Plant List for Queanbeyan Escarpment Lower Slopes – 6 August 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesizing Ecosystem Implications of Mistletoe Infection
Environmental Research Letters LETTER • OPEN ACCESS Related content - Networks on Networks: Water transport in Mistletoe, friend and foe: synthesizing ecosystem plants A G Hunt and S Manzoni implications of mistletoe infection - Networks on Networks: Edaphic constraints: the role of the soil in vegetation growth To cite this article: Anne Griebel et al 2017 Environ. Res. Lett. 12 115012 A G Hunt and S Manzoni - Impact of mountain pine beetle induced mortality on forest carbon and water fluxes David E Reed, Brent E Ewers and Elise Pendall View the article online for updates and enhancements. This content was downloaded from IP address 137.154.212.215 on 17/12/2017 at 21:57 Environ. Res. Lett. 12 (2017) 115012 https://doi.org/10.1088/1748-9326/aa8fff LETTER Mistletoe, friend and foe: synthesizing ecosystem OPEN ACCESS implications of mistletoe infection RECEIVED 28 June 2017 Anne Griebel1,3 ,DavidWatson2 and Elise Pendall1 REVISED 1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia 12 September 2017 2 Institute for Land, Water and Society, Charles Sturt University, PO box 789, Albury, NSW, Australia ACCEPTED FOR PUBLICATION 3 Author to whom any correspondence should be addressed. 29 September 2017 PUBLISHED E-mail: [email protected] 16 November 2017 Keywords: mistletoe, climate change, biodiversity, parasitic plants, tree mortality, forest disturbance Original content from this work may be used Abstract under the terms of the Creative Commons Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is Attribution 3.0 licence. contributing to increasing rates of tree mortality globally. -
José Guadalupe García-Franco
CURRICULUM VITAE JOSÉ GUADALUPE GARCÍA-FRANCO 20/08/2015 Curriculun Vitae García-Franco Contenido 1. DATOS PERSONALES ..................................................................................................................... 5 2. DATOS LABORALES ....................................................................................................................... 5 3. FORMACIÓN PROFESIONAL ............................................................................................................ 5 3.1. Licenciatura: .......................................................................................................................... 5 3.2. Maestría: ................................................................................................................................ 5 3.3. Doctorado: ............................................................................................................................. 5 4. PERTENENCIA AL SISTEMA NACIONAL DE INVESTIGADORES ......................................................... 5 5. DOMINIO DE IDIOMAS EXTRANJEROS ............................................................................................ 5 6. BECAS OBTENIDAS PARA SU FORMACIÓN PROFESIONAL ............................................................... 5 7. EXPERIENCIA LABORAL ................................................................................................................ 6 8. ASISTENCIA A CURSOS Y TALLERES DE CAPACITACIÓN .............................................................. 6 9. -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Study of Old-Growth Forest in Victoria's North East
Study of Old-growth Forest in Victoria’s North East Department of Natural Resources and Environment Victoria Forests Service Technical Reports 98-1 June 1998 Copyright © Department of Natural Resources and Environment 1998 Published by the Department of Natural Resources and Environment PO Box 500, East Melbourne Victoria 3002, Australia http://www.nre.vic.gov.au This publication is copyright. Apart from any fair dealing for private study, research, criticism or review as permitted under the Copyright Act 1968, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying or otherwise, without prior permission of the copyright owner. The National Library of Australia Cataloguing-in- Publication entry: Study of Old-growth Forest in Victoria’s North East. Bibliography. ISSN 1443-1106 ISBN 0 7311 4440 6 1.Forest Management - Victoria, Northeastern. 2.Forests and forestry - Victoria, Northeastern. 3.Old-growth forests - Victoria, Northeastern. I. Victoria. Dept. of Natural Resources and Environment. (Series: Forests Service Technical Report ; 98 -1). 634.909945 General Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss, or other consequence which may arise from you relying on any information in this publication. Cover design and layout: Wamen Press Cover photographs: 1. Montane/ Sub-alpine Woodland near Mt Howitt - Geoff Lucas, 2. Alpine Complex - from Tims Spur, - Geoff Lucas Printing by Wamen Press i FOREWORD During the early 1990’s the then Department of Conservation and Natural Resources (CNR) and the Australian Heritage Commission (AHC) reached joint agreement on a series of studies to evaluate National Estate values in Victoria’s North East. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Supplementary Materialsupplementary Material
Supplementary Materials 10.1071/RJ16076_AC © CSIRO 2017 Supplementary Material: Rangeland Journal, 2017, 39(1), 85–95. Assessing the invasion threat of non-native plant species in protected areas using Herbarium specimen and ecological survey data. A case study in two rangeland bioregions in Queensland Michael R. NgugiA,B and Victor John NeldnerA AQueensland Herbarium, Department of Science Information Technology and Innovation, Mt Coot- tha Road, Toowong, Qld 4066, Australia. BCorresponding author. Email: [email protected] Table S1. List of native species in Cape York Peninsula and Desert Uplands bioregions Cape York Peninsula native Species Desert Uplands native Species Abelmoschus ficulneus Abelmoschus ficulneus Abelmoschus moschatus subsp. Tuberosus Abildgaardia ovata Abildgaardia ovata Abildgaardia vaginata Abildgaardia vaginata Abutilon arenarium Abrodictyum brassii Abutilon calliphyllum Abrodictyum obscurum Abutilon fraseri Abroma molle Abutilon hannii Abrophyllum ornans Abutilon leucopetalum Abrus precatorius L. subsp. precatorius Abutilon malvifolium Abutilon albescens Abutilon nobile Domin Abutilon auritum Abutilon otocarpum Abutilon micropetalum Abutilon oxycarpum Acacia armillata Abutilon oxycarpum Acacia armitii Abutilon oxycarpum var. incanum Acacia aulacocarpa Abutilon oxycarpum var. subsagittatum Acacia auriculiformis Acacia acradenia Acacia brassii Acacia adsurgens Acacia calyculata Acacia aneura F.Muell. ex Benth. var. aneura Acacia celsa Acacia aneura var. major Pedley Acacia chisholmii Acacia angusta Maiden -
Vegetation Assessment Field Results
Appendix B - Vegetation Assessment Field Results Reedy Creek Wallumbilla Pipeline Project RE Code site sheets Reedy Creek Wallumbilla Pipeline Project Biocondition site sheets Appendix C - Project Fauna and Flora Species Survey Results Fauna species list of RCWP Survey area and surrounds compiled from data collected by CDM Smith in October and November 2016. Unless otherwise noted, this table follows the nomenclature provided by the following sources: . The complete guide to reptiles of Australia 4th Ed. (Wilson and Swan 2013); . Tadpoles and frogs of Australia (Anstis 2013); . Field companion to the mammals of Australia (Van Dyck et al. 2013); and . Birdlife Australia’s International Ornithologist Committee Australian Checklist (BARC 2016). Status abbreviations – EPBC: E = Endangered; V = Vulnerable; M = Migratory. NC: E = Endangered; V = Vulnerable; NT = Near Threatened; S = of Special Least Concern; C = Least Concern; I = Introduced. Table 1 Overall fauna species list from RCWP Survey area Species name Common name Status NC EPBC AMPHIBIANS Litoria caerulea Green Tree Frog C Litoria fallax Eastern Sedgefrog C Litoria latopalmata Broad-palmed Frog C Litoria rubella Red Tree Frog C Limnodynastes fletcheri Long-thumbed Frog C Limnodynastes tasmaniensis Spotted Grass Frog C Rhinella marina Cane Toad I REPTILES Gehyra dubia Dubious Dtella C Heteronotia binoei Bynoe's Gecko C Cryptoblepharus pulcher C Ctenotus ingrami Unspotted Yellow-sided Ctenotus C Lerista fragilis Eastern Mulch-slider C Lygisaurus foliorum Tree-base Litter-skink C Tiliqua -
A Regional Examination of the Mistletoe Host Species Inventory
354 Cunninghamia 8(3): 2004 Downey, Examination of the mistletoe host inventory A regional examination of the mistletoe host species inventory Paul Owen Downey Centre for Plant Biodiversity Research, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, AUSTRALIA. Present Address Institute of Conservation Biology, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 AUSTRALIA. [email protected] Abstract: Downey (1998) collated an inventory of mistletoe host species based on herbaria records for every aerial mistletoe species (families Loranthaceae and Viscaceae) in Australia. In this paper the representative nature of those host lists is examined in an extensive field survey of mistletoes and their host species in south-eastern New South Wales (including Australian Capital Territory). Four new host species not in the 1998 inventory, and eight new mistletoe-host combinations (i.e. a previously recorded host but not for that particular mistletoe species) were collected. These new records were distributed throughout the survey area. Interestingly, these new host-mistletoe combinations were for mistletoe species that were well represented in the national inventory (i.e. with many herbarium collections and numerous host species). The initial inventory was incomplete, at least for south-eastern New South Wales, indicating the need for (i) more targeted surveys similar to this one, and/or (ii) regular updates of the host inventory based on voucher specimens. A possible reasons why information on host-mistletoe combinations is incomplete may be that such combinations may be dynamic (i.e. mistletoe species may be expanding their suite of potential hosts, either fortuitously or as result of evolutionary pressures). -
Native Species
Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl -
Approved EMP Appendices 1 to 12
Appendix 1. Field Management Plans Environmental Management/ Control Monitoring Monitoring Report Objective Impact Activity Reporting Action Responsibility Value Strategy Action Frequency Frequency Flora/fauna No permanent Loss of protected • All vegetation Ensure all necessary Visual Weekly Corrective action record as Induction Person in charge detrimental flora species, clearing permits and approvals are required training impact to essential habitat • Removal of fertile in place and compliance Prior to start of biodiversity or and biodiversity topsoil obligations communicated work ecological to site personnel prior to function commencing vegetation clearing Mark the boundary of the Visual weekly Corrective action record as Monthly Person in charge work program area with required (summary in tape and/ or hi-viz fencing monthly designated for ‘No Go report) Zones’ and monitor integrity Ensure site specific fire Audit At start of new Audit report As required Person in charge management plans are in work and place quarterly Weed invasion/ • All vegetation Upgrade existing tracks Visual Weekly Corrective action record as Monthly Weeds Officer infestation and / clearing where practical to required increased • Accessing site by accommodate the heavy occurrence or vehicle vehicle traffic (including abundance of widening). feral animals Vehicle wash down prior Weed certificate Prior to Certificate At Weeds Officer to entering the area mobilization commencemen t Vehicle wash down for the Weed certificate As required Self-assessment As required -
South West Slopes Revegetation Guide
ot etSoe Rvgtto Guide South West Slopes Revegetation ot etSoe Rvgtto Guide South West Slopes Revegetation from little things big things grow... SouthSouth WestWest SlopesSlopes RevegetationRevegetation GuideGuide (south of the Murrumbidgee River) 1998 from little things big things grow... South West Slopes Revegetation Guide (SOUTH OF THE MURRUMBIDGEE RIVER) Edited by Fleur Stelling Murray Catchment Management Committee & Department of Land & Water Conservation Albury, NSW March 1998. With a major contribution by Karen Walker Greening Australia, Wagga Wagga, NSW. foreword John Landy he South West Slopes region of New South introduced species of plants and animals and grazing T Wales runs from the Riverina plains to the have all played a part in the decline in biodiversity of mountains in the east, with an elevation of up to native vegetation. This book provides useful material 600 metres. It is one of the most extensively altered for those seeking to control weeds, attract wildlife to landscapes in this country. The most radical the farm dam, or reintroduce native grasses and modification has been on the lower slopes and plains, pasture. The practical information sheets will also be where the establishment of pastures and crops was valuable in many aspects of land management. most easily achieved. Clearing of the catchments in the rising country, mainly during the last century — has Many farmers in the South West Slopes region (and resulted in eroded streams and silt deposition, the latter elsewhere in the country) have struggled under encouraged by the widespread growing of willows. increasingly adverse conditions. My family has a property in the south-east, near Tooma, and we have Preserving the remaining areas of bushland that have had to step up our fight against weeds (notably the so far escaped a significant decline in biodiversity is blackberry), which infests pasture and modified clearly a priority, and several chapters in this Guide bushland alike. -
Species List
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.