Journal of Cosmology and Astroparticle Physics Consequences of neutrino self-interactions for weak decoupling and big bang nucleosynthesis To cite this article: E. Grohs et al JCAP07(2020)001 View the article online for updates and enhancements. This content was downloaded from IP address 137.110.32.181 on 05/07/2020 at 03:34 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Consequences of neutrino self-interactions for weak decoupling and big bang nucleosynthesis JCAP07(2020)001 E. Grohs,a;1 George M. Fullerb and Manibrata Sena;c aDepartment of Physics, University of California, Berkeley, 366 LeConte Hall, Berkeley, California 94720, U.S.A. bDepartment of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319, U.S.A. cDepartment of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3112, U.S.A. E-mail:
[email protected],
[email protected],
[email protected] Received February 27, 2020 Revised April 18, 2020 Accepted May 5, 2020 Published July 1, 2020 Abstract. We calculate and discuss the implications of neutrino self-interactions for the physics of weak decoupling and big bang nucleosynthesis (BBN) in the early universe. In such neutrino-sector extensions of the standard model, neutrinos may not free-stream, yet can stay thermally coupled to one another. Nevertheless, the neutrinos exchange energy and entropy with the photon, electron-positron, and baryon component of the early universe only through the ordinary weak interaction. We examine the effects of neutrino self-interaction for the primordial helium and deuterium abundances and Neff , a measure of relativistic energy density at photon decoupling.