Symbiotic Nitrogen Fixation in Legumes: Perspectives on the Diversity and Evolution of Nodulation by Rhizobium and Burkholderia Species

Total Page:16

File Type:pdf, Size:1020Kb

Symbiotic Nitrogen Fixation in Legumes: Perspectives on the Diversity and Evolution of Nodulation by Rhizobium and Burkholderia Species Chapter 89 Symbiotic Nitrogen Fixation in Legumes: Perspectives on the Diversity and Evolution of Nodulation by Rhizobium and Burkholderia Species Robert Walker School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia Christina M. Agapakis Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA Elizabeth Watkin School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia Ann M. Hirsch Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA 89.1 INTRODUCTION Burkholderia,andtheirrelevancetothiswell-studied, benefcial interaction between bacterium and plant. More than a decade ago, we wrote an update on the In particular, we examine the concept of host range, Rhizobium–legume symbiosis asking the question “what biogeography, as well as evolutionary history with respect makes this symbiosis so special?” (Hirsch et al., 2001). to nodulation by Burkholderia and Rhizobium (see also Since that time, we have learned a great deal more about this Chapter 17). Phylogenetic analyses strongly indicate that important plant–microbe association. However, the story of both genera acquired the nodulation genes at approximately symbiotic nitrogen fxation in legumes has become more the same time as the legumes were evolving (Bontemps complicated due to the discovery of several Betaproteobac- et al., 2010). We elaborate on this evolutionary theme as we teria, namely species of Burkholderia and Cupriavidus, delve into the even earlier history of these two nodulating which also establish nitrogen-fxing nodules on legumes. and nitrogen-fxing bacterial families, with the goal of estab- In this chapter, we expand our analysis of the Rhizobium– lishing an evolutionary description of this still incompletely legume symbiosis to include the betarhizobia, specifcally understood symbiosis. Biological Nitrogen Fixation, Volume 2, First Edition. Edited by Frans J. de Bruijn. © 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc. 913 914 Chapter 89 Symbiotic Nitrogen Fixation in Legumes: Perspectives on the Diversity and Evolution 89.2 THE LEGUMES into most of their major lineages within a relatively short period of time (ca. 55–50 Mya) (Herendeen et al., 1992; The legumes (Fabaceae or Leguminosae) are the third Doyle and Luckow, 2003; Lewis et al., 2005; Sprent, 2007, largest family of fowering plants (>19,000 species); only 2008). This is approximately the same time that the rest Asteraceae and Orchidaceae are larger (Lewis et al., 2005). of the angiosperm families were evolving (Lewis et al., The family is monophyletic, but comprises three subfamilies 2005). The boreotropical forest migration hypothesis has (36 tribes), namely Caesalpinioideae, Mimosoideae, and replaced the older Gondwanan theory in which legumes Papillionoideae, which represent 22%, 10%, and 67%, moved northward from their presumed sites of origin in respectively, of the family (Sprent, 2001). Of the three Africa to South America and then, before the land masses subfamilies, caesalpinioid legumes are less likely to be drifted apart 165–145 Mya, to North America. Nonetheless, nodulated, but this is not because they evolved frst (Sprent, the boreotropical hypothesis leaves much unexplained, 2007). Several caesalpinioid legumes considered to be especially with regard to the evolution of legume nodulation “basal” are not found in the fossil fora in the early history (Sprent, 2008; see Chapter 3). of the family (Herendeen et al., 1992). Although nodules have not been found in the fossil The structure of the fowers of the subfamily members record, it is extremely likely that many of the legumes were differs signifcantly (Fig. 89.1), but legumes are incredibly already developing root nodules inhabited by nitrogen-fxing diverse in many other features, including phytochemical rhizobia by the time that the major lineages were established. profles, nodulation status, and habitats. Legumes occupy The partnership between rhizobia and legumes is based on deserts and grass-poor, succulent-rich, dry environments apre-existingandancientrelationship,datingfromthe (S-biomes); tropical rain forests (R-biomes); grass-rich early Devonian (416–350 Mya) between arbuscular myc- prairies and savannahs (G-biomes); temperate ecosystems orrhizal fungi (AMF) and plants. The evolutionary origin (T-biomes); and agricultural systems derived from anthro- of the genes important for root nodulation that was derived pogenic input. Numerous books and papers have described from the arbuscular-mycorrhizal (AM) symbiosis has been the biology, nodulation, and evolution of the legumes, so we extensively studied and reviewed (Hirsch et al., 2001; Szcz- describe only a few salient features in this chapter (Sprent, glowsky and Amyot, 2003; Streng et al., 2011; and others; 2001; Doyle and Luckow, 2003; Lewis et al., 2005). see also Chapters 42, 54, 55, 108, 110). The legumes are believed to have evolved ca. 65–50 million years ago (Mya) in the late Cretaceous/early Tertiary after the K/T extinction (Lavin et al., 2005). This 89.3 THE RHIZOBIA hypothesis is in part based on the discovery of legume fossils dating from the Paleocene (ca. 66–56 Mya; Herendeen et al., “Rhizobia” is the collective term given to bacteria capa- 1992) and also on molecular analysis developed from matK ble of inducing the development of and then populating and rbcL phylogenies (Lavin et al., 2005). The evolutionary nitrogen-fxing nodules (Sprent, 2001). A long-standing migration of legumes southward is postulated to have started debate exists over whether legumes and rhizobia coevolved north of the Tethys Sea, under warmer climate conditions, or whether the plants selected for symbiotic bacteria, but after the continents drifted apart (see Doyle and Luckow, the presence of horizontal gene transfer and the lack of par- 2003; Sprent, 2007). This boreotropical origin, deduced allel speciation between legumes and rhizobia might argue in part from the current habitats of legumes, is consistent against a coevolutionary trajectory (Martínez-Romero, with the migration of legumes from an S-biome to the R-, 2009; Young and Johnston, 1989). G-, and T-biomes (Lewis et al., 2005). Both molecular Up to 2001, only the Alphaproteobacteria in the family and fossil data suggest that legumes rapidly diversifed Rhizobiaceae had been classifed as rhizobia. These bacteria (a) (b) (c) Figure 89.1 Examples of fowers from the three legume subfamilies. (a) Caesalpinoideae: Chamaecrista fasciculata (N.A. Fujishige). (b) Mimosoideae: Caliandra hematocephala (A.M. Hirsch). (c) Papillionoideae: Swainsona formosa (W. Deng). 89.5 The Root-Nodulating Burkholderia Species 915 were frst isolated from root nodules by Beijerinck (1890), 89.4 THE BETARHIZOBIA and the name Rhizobium was suggested shortly afterwards by Frank (1889) (see additional references in Gyaneshwar In 2001, two genera of the family Burkholderiaceae, et al., 2011; see Chapter 88). Until the 1980s, all the legume Burkholderia and Cupriavidus,werereportedtonodu- root-nodulating bacteria (RNB) were classifed in the genus late legumes, but at that time were not shown to induce Rhizobium,whichhadbeendividedintofastandslow effective, that is, nitrogen-fxing nodules on their hosts growers. After it became apparent that signifcantly greater (Moulin et al., 2001; see Chapter 17). Much of the original differences than just growth rate existed, Bradyrhizobium work on the Burkholderia symbiotic species focused on (Bradyrhizobiaceae)wasproposedbyJordan(1982)to B. tuberum and B. phymatum,butitwasquicklyshownthat encompass the slow-growing species whereas the name Rhi- neither species re-infected the hosts from which they were zobium was retained for the fast growers. Using a molecular originally isolated (Aspalathus carnosa and Machaerium clock approach, the split between Rhizobium and Bradyrhi- lunatum,respectively).Laterstudiesshowedthatbothgen- zobium is estimated to have taken place 800–300 Mya era established nitrogen-fxing nodules with a number of depending on the gene analyzed (Turner and Young, 2000). legume hosts. The majority of Burkholderia species have Rhizobium has also been subdivided into a number been isolated from nodules of Mimosoideae, especially the of distinct genera. Chen et al. (1988) isolated fast- and genus Mimosa. Mimosa spp. are native to the Neotropics slow-growing rhizobia from nodules of soybean (Glycine although a few endemics live in the Paleotropics, mainly in soja)andfromsoil,andafteranalyzingcellularcomposition Madagascar, and also extend into southeast tropical Africa and by using methods such as DNA–DNA hybridization, and India (Lewis et al., 2005; see Chapter 17). serology, and phage typing, proposed a new genus, Sinorhi- Some Burkholderia species are free-living and function zobium. Thus, the fast-growing isolate Rhizobium fredii as soil-dwelling microbes in bioremediation or act as plant was renamed Sinorhizobium fredii.In2008,however,tax- growth-promoting bacteria (PGPB) living as epiphytes on plants (de Bruijn, 2013). Still others appear to be endophytes onomists questioned whether Sinorhizobium was distinct based on their isolation from both legume and nonlegume from the genus Ensifer,andtheJudicialCommissionof hosts following surface sterilization of plant tissues the International Committee on Systematics of Prokaryotes
Recommended publications
  • Nature Conservation Practical Year 2014
    Polhillia on the brink: Taxonomy, ecophysiology and conservation assessment of a highly threatened Cape legume genus by Brian du Preez Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Botany) in the Faculty of Science at Stellenbosch University Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Supervisors: Prof. L.L. Dreyer, Prof. A.J. Valentine, Prof. M. Muasya April 2019 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: ……15 February 2019……… Copyright ©2019 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za TABLE OF CONTENTS DECLARATION....................................................................................................................... i LIST OF FIGURES ................................................................................................................ vi LIST OF TABLES ................................................................................................................... x ABSTRACT .........................................................................................................................
    [Show full text]
  • Progress Report
    2016 Progress Report U.S. Department of Energy 2016 JGI PROGRESS REPORT 2016 Joint Genome Institute Cover photo: Mount Diablo at sunrise, Contra Costa County, California. (Mark Lilly Photography) Table of Contents 1 DOE JGI Mission 2 Director’s Perspective 8 Achieving the DOE Mission 10 Organizational Structure 12 Impact 2016 18 Case Study: A Decade of Poplar Genomics 20 Science: Year in Review 22 Bioenergy 32 Biogeochemistry 44 Computational Infrastructure 46 Appendices 47 Appendix A: Acronyms at a Glance 48 Appendix B: Glossary 52 Appendix C: 2016 User Programs Supported Proposals 59 Appendix D: Advisory and Review Committee Members 62 Appendix E: 2016 Genomics of Energy and Environment Meeting 64 Appendix F: 2016 Publications DOE JGI Mission Golden Gate Bridge, San Francisco, California before dawn. (Peter Burnett) 1 The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a national user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals of harnessing science and technology to address energy and environmental challenges. 2 Axel Visel (Marilyn Chung, Berkeley Lab) Director’s Perspective 3 Forging Ahead With a Joint Vision In 2016, the DOE Joint Genome Institute continued on its trajectory of evolving as a Next- Generation Genome Science User Facility that offers its large user community access to cutting-edge genomics capabilities. A continuing trend across our scientific programs is an increased emphasis on approaches that go beyond the assembly of reference genomes. DOE JGI users can now leverage a growing portfolio of advanced experimental and computational techniques to understand the function of genes and genomes, turning sequence data into biological insights.
    [Show full text]
  • Populações De Alfa E Beta-Rizóbios De Feijão-Caupi Naturalmente Estabelecidas Em Solos Do Semiárido Tropical
    UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO ALEKSANDRO FERREIRA DA SILVA POPULAÇÕES DE ALFA E BETA-RIZÓBIOS DE FEIJÃO-CAUPI NATURALMENTE ESTABELECIDAS EM SOLOS DO SEMIÁRIDO TROPICAL Recife 2019 Aleksandro Ferreira da Silva Engenheiro agrônomo Populações de alfa e beta-rizóbios de feijão-caupi naturalmente estabelecidas em solos do semiárido tropical Tese apresentada ao Programa de Pós- Graduação em Ciência do Solo, da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Doutor em Ciência do Solo Orientadora Dra. Ana Dolores Santiago de Freitas Coorientadores Dr. Paulo Ivan Fernandes Júnior Dra. Maria do Carmo Catanho Pereira de Lyra Recife 2019 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa desde que citada a fonte. Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Centra, Recife-PE, Brasil S586p Silva, Aleksandro Ferreira da Populações de alfa e beta-rizóbios de feijão-caupi naturalmente estabelecidas em solos do semiárido tropical / Aleksandro Ferreira da Silva. – 2019. 123 f. : il. Orientadora: Ana Dolores Santiago de Freitas. Coorientadores: Paulo Ivan Fernandes Júnior e Maria do Carmo Catanho Pereira de Lyra. Tese (Doutorado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Ciências do Solo, Recife, BR-PE, 2019. Inclui referências e apêndice(s). 1. Nitrogênio – Fixação 2. Leguminosa 3. Simbiose 4. Vigna unguiculata 5. Caatinga I. Freitas, Ana Dolores Santiago de, orient. II. Fernandes Júnior, Paulo Ivan, coorient. III. Lyra, Maria do Carmo Catanho Pereira de, coorient. IV. Título CDD 631.4 ALEKSANDRO FERREIRA DA SILVA Populações de alfa e beta-rizóbios de feijão-caupi naturalmente estabelecidas em solos do semiárido tropical Tese apresentada ao Programa de Pós-graduação em Ciência do Solo, da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Doutor em Ciência do Solo.
    [Show full text]
  • Published Version
    PUBLISHED VERSION Wayne Reeve ... Vanessa Melino ... et al. Genome sequence of the Lebeckia ambigua-nodulating "Burkholderia sprentiae" strain WSM5005T Standards in Genomic Sciences, 2013; 9(2):385-394 This work is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/]. Originally published at: http://doi.org/10.4056/sigs.4558268 PERMISSIONS http://creativecommons.org/licenses/by/3.0/ http://hdl.handle.net/2440/88910 Standards in Genomic Sciences (2013) 9:38 5-394 DOI:10.4056/sig s.4558268 Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T Wayne Reeve*1, Sofie De Meyer1, Jason Terpolilli1, Vanessa Melino1, Julie Ard ley 1, Tian Rui1, Ravi Tiwari1, John Howieson1, Ron Yates 1,2, Graham O’Hara1, Megan Lu3, David Bruce3, Chris Detter3, Roxanne Tapia3, Cliff Han3, Chia-Lin Wei3, Marcel Huntemann3, James Han 3, I-Min Chen 4, Konstantinos Mavromatis3, Victor Markowitz4, Ernest Szeto4, Natalia Ivanova3, Natalia Mikhailova3, Galina Ovchinnikova3, Ioanna Pagani3, Amrita Pati3, Lynne Goodwin4, Lin Peters3, Sam Pitluck3, Tanja Woyke3 & Nikos Kyrpides3. 1 Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia 2 Department of Agriculture and Food, Western Australia, Australia 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA *Correspondence: Wayne Reeve ([email protected]) Keywords: root-nodule bacteria, nitrogen fixation, rhizobia, Alphaproteobacteria T “Burkholderia sprentiae” strain WSM5005 is an aerobic, motile, Gram-neg ative, non-spore- forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007.
    [Show full text]
  • Phylogenetic Relationships and the Effects of Edaphic Heterogeneity on the Distribution of Wiborgia (Fabaceae) in the Greater Cape Floristic Region
    Phylogenetic relationships and the effects of edaphic heterogeneity on the distribution of Wiborgia (Fabaceae) in the Greater Cape Floristic Region. Ntwai Moiloa MLXNTW001 Thesis presented for the degree of Master of Science in the Department of Biological Sciences February 2016 Supervisors Assoc/Prof Muthama Muasya, Dr Samson Chimphango University of Cape Town i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town DECLARATION I know the meaning of plagiarism and declare that all of the work in the document, save for that which is properly acknowledged, is my own, and has not been submitted for any degree or examination at any other university. Ntwai Moiloa ii ABSTRACT The Greater Cape Floristic Region (GCFR) is divided into two subregions, the Core Cape Subregion (CCR) and Extra Cape Subregion (ECR), which are mainly characterized by Fynbos and Succulent Karoo biomes, and are recognized among global biodiversity hotspots. The soils in the ECR are mostly shale derived and richer in nutrients compared to the CCR which is characterized by nutrient- poor sandstone soils mainly from the Cape System. The Fabaceae (Leguminosae) is the second largest family in the CCR with a total of about 764 species (belonging to 43 genera, of which 83% of the species are endemic to the CCR), and sixth largest in the ECR with about 140 species currently recognised with 39.3% of these species endemic to the ECR.
    [Show full text]
  • In the Core Cape Subregion of South Africa Meshack Nkosinathi Dludlu
    Edaphic Factors and Rhizobia influence the Distribution of Legumes (Fabaceae) in the Core Cape Subregion of South Africa Town Meshack Nkosinathi Dludlu Cape Thesis presented for the Degree of of DOCTOR OF PHILOSOPHY Department of Biological Sciences UniversityUNIVERSITY OF CAPE TOWN February 2018 Supervisors: A/Prof. A. Muthama Muasya & Dr Samson B.M. Chimphango The copyright of this thesis vests in the author. No quotation from it or information derivedTown from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes Capeonly. of Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration I, Meshack Nkosinathi Dludlu know the meaning of plagiarism and declare that all of the work in the thesis, save for that which is properly acknowledged, is my own. I hereby, a) grant the University free licence to reproduce the above thesis in whole or in part for the purpose of research; b) declare that: i. the above thesis is my own unaided work, both in conception and execution, and that apart from the normal guidance from my supervisors, I have received no assistance except as stated below; ii. neither the substance nor any part of the thesis has been submitted in the past, or is being, or is to be submitted for a degree at this University or any other University, except as stated below. I am now presenting the thesis for examination for the degree of PhD.
    [Show full text]
  • Systematic Studies of the Genus Lebeckia and Related Genera of the Tribe Crotalarieae (Fabaceae)
    bio Boprr Systematic studies of the genus Lebeckia and related genera of the tribe Crotalarieae (Fabaceae) by James Stephen Boatwright Thesis submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: PROF. BEN-ERIK VAN WYK CO-SUPERVISOR: PROF. MICHAEL WINK APRIL 2009 AFFIDAVIT: MASTER'S AND DOCTORAL STUDENTS TO WHOM IT MAY CONCERN This serves to confirm that I James Stephen Boatwright Full Name(s) and Surname ID Number 8204225029081 Student number 920103313 enrolled for the Qualification PhD (Botany) Faculty _Science Herewith declare that my academic work is in line with the Plagiarism Policy of the University of Johannesburg which I am familiar with. I further declare that the work presented in the Systematic studies of the genus Lebeckia and related genera of the tribe Crotalarieae (Fabaceae) (thesis) is authentic and original unless clearly indicated otherwise and in such instances full reference to the source is acknowledged and I do not pretend to receive any credit for such acknowledged quotations, and that there is no copyright infringement in my work. I declare that no unethical research practices were used or material gained through dishonesty. I understand that plagiarism is a serious offence and that should I contravene the Plagiarism Policy notwithstanding signing this affidavit, I may be found guilty of a serious criminal offence (perjury) that would amongst other consequences compel the UJ to inform all other tertiary institutions of the offence and to issue a corresponding certificate of reprehensible academic conduct to whomever request such a certificate from the institution.
    [Show full text]
  • A Revision of Lebeckia Sect. Lebeckia: the L. Sepiaria Group ⁎ M.M
    South African Journal of Botany 73 (2007) 118–130 www.elsevier.com/locate/sajb A revision of Lebeckia sect. Lebeckia: The L. sepiaria group ⁎ M.M. le Roux, B.-E. Van Wyk Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa Received 20 April 2006; accepted 13 September 2006 Abstract The type section of the genus Lebeckia (sect. Lebeckia) comprises 12 species with simple, acicular leaves, all endemic to the Cape Floristic Region. As a first step towards a revision of the section Lebeckia, a detailed study was made of the species with terete or subterete fruits (L. sepiaria and related species). Analyses of the vegetative and reproductive morphology showed that four species should be recognised: L. sepiaria (L.) Thunb., L. ambigua E. Mey., L. gracilis Eckl. and Zeyh. and L. brevicarpa M. M. le Roux and B.-E. van Wyk sp. nov. Last-mentioned has been confused with L. sepiaria (hitherto wrongly known as L. simsiana Eckl. and Zeyh.) but is easily distinguished by its ovoid, few-seeded pods and restricted distribution in the Cedarberg Mountains. The diagnostic characters, correct nomenclature and typification, as well as descriptions and distribution maps are presented. © 2006 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Fabaceae; Lebeckia brevicarpa; Lebeckia sect. Lebeckia; Revision; South Africa; Tribe Crotalarieae 1. Introduction diastrum and Lebeckia section Eu-Lebeckia), a revision of the type species, Lebeckia sepiaria (L.) Thunb. and its three close The genus Lebeckia Thunb. (Fabaceae) is the last remaining relatives, is presented here. These four species differ from others genus of the predominantly African tribe Crotalarieae that has of the section in their±sessile, terete or semi-terete pods.
    [Show full text]
  • Symbiotic Diversity, Specificity and Distribution of Rhizobia In
    FEMS Microbiology Ecology, 91, 2015 doi: 10.1093/femsec/fiu024 Advance Access Publication Date: 8 December 2014 Research Article RESEARCH ARTICLE Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa) Benny Lemaire1,2,∗, Oscar Dlodlo1, Samson Chimphango1, Charles Stirton1, Brian Schrire3, James S. Boatwright4, Olivier Honnay2,ErikSmets2,5, Janet Sprent6,EuanK.James7 and Abraham M. Muasya1 1Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa, 2Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium, 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK, 4Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa, 5Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, The Netherlands, 6Division of Plant Sciences, University of Dundee at JHI, Dundee DD2 5DA, UK and 7The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK ∗ Corresponding author: Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium. Tel: +32-16-32-86-36; Fax: +32 16 32 19 68; E-mail: [email protected] One sentence summary: This study is the most comprehensive phylogenetic assessment of rhizobia within the Fynbos biome, showing that legumes are specifically associated with Burkholderia and Mesorhizobium, the latter underestimated within Fynbos soils. Editor: Angela Sessitsch ABSTRACT Rhizobial diversity and host preferences were assessed in 65 native Fynbos legumes of the papilionoid legume tribes Astragaleae, Crotalarieae, Genisteae, Indigofereae, Millettieae, Phaseoleae, Podalyrieae, Psoraleeae and Sesbanieae.
    [Show full text]
  • Burkholderia Sprentiae” Strain WSM5005T
    Standards in Genomic Sciences (2013) 9:38 5-394 DOI:10.4056/sig s.4558268 Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T Wayne Reeve*1, Sofie De Meyer1, Jason Terpolilli1, Vanessa Melino1, Julie Ard ley 1, Tian Rui1, Ravi Tiwari1, John Howieson1, Ron Yates 1,2, Graham O’Hara1, Megan Lu3, David Bruce3, Chris Detter3, Roxanne Tapia3, Cliff Han3, Chia-Lin Wei3, Marcel Huntemann3, James Han 3, I-Min Chen 4, Konstantinos Mavromatis3, Victor Markowitz4, Ernest Szeto4, Natalia Ivanova3, Natalia Mikhailova3, Galina Ovchinnikova3, Ioanna Pagani3, Amrita Pati3, Lynne Goodwin4, Lin Peters3, Sam Pitluck3, Tanja Woyke3 & Nikos Kyrpides3. 1 Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia 2 Department of Agriculture and Food, Western Australia, Australia 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA *Correspondence: Wayne Reeve ([email protected]) Keywords: root-nodule bacteria, nitrogen fixation, rhizobia, Alphaproteobacteria T “Burkholderia sprentiae” strain WSM5005 is an aerobic, motile, Gram-neg ative, non-spore- forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we de- scribe the features of “Burkholderia sprentiae” strain WSM5005T, tog ether with the genome sequence and its annotation. The 7,761,063 bp hig h-quality-draft g enome is arrang ed in 8 scaffolds of 236 contig s, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Insti- tute 2010 Community Sequencing Prog ram.
    [Show full text]
  • A Ley-Farming System for Marginal Lands Based Upon a Self
    A ley-farming system for marginal lands based upon a self-regenerating perennial pasture legume Tom Edwards, John Howieson, Brad Nutt, Ron Yates, Graham O’hara, Ben-Erik van Wyk To cite this version: Tom Edwards, John Howieson, Brad Nutt, Ron Yates, Graham O’hara, et al.. A ley-farming system for marginal lands based upon a self-regenerating perennial pasture legume. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2019, 39 (1), pp.13. 10.1007/s13593-019-0558-2. hal-02480694 HAL Id: hal-02480694 https://hal.archives-ouvertes.fr/hal-02480694 Submitted on 17 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agronomy for Sustainable Development (2019) 39: 13 https://doi.org/10.1007/s13593-019-0558-2 REVIEW ARTICLE A ley-farming system for marginal lands based upon a self-regenerating perennial pasture legume Tom Edwards1,2 & John Howieson2 & Brad Nutt2 & Ron Yates1,2 & Graham O’Hara2 & Ben-Erik Van Wyk3 Accepted: 18 January 2019 /Published online: 11 February 2019 # INRA and Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Annual-based farming systems represent some of the most highly disturbed terrestrial ecosystems on the planet.
    [Show full text]
  • Assessing Legumes Indigenous to South Africa, Lesotho and Swaziland for Their Pasture Potential
    African Journal of Range & Forage Science ISSN: 1022-0119 (Print) 1727-9380 (Online) Journal homepage: https://www.tandfonline.com/loi/tarf20 Assessing legumes indigenous to South Africa, Lesotho and Swaziland for their pasture potential Marike Trytsman, Elizabeth L Masemola, Francuois L Müller, Frikkie J Calitz & Abraham E van Wyk To cite this article: Marike Trytsman, Elizabeth L Masemola, Francuois L Müller, Frikkie J Calitz & Abraham E van Wyk (2019) Assessing legumes indigenous to South Africa, Lesotho and Swaziland for their pasture potential, African Journal of Range & Forage Science, 36:1, 27-40, DOI: 10.2989/10220119.2018.1522515 To link to this article: https://doi.org/10.2989/10220119.2018.1522515 Published online: 16 Jan 2019. Submit your article to this journal Article views: 41 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tarf20 African Journal of Range & Forage Science 2019, 36(1): 27–40 Copyright © NISC (Pty) Ltd Printed in South Africa — All rights reserved AFRICAN JOURNAL OF RANGE & FORAGE SCIENCE ISSN 1022-0119 EISSN 1727-9380 https://doi.org/10.2989/10220119.2018.1522515 Assessing legumes indigenous to South Africa, Lesotho and Swaziland for their pasture potential Marike Trytsman1,2*, Elizabeth L Masemola1, Francuois L Müller1,3, Frikkie J Calitz4 and Abraham E van Wyk2,5 1 Agricultural Research Council–Animal Production, Roodeplaat, South Africa 2 Department of Plant and Soil Sciences, University of Pretoria, Pretoria,
    [Show full text]