.7 Drying and Autoradiography of Gels ................................ 100 4.2.8 Densitometry of Autoradiographs .................................... 101 4.3 Results ................................................................................................ 102 4.3.1 Total Protein Synthesis .............................................. 102 4.3.2 Exflagellation ....................................................................... 102 4.3.3 Ookinete Development ...................................................... 112 4.3.3.1 Electron Microscopy of Untreated Control Cultures ................................................................... 112 4.3.3.2 DNA Synthesis Inhibitors ..................................... 112 4.3.3.2.1 Light Microscopy ..................................... 112 4.3.3.2.2 Electron microscopy ................................ 112 4.3.3.3 RNA Synthesis Inhibitors ..................................... 113 4.3.3.3.1 Light Microscopy ..................................... 113 4.3.3.3.2 Electron Microscopy ................................ 113 4.3.3.4 Protein Synthesis Inhibitors ................................... 122 4.3.3.4.1 Light
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Non-Invasive Surveillance for Plasmodium in Reservoir Macaque
    Siregar et al. Malar J (2015) 14:404 DOI 10.1186/s12936-015-0857-2 METHODOLOGY Open Access Non‑invasive surveillance for Plasmodium in reservoir macaque species Josephine E. Siregar1, Christina L. Faust2*, Lydia S. Murdiyarso1, Lis Rosmanah3, Uus Saepuloh3, Andrew P. Dobson2 and Diah Iskandriati3 Abstract Background: Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Methods: Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. Results: The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3–99.4 %) sensitive for detecting Plasmo- dium in faecal samples of naturally infected macaques (n 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples= from naturally infected hosts.
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Looking Under the Skin: the First Steps in Malarial Infection and Immunity
    REVIEWS Looking under the skin: the first steps in malarial infection and immunity Robert Ménard1, Joana Tavares1, Ian Cockburn2, Miles Markus3, Fidel Zavala4 and Rogerio Amino1 Abstract | Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms. Sterilizing immunity Malaria is the most deadly parasitic infection of humans. subject of intensive immunological research ever since Immunity resulting in parasite Although economic development and the implementa- the first demonstrations, in animal models and humans, clearance from the host. tion of control measures during the twentieth century that injection of attenuated parasites which do not cause have eliminated malaria from many areas of the world1, blood infection confers protection against sporo­zoite the disease is still rampant in the tropics and in the poor- challenge4–6. Today, this vaccination method is still 1Institut Pasteur, Unité de est regions of the globe, affecting 3 billion people and the most efficient at offering sterilizing immunity against Biologie et Génétique du 2 Paludisme, 28 Rue du Dr Roux, killing up to 1 million annually .
    [Show full text]
  • P. Falciparum, Replicates Within a Membrane-Bound Intraerythrocytic Parasitophorous Vacuole (PV)
    Homing in on getting out: Characterisation of SERA6, a putative malarial protease with a role in egress Andrea Ruecker March 2012 MRC National Institute for Medical Research Division of Parasitology Mill Hill, London NW7 1AA Division of Infection and Immunity University College London This thesis is submitted to University College London for the degree of Doctor of Philosophy 1 Declaration Declaration I, Andrea Ruecker, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Andrea Ruecker 2 Abstract Abstract The human malaria parasite, P. falciparum, replicates within a membrane-bound intraerythrocytic parasitophorous vacuole (PV). The resulting daughter merozoites actively escape from the host cell in a process called egress. There is convincing evidence that proteases are key players in this step. These proteases could serve as excellent targets for the development of new antimalarial drugs. P. falciparum Serine Repeat Antigens (SERAs) form a family of 9 proteins all containing a central papain- like domain that identifies them as putative cysteine proteases. They are highly conserved throughout all Plasmodium species, and there is strong genetic evidence that they may play a role in egress. P. falciparum SERA6 is one of the most highly- expressed SERAs in asexual erythrocyte stages. In this study biochemical fractionation and indirect immunofluorescence analysis were used to confirm localisation of SERA6 to the PV. It was shown that SERA6 is a substrate for PfSUB1, a subtilisin-like protease which is crucial for egress and which is released into the PV just prior to egress.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Malaria in Pregnancy: the Relevance of Animal Models for Vaccine Development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy
    REVIEW Malaria in pregnancy: the relevance of animal models for vaccine development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide- treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population. Among Plasmodium species that infect humans, P. falciparum is bind to chondroitin sulfate A (CSA), a glycosaminoglycan expressed the most deadly. Despite long-term exposure to P. falciparum infec- by syncytiotrophoblast, which localizes to the surface of placental tion, women are again susceptible to P. falciparum infection during villi as well as to fibrinoid in the intervillous spaces15–21. Placental pregnancy, particularly primigravidae1,2. Similarly, susceptibility to sequestration of parasites can elicit an inflammatory infiltrate in P. vivax increases during pregnancy, and while the susceptibility the intervillous spaces, a typical feature in primigravidae that is spe- to P. vivax infection is greatest in primigravidae, the risk of dis- cifically associated with poor outcomes including severe maternal ease is greatest in multigravidae3,4.
    [Show full text]
  • Parasite, Plasmodium Berghei
    Wild Anopheles funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium berghei Jiannong Xu1,2,3., Julia´n F. Hillyer2,4., Boubacar Coulibaly5, Madjou Sacko5, Adama Dao5, Oumou Niare´ 5, Michelle M. Riehle2, Sekou F. Traore´ 5, Kenneth D. Vernick1,2* 1 Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, Institut Pasteur, Paris, France, 2 Microbial and Plant Genomics Institute, Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America, 3 Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America, 4 Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America, 5 Malaria Research and Training Center, University of Bamako, Bamako, Mali Abstract Background: Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development. Methods: An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain.
    [Show full text]
  • Species-Specific Escape of Plasmodium Sporozoites From
    Orfano et al. Malar J (2016) 15:394 DOI 10.1186/s12936-016-1451-y Malaria Journal RESEARCH Open Access Species‑specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites Alessandra S. Orfano1, Rafael Nacif‑Pimenta1, Ana P. M. Duarte1,2, Luis M. Villegas1, Nilton B. Rodrigues1, Luciana C. Pinto1, Keillen M. M. Campos2, Yudi T. Pinilla2, Bárbara Chaves1,2, Maria G. V. Barbosa Guerra2, Wuelton M. Monteiro2, Ryan C. Smith4,5, Alvaro Molina‑Cruz6, Marcus V. G. Lacerda2,3, Nágila F. C. Secundino1, Marcelo Jacobs‑Lorena5, Carolina Barillas‑Mury6 and Paulo F. P. Pimenta1,2* Abstract Background: Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Results: Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P.
    [Show full text]
  • Plasmodium Berghei
    1 Plasmodium berghei Life-histories and stabilates (deep-frozen samples) of isolates, lines and clones maintained at the University of Edinburgh Page Map - country of origin 2 General information - definitions of isolates, lines and clones - mixed species infections 3 Summary list of isolates and clones 4 Detailed life-histories 5 References 13 2 Plasmodium berghei : origins of isolates NIGERIA CENTRAL AFRICAN REPUBLIC CAMEROON DEMOCRATIC REPUBLIC OF CONGO P.berghei 3 Isolates, lines and clones An isolate is a sample of parasites collected from a wild-caught animal on a unique occasion. An isolate may contain more than species of parasite, and more than one genetically distinct clone of a given species. A line refers to parasites which have undergone a particular passage or treatment. Parasites in a line usually have certain characteristics in common, but are not necessarily genetically identical. A clone is an infection derived in the laboratory from a single haploid parasite, usually an asexual blood form, or sometimes a sporozoite. Mixed species infections Note that the majority of wild-caught rodents have been found to contain mixed infections of more than one species. It must be assumed, therefore, that uncloned isolates may contain such mixtures, even after prolonged passage through laboratory animals. Also, note that Plasmodium chabaudi and P. vinckei do not normally infect intact laboratory rats (although they can be adapted to this host by passage through splenectomised rats). Uncloned isolates which have been passaged through laboratory rats, therefore, can be assumed to contain only P. yoelii or P. berghei . 4 P. berghei isolates and clones Isolates Clones ANKA ANKA1, ANKA5 K173 (N) RC KSP11 RLL LUKA NK65 SP11 Important note : There is strong evidence that all these parasites, except RC and RLL, are genetically identical, since they have identical sequences for their ama1 , msp1 and dhfr genes.
    [Show full text]
  • (Haemosporida: Haemoproteidae), with Report of in Vitro Ookinetes of Haemoproteus Hirundi
    Chagas et al. Parasites Vectors (2019) 12:422 https://doi.org/10.1186/s13071-019-3679-1 Parasites & Vectors RESEARCH Open Access Sporogony of four Haemoproteus species (Haemosporida: Haemoproteidae), with report of in vitro ookinetes of Haemoproteus hirundinis: phylogenetic inference indicates patterns of haemosporidian parasite ookinete development Carolina Romeiro Fernandes Chagas* , Dovilė Bukauskaitė, Mikas Ilgūnas, Rasa Bernotienė, Tatjana Iezhova and Gediminas Valkiūnas Abstract Background: Haemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary. This study aimed to investigate the complete sporogonic development of four Haemoproteus species in Culicoides nubeculosus and to test if phylogenies based on the cytochrome b gene (cytb) refect patterns of ookinete development in haemosporidian parasites. Additionally, one cytb lineage of Haemoproteus was identifed to the spe- cies level and the in vitro gametogenesis and ookinete development of Haemoproteus hirundinis was characterised. Methods: Laboratory-reared C. nubeculosus were exposed by allowing them to take blood meals on naturally infected birds harbouring single infections of Haemoproteus belopolskyi (cytb lineage hHIICT1), Haemoproteus hirun- dinis (hDELURB2), Haemoproteus nucleocondensus (hGRW01) and Haemoproteus lanii (hRB1). Infected insects were dissected at intervals in order to detect sporogonic stages. In vitro exfagellation, gametogenesis and ookinete development of H. hirundinis were also investigated. Microscopic examination and PCR-based methods were used to confrm species identity. Bayesian phylogenetic inference was applied to study the relationships among Haemopro- teus lineages. Results: All studied parasites completed sporogony in C. nubeculosus. Ookinetes and sporozoites were found and described. Development of H. hirundinis ookinetes was similar both in vivo and in vitro.
    [Show full text]