A Pocket Guide to Common Natural Enemies of Crop and Garden Pests

Total Page:16

File Type:pdf, Size:1020Kb

A Pocket Guide to Common Natural Enemies of Crop and Garden Pests A Pocket Guide Biological Control Lady Beetles eggs Common Natural Enemies Determine the relative populations of pests and (Coleoptera: Coccinellidae) natural enemies with preliminary monitoring. Then Identification larva of Crop and Garden Pests use the following tactics to enhance biological Adults orange to red control as part of an IPM program. with black spots, or in the Pacific Northwest mostly black; larvae . Protect natural enemies from disturbances longer; eggs in pupa such as pesticides, other management clusters. Adalia bipunctata 1 1 practices, their own natural enemies ⁄8 – ⁄3" (e.g., ants), or adverse environmental conditions. Provide supplementary nectar or pollen sources, alternate hosts, or shelter. Coccinella Olla abdominalis Hippodamia . Manipulate the behaviors of natural enemies novemnotata convergens with attractants or with plant structure and arrangement. Observation tips Similar beetles All stages found on plants. Augment natural enemy populations with mass releases of lab-reared individuals. Predacious activity EC 1613-E Adults and larvae prey on December 2007 . Introduce natural enemies that are aphids, scale insects, mites, Chrysomelid beetles absent from the area. 3 and other small insects. 5 < fold here > < fold here > < fold here > General Observation Tips Green and Brown Lacewings Using this Guide . When doing visual counts, also inspect the (Neuroptera: Chrysopidae and Hemerobiidae) The cards in this guide are designed to help undersides of leaves. you quickly learn the main groups of natural Identification eggs enemies of crop and garden pests, their . Approach fast-moving insects slowly, or Light green or larva predacious activity, and tips for observing them. use nets, beating trays, and traps to get a brown, large Photographs are of the most common species in wings, long closer look. antennae; larvae the Pacific Northwest. flat with long Use this guide as a field supplement to other mouthparts; Distinguishing Natural Enemies eggs on stalks. publications that provide more detail on how to scout for and manage specific pests and natural from Plant Pests in General enemies. Observe the specimen to see whether it Green lacewings, e.g., Chrysopa californica Print each sheet on regular paper or cardstock. feeds on animals or plants. Observation Then fold on the central horizontal line and cut . To see whether a particular natural enemy tips on the dotted orange lines to create three 2-sided Adults often seen cards. (Laminate if needed.) attacks a target pest species, place flying or on plants; individuals of both species together in an eggs and larvae on plants. Brown lacewings, e.g., Hemerobius spp. Most of the photographs in this pocket guide are enclosed environment that allows them from the Ken Gray collection. Predacious activity punch room to move. hole All other photographs are from the author. Larvae and adults mostly prey on aphids, 1 3 2 4 mealybugs, and other small insects. ⁄2 – ⁄4" 6 1 1 Predacious 1 3 larva egg Ground or “Carabid” Beetles Damsel or ⁄3 – ⁄2" nymph Hoverflies ⁄2 – ⁄4" (Coleoptera: Carabidae) “Nabid” Bugs (Diptera: Syrphidae) puparium aphids (Hemiptera: Nabidae) Identification Scaphinotus marginatus Identification Adults mimic wasps and Identification Nabis spp. feeding on Lygus bugs bees, but fly more quickly or larva Adults and nymphs long hover, often have yellow egg Adults are dark or metallic and thin with front legs markings; larvae Eupeodes fumipennis with ridged wing covers; slighty enlarged for maggotlike; eggs small, larvae grublike with large grabbing prey. whitish, and oblong. mandibles. 1 Observation tips ⁄3 –2" Observation tips Observation tips Most commonly found Predacious activity Adults mostly active at night; Eggs, larvae, and tarlike Sphaerophoria running on low, dense Adults and nymphs prey on other Scaeva pyrastri look for fast-running adults Pterostichus scitulus excrement are found at sulphuripes vegetation. insects in same habitat. aphid colonies; adults Predacious activity under objects on soil surface Predacious activity or in soil samples, larvae in Other bugs confused with nabid bugs mostly on or hovering at Larvae prey mostly on aphids and scale Prey mostly on soil organisms, soil samples. flowers. insects; adults feed on flower feeders; some feed on seeds. some species not predacious. Other beetles confused with carabids Other insects confused with hoverflies Assassin bugs Tenebrionid Some of the thinner beetles mirid bugs Stilt bugs Bee flies Bees Wasps 7 9 11 < fold here > < fold here > < fold here > Parasitoid Tachinid Flies Rove Beetles Predacious 1 2 Eggs on host ⁄3 – ⁄3" Stink Bugs (Diptera: Tachinidae) (Coleoptera: Identification Staphylinidae) (Hemiptera: Pentatomidae) Adults similar to Perillus houseflies, but with very Platyprepia bioculatus Philonthus sordidus 1 2 long bristles on tail end; guttata ⁄3 – ⁄3" puparia red to brown and Identification oblong; larvae inside host; Adults and nymphs have a broad pentagon or shield shape, usually eggs white and oblong on Leptacinus batychrus Insects confused host. brown or grey rather than green. Puparia next to hosts with rove beetles 1⁄ –1⁄ " Parasitic activity 8 3 Brochymena sp. Observation tips Important endoparasitoids of Found on vegetation; may have many worm, beetle, sawfly, and Identification Predacious activity to observe activity to determine bug pests; populations can Observation tips Adults small with short wing Adults and nymphs prey on whether the species is increase rapidly. 1 other insects in same habitat. Adults seen on flowers; look for covers not covering abdomen. Earwigs (adults > ⁄3”) predacious or herbivorous. eggs on host, puparia near host Similar-looking herbivorous stink bugs Flies commonly confused with tachinids Predacious activity Prey mostly on small soil organisms. Observation tips Carrion beetles Adults mostly active at night; look for fast-running House flies Blow flies Flesh flies 8 adults under objects on soil surface or in soil samples. 10 12 Minute Pirate Orius tristicolor Assassin Tiger Beetles Bug 1 Bugs ⁄3 –1" (Coleoptera: (Hemiptera: (Hemiptera: Cicindellidae) Anthocoridae) 1 2 Reduviidae) Identification ⁄3 – ⁄3" 1 < ⁄8" Identification Adults shiny with large eyes Identification and mandibles; very fast Cicindela oregona Adults with a black and white Adults and nymphs runners and flyers. cross pattern; nymphs orange resemble damsel bugs, to dark red. but larger, with a wider Observation tips nymph abdomen, thinner neck, Adults usually seen flying and often with spines. Predacious activity Observation tips nymph over and running on light and sandy soils. Adults and nymphs prey on Found on vegetation and flowers; Predacious other small insects in same more easily monitored with nets or activity habitat. nymph Predacious activity beating trays due to small size. Adults and nymphs prey Adults and larvae prey on on many types of insects Cicindela longilabris columbiana Other similar-looking small bugs Observation tips nymph many types of insects in the in same habitat. Found on vegetation and flowers. same habitat. Other bugs confused with assassin bugs Similar beetles Big-eyed bug Chinch bugs Some plant nymphs bug nymphs Damsel bugs Ambush bugs Stilt bugs Soft-winged flower beetles Ground beetles 13 15 17 < fold here > < fold here > < fold here > Big-eyed Bugs nymph Ambush Bugs Soldier Beetles (Hemiptera: Lygaeidae) (Hemiptera: Phymatidae) (Coleoptera: 1 ⁄2 –1" 3 Cantharidae) < ⁄16" 1 2 Identification Identification ⁄3 – ⁄3" Cantharis sp. Adults and nymphs with big Geocoris Identification Adults and nymphs are often Poda eyes; fast-moving and slightly Adults are long and thin with brus sp. pallens camouflaged like leaves and Phymata larger than minute pirate bugs. flowers to ambush prey. long antennae, often with red metcalfi or orange markings. Observation tips Observation tips Observation tips Found on vegetation or nymph Podabrus cavicollis Found on flowers and Found on leaves and the ground; more easily vegetation. monitored with nets or nymph flowers. beating trays due to Predacious activity Predacious speedy flight and small Predacious activity activity size. Adults and nymphs prey on other Adults and nymphs prey on other Adults prey on other small insects in same habitat. insects in same habitat. insects in same habitat. Podabrus pruinosus Other similar-looking small bugs Similar-looking bugs Similar types of beetles Some plant bug Minute pirate bugs Assassin bugs Leaf-footed bugs Alydid bugs Chinch bugs nymphs Soft-winged flower beetles 14 16 “Fireflies” 18 Thread-waisted Wasps Larger Parasitoid Wasps Parasitized and Diseased (Hymenoptera: Sphecidae) (Hymenoptera: e.g., Ichneumonidae, Insect Pests Braconidae) Aphid “mummies” Identification Identification and Stout-bodied to slender, often Identification observation tips with a very narrow waist and Braconids are < ½", Parasitoid larvae and pupae are wide head. Ichneumonids are difficult to identify. One of the Ischnus inquisitorius usually larger with a best identification methods is to Observation tips Trypoxylon sp. longer abdomen. Ichneumonid collect hosts that look unusual Active near open sandy 1⁄ –2" wasps and hold in a container until the areas and flowers. 4 Parasitic activity parasitoid develops into an Kill hosts by parasitism or adult. Predacious activity pupae Many species specialize on by piercing and feeding; various insect prey species. hosts include insect larvae, pupae, and aphids. Females capture prey and paras Apanteles itoid bring back to larvae in nests. larvae
Recommended publications
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]
  • A Comparative Study of Two Seed Bugs, Geocoris
    A COMPARATIVE STUDY OF TWO SEED BUGS, GEOCORIS BULLATUS (SAY) AND G. DISCOPTERUS STAL (HEMIPTERA: LYGAEIDAE) IN THE YUKON. By JENNIFER J. ROBINSON B.Sc. Trent University, 1980 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF ZOOLOGY We accept this thesis as conforming te trie required standard June, 1985 (c) Jennifer J. Robinson, 1985 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 )E-6 C3/81) Abstract Geocoris bullatus (Say 1831), (Henriptera: Lygaeidae) has been collected and studied across North America but the present work is the o first detailed study of western North American CL discopterus Stal 1874. In fact, it has been claimed that 6^. discopterus is solely a species of the east. As the two species are taxonomically difficult to separate, when they were apparently discovered together at several localities in the southwestern Yukon, a detailed investigation of their systematics and distribution seemed necessary. Species status of Yukon Q. bullatus and iG.
    [Show full text]
  • Biological Control of Insect Pests in the Tropics - M
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans.
    [Show full text]
  • Predation of the Chinch Bug, Blissus Occiduus Barber (Hemiptera: Blissidae) by Geocoris Uliginosus (Say) (Hemiptera: Lygaeidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2008 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. Carstens University of Nebraska-Lincoln Frederick P. Baxendale University of Nebraska-Lincoln, [email protected] Tiffany Heng-Moss University of Nebraska-Lincoln, [email protected] Robert J. Wright University of Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Carstens, J. D.; Baxendale, Frederick P.; Heng-Moss, Tiffany; and Wright, Robert J., "Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae)" (2008). Faculty Publications: Department of Entomology. 157. https://digitalcommons.unl.edu/entomologyfacpub/157 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 81(4), 2008, pp. 328–338 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. CARSTENS,F.P.BAXENDALE,T.M.HENG-MOSS, AND R. J. WRIGHT Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583 ABSTRACT: Big-eyed bugs have been well documented as predators on a diverse group of arthropod prey in turfgrasses; however, little is known about the big-eyed bug species associated with buffalograss, or their feeding habits relative to the western chinch bug, Blissus occiduus Barber.
    [Show full text]
  • Geocoris Punctipes</Emphasis>
    EntomoL exp. appl. 64: 195-202, 1992. 1992 Kluwer Academic Pubhshers. Printed & Belgium. 195 Geocoris punctipes as a predator of Bemisia tabaci: a laboratory evaluation A. C Cohen I & D. N. Byrne2 1 U.S. Department of Agriculture, Agr&ultural Research Service Western Cotton Research Laboratory, 4135 E. Broadway Rd., Phoenix, AZ 85040, USA; 2Department of Entomology, University of Arizona, Tucson, AZ 85721, USA Accepted: February 28, 1989 Key words: Geocoris, Bemisia, predator, handling time Abstract Geocoris punctipes (Say), a predaceous lygaeid not previously documented as a whitefly predator, was tested in the laboratory as a natural enemy of the sweet potato whitefly, Bemisia tabaci (Genn.). Its stalking behavior with whiteflies as prey was similar to that observed with aphids. A previously unob- served behavior was noted that involves the predators using salivary secretions to fasten the wings of prey to various surfaces, allowing labial probing and feeding. Prey consumption as a function of prey number appeared to follow the pattern of the Holling type II functional response. Handling time per prey item ranged from about 180 to 240 seconds. No changes were observed in handling time devoted to earlier versus later catches. Nutritional quality of whiteflies was measured using crude protein, lipids and carbohydrates as criteria. Performance, in terms of predator behavior, total daily handling time, func- tional response, energy budget and nutritional quality all support the hypothesis that G. punctipes is a promising candidate for biological control of sweet potato whiteflies. Introduction with photosynthesis (Perkins, 1983). These facts indicate a great need for effective control strate- The sweet potato whitefly, Bemisia tabaci (Genn.) gies.
    [Show full text]
  • A B C D E F G
    8/2011! A jee•AH•kor•is, Big-eyed Bugs Have Big Appetite for Pests Peter Asiimwe, Lydia Brown, Tim Vandervoet, Peter Ellsworth (University of Arizona) & Steven Naranjo (USDA-ARS, ALARC) Dykinga Geocoris punctipes Geocoris (Family: Geocoridae) are important predators feeding on whiteflies found throughout the United States in agricultural crops. USDA, Jack They are commonly known as “big-eyed bugs” due to the B C Eyespots on characteristic large, prominent, widely separated eyes on maturing the sides of their heads (A). They actively hunt their Geocoris egg victims, and their big eyes give them a wide field of vision and boost their ability to locate prey. Geocoris use a long Whitefly straw-like beak to stab and kill their prey before sucking up cadaver fed on & evacuated by the liquefied contents, leaving behind a hollow cadaver (B). Geocoris Geocoris deposit eggs singly and horizontally on leaf or Geocoris D E pallens adult stem surfaces. These hot-dog shaped eggs are distinguished on cotton from other insect eggs by the presence of two red eyespots flower False chinch near the tip (C). Predatory stages include five nymphal bug in instars and a winged adult. Nymphs look similar to adults sweepnet but are smaller and lack wings. False chinch bugs, a closely related insect with decidedly plant-feeding tendencies, can sometimes be confused with Geocoris (D). They are more slender than big-eyed bugs and have less pronounced eyes. F Geocoris In Arizona cotton, Geocoris feed on all stages of whitefly, th punctipes 5 instar adult Lygus nymphs, thrips, lepidopteran eggs and small larvae, Lygus and mites, as well as other beneficial species.
    [Show full text]
  • Kaytora Long
    Journal of Undergraduate Research Volume 8, Issue 1 - September / October 2006 Evaluation of Various Mediums for Rearing Bigeyed Bugs Geocoris punctipes (Say) a Beneficial Predator for Controlling Insect Pest Populations Kaytora Long ABSTRACT The bigeyed bug, Geocoris punctipes (Say), is an important beneficial predator in many agricultural systems. It feeds on many stages of insect pests. Three types of mediums were evaluated on Geocoris punctipes to determine which medium will best promote ovipostion (egg laying) and the development of G. punctipes to nymphs and adults. The three mediums evaluated were cotton balls, cotton squares, and polyester/rayon gauze. The experimental design was completely randomized with four replicates per treatment (medium). The results indicate that cotton balls produced the highest number of eggs, nymphs, and adults. This can serve as a rearing material in which G. punctipes will successfully reproduce and develop; therefore, facilitating the rearing of G. punctipes under laboratory conditions. INTRODUCTION Bigeyed bugs, Geocoris spp., are commonly used for biological control of key agricultural pests in Integrated Pest Management (IPM) programs in the United States. There are several species of Geocoris; however, one of the most common species is G. punctipes (Say). Geocoris spp. feed on all life stages of whiteflies, mites, and aphids (Hagler 2006) and are used for their predatory status on eggs and small larvae of lepidopteran pests. Several studies indicate that G. punctipes are effective predators of insect pests in many agricultural systems (Dumas et al. 1962, McCutcheon & Durant 1999). Geocoris spp. can be produced in large quantities under laboratory conditions, yet information pertaining to their choice of reproductive mediums is unavailable.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]
  • Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation Or Casual Association?
    Natural Enemies of Spider Mites (Acari: Tetranychidae) on Cotton: Density Regulation or Casual Association? L. T. WILSON,' P. J. TRICHILO,' AND D. GONZALEZ2 Department of Entomology, Texas A&M University, College Station, Texas 77843 Environ. Entomol. 20(3): 849-856 (1991) ABSTRACT This study addresses the potential impact of natural enemies on the abundance of spider mites, Tetranychus spy., on cotton in the San Joaquin Valley of California. These natural enemies are omnivorous predators, and include the big-eyed bug, Geocoris pallens StAl and G. punctipes (Say), the minute pirate bug, Orius trfsticolor (White),and the western flower thrips, Frankliniella occidentalis (Pergande). Simple linear regression suggested that omnivorous predators were potentially effective in delaying the buildup of spider mites, with the highest rz (0.65) recorded for adult F. occidentalis. Geocoris showed the potential to suppress the rate of spider mite population increase (rl = 0.73). All three tested predator species exhibited the capacity to suppress early season spider mite abundance, with the highest r2 (0.62) recorded for Ceocoris and Orius. Predators were also potentially able to suppress mid- to late-season spider mite populations. Multiple regression analysis indicated a significant negative correlation between mid- to late-season spider mite abundance and early season predators. Results from a second year were less conclusive, suggesting that the reduced range of spider mite abundance limited our ability to discern potentially significant interactions during that year. KEY WORDS Insecta, Cossypium, Tetranychus, predators SPIDERMITES, Tetranychus spp. can cause serious Several mechanisms have been suggested to ex- economic injury to cotton, Gossypium hirsutum plain the spider mite-insecticide phenomenon.
    [Show full text]
  • Beneficial Insects Treasure Coast Chapter Rare Fruit Club
    Beneficial Insects Treasure Coast Chapter Rare Fruit Club Bill Schall Palm Beach County Extension 531 N. Military Trail West Palm Beach, Fl 561.233.1725 U F ufufufuufufufufufufufu U fufufufufufuf F ufufufufufuf Photo: UF Schall ufufufuf A Little Review from Last Time Photo: UF Office of Sustainability Insects with Piercing/Sucking Mouthparts APHIDS TRUE BUGS THRIPS SCALES MEALYBUGS WHITEFLY Photos by Glenn, UF Insects with Chewing Mouthparts UF UF BEETLE LARVAE GRASSHOPPERS CATERPILLARS UF-Glenn UF-Glenn UF-Glenn BEETLES/WEEVILS http://edis.ifas.ufl.edu/pdffiles/HS/HS17700.pdf Types of Beneficials Mites, Insects, Diseases & Nematodes – Predators – Parasitoids – Insect Diseases – Beneficial Nematodes – Developing refugia in your yard – Products that are softer on beneficials Some Key Points . Many beneficials already in environment . Some can be purchased . Beneficials work best when you do not have to control a huge pest population . Predators better than parasitoids in responding to large pest populations . Some beneficials “generalists,” by many very specific to pest – especially parasitoids Some Key Points . Probably best strategy for you is develop refugia & use products and techniques that are less damaging to beneficials . Lots & lots of activity occurring below noticeable levels . Do not want to confuse “good” with “bad” insects – especially when they show up to attack pests that are actually causing the plant decline Minute Pirate Bug (Orius) Photo: John Ruberson, University of Georgia, Bugwood.org Georgia, ofUniversity Ruberson, John Photo: Orius feeding on insect egg Minute Pirate Bug (Orius) Photo: John Ruberson, University of Georgia, Bugwood.org . Good for small insects, especially thrips . Can be up purchased commercially . Sunflowers (even Mexican sunflower) provides refuge for non pest thrips & therefore Orius Sikora, Auburn Sikora, University, Bugwood.org University, Photo: Edward Edward Photo: Minute Pirate Bug (Orius) Life History: One generation takes 20 days to complete, multiple generations per year.
    [Show full text]
  • Intraguild Predation of Orius Tristicolor by Geocoris Spp. and the Paradox of Irruptive Spider Mite Dynamics in California Cotton
    Biological Control 32 (2005) 172–179 www.elsevier.com/locate/ybcon Intraguild predation of Orius tristicolor by Geocoris spp. and the paradox of irruptive spider mite dynamics in California cotton Jay A. Rosenheim¤ Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, United States Received 12 May 2004; accepted 15 September 2004 Abstract It is paradoxical when a community of several natural enemies fails to control a pest population when it can be shown experimen- tally that single members of the natural enemy community are eVective control agents when tested individually. This is the case for spider mites, Tetranychus spp., in California cotton. Spider mites exhibit irruptive population dynamics despite that fact that experi- ments have shown that there are at least four predators (Galendromus occidentalis, Frankliniella occidentalis, Orius tristicolor, and Geocoris spp.) that, when tested singly, can suppress mite populations. One possible explanation for the paradox is intraguild preda- tion, wherein one predator consumes another. Here, I evaluate the hypothesis that intraguild predation is a strong interaction among spider mite predators. I report manipulative Weld experiments, focal observations of freely foraging predators in the Weld, and popu- lation survey data that suggest that the minute pirate bug O. tristicolor, is subject to strong predation by other members of the pred- ator community, and in particular by Geocoris spp. These results, combined with the results of prior work, suggest that pervasive intraguild predation among spider mite predators may explain the pest status of Tetranychus spp. in cotton. 2004 Elsevier Inc. All rights reserved. Keywords: Intraguild predation; Predator–predator interactions; Herbivore population suppression; Spider mites; Orius tristicolor; Geocoris pallens; Geocoris punctipes; Tetranychus spp.; Chrysoperla spp.; Nabis spp.; Zelus renardii 1.
    [Show full text]
  • Beet Armyworm, Spodoptera Exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)1 J
    EENY105 Beet Armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)1 J. L. Capinera2 Introduction and Distribution The beet armyworm originated in Southeast Asia. It was first discovered in North America about 1876, when it was found in Oregon, and it reached Florida in 1924. It rarely overwinters in areas where frost kills its host plants. Thus, overwintering is generally limited to Arizona, Florida, and Texas. Nevertheless, beet armyworm invades the southern half of the United States (Maryland to Colorado to north- ern California, and south) annually. Except in greenhouses, it rarely is a pest except in southern states. Description and Life Cycle Figure 1. Newly hatched larva of the beet armyworm, Spodoptera Seasonal activity varies considerably according to climate. exigua (Hübner). In warm locations such as Florida, all stages can be found Credits: Lyle Buss, UF/IFAS throughout the year, although development rate and overall abundance are reduced during the winter months (Tingle Egg and Mitchell 1977). The life cycle can be completed in as Eggs are laid in clusters of 50 to 150 eggs per mass. Normal few as 24 days, and six generations have been reared during egg production is about 300 to 600 per female. Eggs are five months of summer weather in Florida (Wilson 1934). usually deposited on the lower surface of the leaf, and often near blossoms and the tip of the branch. The individual eggs are circular when viewed from above, but when examined from the side the egg is slightly peaked, tapering to a point. The eggs are greenish to white in color, and covered with a layer of whitish scales that gives the egg mass a fuzzy or cottony appearance.
    [Show full text]