The Beauty of the Small

Total Page:16

File Type:pdf, Size:1020Kb

The Beauty of the Small PUBLISHED: 3 MARCH 2017 | VOLUME: 3 | ARTICLE NUMBER: 17035 editorial The beauty of the small Plant biology has a long history in helping to illuminate the most detailed workings of living organisms. This tradition is amply represented by a trio of structures appearing this month. In this issue of Nature Plants, there are three proteins. Only around 4% of the yearly entries provide one of the greatest challenges in Articles reporting the atomic structures of into the Protein Data Bank (http://www.rcsb. structural biology: the photosystems at the plant proteins1–3. This slightly surprised us; org/pdb/) have a plant origin. heart of photosynthesis. Not only are the enough that we have joked about temporarily Nevertheless, there are many interesting photosystems integral to the chloroplast changing the journal’s name to reflect this structures and unique research questions to thylakoid membrane, which immediately unusual concentration of structural papers. be answered. For example, Hirano et al.1 have causes problems for conventional It should not have done. The nanoscale investigated the interactions that lie at the crystallography. They are also composed workings of the machinery of plants are heart of root patterning by determining the of multiple protein subunits and around no less important than those of any other structure of a heterodimer of SCARECROW a hundred or more cofactors, all of which division of life. In fact, ‘plant structural (SCR) and SHORT-ROOT (SHR), both on are needed to understand photosystem biology’ has been at the heart of a number of its own and when bound to the transcription functioning. Worse yet, they have a dynamic fundamental advances in biology. factor JACKDAW (JKD). These specific relationship with additional components, Consider cell theory. In the seventeenth interactions are important for determining including the hardly less complicated light- century, Robert Hooke was using the cutting- cell fates in the developing root, but SCR harvesting complexes, forming and reforming edge technology of the time, the microscope, and SHR are also representatives of a large supercomplexes dependent on exact to look at the natural world. He described his family of transcriptional regulators known conditions in the chloroplast. observations in his 1665 book Micrographia, as GRAS proteins due to their homologous As long ago as 1988, Johann Deisenhofer, which arose from a commission by Charles II GRAS domains. There are 33 such proteins Robert Huber and Hartmut Michel were of England (by way of Christopher Wren) encoded in the Arabidopsis genome and twice awarded the Nobel prize for chemistry to perform microscopic studies of insects. that number in rice, providing the potential for their determination of the structure of Hooke took upon himself a wider remit, for a diversity of functions through their the photosynthetic reaction centre from a looking at other materials, including thin ability to promiscuously dimerize. That any bacterium, equivalent to a small part of an slices of cork. In these he saw empty spaces of the possible partnerships can associate entire plant reaction centre. In this issue, surrounded by solid walls, which he named with various members of the BIRD family we are publishing a further step towards ‘cells’. Not content with just observing, of transcription factors, of which JKD is the full structural understanding of the Hooke used his 50× magnifying microscope a representative, leads to a highly flexible plant photosystems, with a 2.6 Å resolution to calculate that there would be almost system of developmental control unique structure of photosystem 1 (PSI) from pea3. 1,260 million cells in a cubic inch. to plants. This is not the first PSI structure. By the early twentieth century, the Wang et al.2 also look at a plant-specific This group, under the leadership of first studies of biological molecules using process: chloroplast division. Chloroplasts Nathan Nelson, published a 4.4 Å structure in X-ray diffraction were being undertaken, and other plastids are double-membrane 2003 (ref. 4), and this most recent structure including ones on cotton. In the 1920s, two intracellular organelles that must divide improves on 2.8 Å structures that were German chemists, Kurt Heinrich Meyer autonomously in order to maintain their published in 2015 (refs 5,6). While this may and Herman Francis Mark, obtained numbers in daughter cells during cell sound like a small difference, the extra 0.2 Å diffraction patterns from cotton and used division. This is achieved by the action of brings with it visualisation of additional these to support the theory that such fibres two contractile rings, one on the interior of protein, water and lipid components, all consisted of long macromolecules of regularly the inner envelope membrane, formed by contributing to a better understanding of the repeating, covalently bonded subunits. For the protein FtsZ, and one on the cytosolic functioning of this light-driven machine. cotton, or rather the cellulose that is its side of the outer envelope, assembled from Structural biology has never been more major component, the subunit consisted ARC5. For successful chloroplast division, important to our understanding of the of two glucose molecules. It is difficult to the activities of these two rings must be mechanics of life with constant technical overestimate the influence of Meyer and co-ordinated. This is achieved by the proteins advances bringing with them ever finer acuity. Mark and their work on the development PDV2 and ARC6, which span the outer and Nature Plants will strive to present the very of structural biology. Their X-ray pictures inner envelope membranes, respectively, best of these structural studies with particular inspired William Astbury in Leeds, UK, to and reach across the intermembrane space relevance to plants; although we won’t be conclude that his diffraction patterns from to bind with each other. This interaction changing the journal’s name any time soon! ❐ keratin demonstrated that fibrous proteins must be relatively weak to establish dynamic were also polymers, but of amino acids communication between the two proteins, References rather than sugars. Mark also taught X-ray making the task of imaging their complex 1. Hirano, Y. et al. Nat. Plants 3, 17010 (2017). diffraction to Linus Pauling and Max Perutz, doubly difficult. Wang et al. solved this 2. Wang, W. et al. Nat. Plants 3, 17011 (2017). 3. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Nat. Plants both of who subsequently won Nobel prizes particular problem by linking the interacting 3, 17014 (2017). for different aspects of structural biology. domains of PDV2 and ARC6 together with a 4. Ben-Shem, A., Frolow, F. & Nelson, N. Nature Despite this early importance of plant flexible tether. 426, 630–635 (2003). 5. Mazor, Y., Borovikova, A. & Nelson, N. eLife 4, e07433 (2015). structures, the focus of early molecular and Such technical difficulties occur with 6. Qin, X., Suga, M., Kuang, T. & Shen, J. R. Science structural biology was much more on animal systems from all branches of life, but plants 348, 989–995 (2015). NATURE PLANTS 3, 17035 (2017) | DOI: 10.1038/nplants.2017.35 | www.nature.com/natureplants 1 ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • PDF File, 2.06 MB
    Introduction Have you ever seen those little About the International Year of Crystallography pictures of a molecule of your The United Nations declares 2014 as the official International Year of prescribed medication? …or a drawing Crystallography. It commemorates not only the centennial of X-ray of DNA showing two strands winding Amoxicillin diffraction, which allowed the detailed study of crystalline material, but also the 400th anniversary of Kepler’s observation in 1611 of the What do around each other? symmetrical form of ice crystals, which began the wider study of the role Molecules are too small to be seen by of symmetry in matter. New Drug Design, normal microscopy. Learn more at http://iycr2014.org X-ray crystallography is one of the DNA Studies few techniques that can visualize them About IUCr The International Union of Crystallography is a not-for- and was used to determine the first Schematic picture profit, scientific organization that aims to: and molecular structures ever known. of DNA • promote international cooperation in crystallography • contribute to all aspects of crystallography X-rays X-rays & X-ray Crystallography • promote international publication of crystallographic research have in common? How They Work • facilitate standardization of methods, units, nomenclatures and symbols • form a focus for the relations of crystallography to other sciences • X-ray beams are shot through • We calculate how the diffracted a crystal composed of the X-rays would look, if they The IUCr fulfils these objectives by publishing
    [Show full text]
  • Public Perceptions of S&T in Brazil, Funding Crisis and the Future
    Public perceptions of S&T in Brazil, funding crisis and the future Interest in science and technology The interest in science and technology increased 15% in Brazil between the first and the more recent survey CGEE, 2015 Interest in science and technology European Union (2013) x Brazil (2015) 26% of the Brazilians are very interested in S&T, against 13% of the people interviewed in the European Union European Union 2013 Brazil 2015 Not interested Low interested Interested Very interested DK DA CGEE, 2015 Who is interested? DA DN Very interested Interested Not very interested Not interested Illiterate Elementary school Elementary High school University (incomplete) school (complete) degree (complete) CGEE, 2015 Those who have more formal education have more interest in S&T Do you remember... Do you know any Brazilian institution dedicated to scientific research? Do you remember the name of a Brazilian scientist? No Yes DA CGEE, 2015 50% of Brazilians think scientists are smart people who do useful things for humanity Science brings only benefits: 1987–12% 2006–29% 2010–38% 2015–54% What inspires the scientists? Helping humanity (34%), contributing to the advancement of knowledge (17%), contributing to the scientific and technological development of the country (15%) People in the government should follow guidelines developed by scientists Partially agree - 41% Completely agree - 18% Scientific and technological developments will lead to less social inequalities Partially agree - 35% Completely agree - 17% Considering the surveys... - People
    [Show full text]
  • Letter from Nobel Laureates
    May 19, 2015 The Honorable Eddie Bernice Johnson Ranking Minority Member Committee on Science, Space and Technology U.S. House of Representatives Washington, DC 20515 Dear Ms. Johnson: We, the undersigned American Nobel laureates in Physics, Chemistry, Medicine and Physiology, urge the House of Representatives to eliminate the separate appropriations authorizations for each directorate in the National Science Foundation when it considers H.R. 1806, The America COMPETES Reauthorization Act of 2015. If the separate authorizations for each directorate are not eliminated, we urge the House to restore the budgets for the Geosciences and Social, Behavioral and Economic Directorates. For the first time in the history of the National Science Foundation, H.R. 1806, as approved by the Committee on Science, Space, and Technology establishes a separate appropriations authorization for each of the Foundation’s directorates. The bill authorizes the appropriation of $1.2 billion annually for the Foundation’s Geosciences Directorate in the next two fiscal years, over $100 million less than this year. The bill authorizes $150 million annually for the Foundation’s Social, Behavioral and Economic Directorate in the next two fiscal years, which is $100 million less than this year. The allocation of funds among the Foundation’s directorates requires a broad understanding of the scientific and engineering opportunities that hold the most promise of advancing scientific and technical knowledge and thus benefiting the nation. The Foundation’s leadership and the scientific and technical experts who advise them are in the best position to make these allocations. The reductions in support for the geosciences and the social sciences contained in H.R.
    [Show full text]
  • Missions for Nuclear Weapons After the Cold War
    FEDERATION of ofAAMERICANMERICANSCIENTISTSSCIENTISTS Missions for Nuclear Weapons after the Cold War Ivan Oelrich Occasional Paper No. 3 January 2005 About the Federation of American Scientists For almost sixty years, the Federation of American Scientists and our members have played a critical role both in identifying opportunities and risks resulting from advances in science and technology. Our efforts are focused on research and advocacy on science and policy issues to ensure that advances in science and technology make America more secure, our economy more sustainable, and our society more just. The Federation of American Scientists (FAS) was founded in 1945 by Manhattan Project scientists who recognized that atomic weapons had irreversibly changed the role of scientists in national affairs. Our members are united by the conviction that scientists and engineers have a unique opportunity — and responsibility — to help America seize the benefits of their discoveries and inventions and avoid their potential dangers. Our current work is focused on some of our country’s most critical policy challenges: strategic security, information technologies, science policy, housing and energy. Our work is funded by membership dues, philanthropic foundations, corporate and individual gifts, and government grants. FAS is a 501(c)3 organization. Donations and gifts are tax-deductible. Join or donate online at http://www.fas.org/join.html, or contact us at 202.546.3300. The Occasional Paper Series is a publication of the Federation of American Scientists. The purpose of the series is to stimulate and inform debate on current science and security policy issues. Copies of this and previous papers can be obtained by contacting the FAS at 202-546-3300 or by visiting our website: www.fas.org.
    [Show full text]
  • Open Letter to the American People
    FOR IMMEDIATE RELEASE: October 18, 2016 AN OPEN LETTER TO THE AMERICAN PEOPLE The coming Presidential election will have profound consequences for the future of our country and the world. To preserve our freedoms, protect our constitutional government, safeguard our national security, and ensure that all members of our nation will be able to work together for a better future, it is imperative that Hillary Clinton be elected as the next President of the United States. Some of the most pressing problems that the new President will face — the devastating effects of debilitating diseases such as Alzheimer’s disease and cancer, the need for alternative sources of energy, and climate change and its consequences — require vigorous support for science and technology and the assurance that scientific knowledge will inform public policy. Such support is essential to this country’s economic future, its health, its security, and its prestige. Strong advocacy for science agencies, initiatives to promote innovation, and sensible immigration and education policies are crucial to the continued preeminence of the U.S. scientific work force. We need a President who will support and advance policies that will enable science and technology to flourish in our country and to provide the basis of important policy decisions. For these reasons and others, we, as U.S. Nobel Laureates concerned about the future of our nation, strongly and fully support Hillary Clinton to be the President of the United States. Peter Agre, Chemistry 2003 Carol W. Greider, Medicine 2009 Sidney Altman, Chemistry 1989 David J. Gross, Physics 2004 Philip W. Anderson, Physics 1977 Roger Guillemin, Medicine 1977 Kenneth J.
    [Show full text]
  • OLC Denies FOIA Request for Opinion on Executive Orders
    FEDERATION OF AMERICAN SCIENTISTS Board of Sponsors 1725 DeSales Street NW, 6th floor [email protected] (Partial List) Washington, DC 20036 www.fas.org *Sidney Altman Phone: (202) 546-3300 Fax: (202) 675-1010 Bruce Ames F.A.S. *Philip W. Anderson *Kenneth J. Arrow *Julius Axelrod *David Baltimore Frank von Hippel Hal Feiveson Henry C. Kelly Paul Beeson Chairman Secretary-Treasurer President *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop *Nicolaas Bloembergen *Norman Borlaug *Paul Boyer March 11, 2008 *Owen Chamberlain (202)454-4691 Morris Cohen *Stanley Cohen [email protected] Mildred Cohn *Leon N. Cooper Elizabeth Farris *E. .J. Corey Paul B. Cornely Office of Legal Counsel *James Cronin *Johann Deisenhofer Room 5515, 950 Pennsylvania Avenue, NW Carl Djerassi Ann Druyan Department of Justice *Renato Dulbecco John T. Edsall Washington, DC 20530-0001 Paul R. Ehrlich By fax: 202-514-0563 George Field *Val L. Fitch Jerome D. Frank *Jerome I. Friedman Dear Ms. Farris: *John Kenneth Galbraith *Walter Gilbert *Donald Glaser *Sheldon L. Glashow This is a request under the Freedom of Information Act. Marvin L. Goldberger *Joseph L. Goldstein *Roger C. L. Guillemin We request a copy of an Office of Legal Counsel opinion from the George *Dudley R. Herschbach *Roald Hoffmann W. Bush Administration pertaining in part to the efficacy of executive John P. Holdren *David H. Hubel orders. *Jerome Karle Nathan Keyfitz *H. Gobind Khorana *Arthur Kornberg In particular, Senator Sheldon Whitehouse stated on the Senate floor on *Edwin G. Krebs *Willis E. Lamb December 7 that he had examined an OLC opinion which included, *Leon Lederman *Edward Lewis according to his notes, the following statement or something resembling it: *William N.
    [Show full text]
  • Federation of American Scientists
    FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1717 K Street NW #209 Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] Board of Sponsors (Partial List) November 12, 2001 *Sidney Altman *Philip W. Anderson Hon Tom Daschle Hon J. Dennis Hastert *Kenneth J. Arrow *Julius Axelrod Senate Majority Leader Speaker of the House *David Baltimore *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop Hon Trent Lott Hon Richard Gephardt *Nicolaas Bloembergen *Norman Borlaug Senate Minority Leader House Minority Leader *Paul Boyer Ann Pitts Carter *Owen Chamberlain In the interest of national security we urge you to deny funding for any program, project, or Morris Cohen *Stanley Cohen activity that is inconsistent with the Anti-Ballistic Missile (ABM) Treaty. The tragic events Mildred Cohn *Leon N. Cooper of September 11 eliminated any doubt that America faces security needs far more substantial *E. J. Corey *James Cronin than a technically improbable defense against a strategically improbable Third World *Johann Deisenhofer ballistic missile attack. Ann Druyan *Renato Dulbecco John T. Edsall Paul R. Ehrlich Regarding the probable threat, the September 11 attacks have dramatized what has been George Field obvious for years: A primitive ICBM, with its dubious accuracy and reliability and bearing *Val L. Fitch *Jerome I. Friedman a clear return address, is unattractive to a terrorist and a most improbable delivery system for John Kenneth Galbraith *Walter Gilbert a terrorist weapon. Devoting massive effort and expense to countering the least probable *Donald Glaser and least effective threat would be unwise. *Sheldon L. Glashow Marvin L. Goldberger *Joseph L.
    [Show full text]
  • Declaration Accepted by the Plenary Meeting of the Nobel Laureates at the PETRA IV Meeting on 19 June 2008 and Released by the Elie Wiesel Foundation
    Declaration accepted by the Plenary Meeting of the Nobel Laureates at the PETRA IV Meeting on 19 June 2008 and released by the Elie Wiesel Foundation We, undersigned Nobel Laureates, commend the remarkable progress made in creating the SESAME Synchrotron Light Source. It will provide a major center for scientific research, with ownership shared by many nations of the Middle East. Thereby, SESAME, as well as producing educational and economic benefits, will serve as a beacon, demonstrating how shared scientific initiatives can help light the way towards peace. We urge all friends of science and peace to lend their encouragement and support to this exemplary project. Signed by 44 Laureates (see list below) Kenneth J. Arrow Economics 1972 Günter Blobel Physiology or Medicine 1999 Paul D. Boyer Chemistry 1997 Aaron Ciechanover Chemistry 2004 Claude Cohen-Tannoudji Physics 1997 Elias James Corey Chemistry 1990 Paul J. Crutzen Chemistry 1995 Frederik W. de Klerk Peace 1993 Johann Deisenhofer Chemistry 1988 Sir Martin J. Evans Physiology or Medicine 2007 John B. Fenn Chemistry 2002 Edmond H. Fischer Physiology or Medicine 1992 Jerome I. Friedman Physics 1990 Donald A. Glaser Physics 1960 Clive W.J. Granger Economics 2003 Paul Greengard Physiology or Medicine 2000 David J. Gross Physics 2004 Roger Guillemin Physiology or Medicine 1977 Dudley R. Herschbach Chemistry 1986 Avram Hershko Chemistry 2004 Roald Hoffmann Chemistry 1981 John Hume Peace 1998 Eric R. Kandel Physiology or Medicine 2000 Roger D. Kornberg Chemistry 2006 Finn E. Kydland Economics 2004 Yuan T. Lee Chemistry 1986 Jean-Marie Lehn Chemistry 1987 Rudolph A. Marcus Chemistry 1992 Craig C.
    [Show full text]
  • August 6Th, 2009 SCIENTISTS for a NUCLEAR WEAPONS-FREE WORLD Scientists and Engineers Bear a Heavy Burden of Responsibility to S
    Schützenstr. 6a 10117 Berlin, Germany Phone: +49 (0) 30-20 65 38 31 Fax: +49 (0) 30- 21234057 [email protected] www.inesglobal.com August 6th, 2009 SCIENTISTS FOR A NUCLEAR WEAPONS-FREE WORLD Scientists and engineers bear a heavy burden of responsibility to society for the creation of nuclear weapons. The immense destructive power of these weapons was demonstrated on the Japanese cities of Hiroshima and Nagasaki, and in over 2,000 atmospheric and underground nuclear tests on the lands of indigenous peoples. Thermonuclear weapons are capable of destroying cities, countries and civilization. They could end intelligent life on Earth. Humanity has been warned again and again of the perils of nuclear weapons and nuclear war. We recall the Russell-Einstein Manifesto, issued on July 9, 1955. The Manifesto warned, “Here, then, is the problem which we present to you, stark and dreadful and inescapable: Shall we put an end to the human race; or shall mankind renounce war?” Human fallibility and nuclear weapons are a dangerous and unacceptable mix. We rely upon human theories concerning nuclear weapons, such as the theory of nuclear deterrence, at our peril. Since Nagasaki, humankind has been spared nuclear war far more by good fortune than by sound planning. This good fortune will not be possible to maintain indefinitely – particularly, as is foreseeable, if nuclear weapons continue to proliferate and fall into the hands of non-state extremist groups. Nuclear weapons were created by humans, and it is our responsibility to eliminate them before they eliminate us and much of the life on our planet.
    [Show full text]
  • On the 2011 Nobel Prize in Chemistry, Awarded to Dan Shechtman
    DISTINGUISHED LECTURES CONTRIBUTIONS to SCIENCE 9 (2013) 17-23 Institut d’Estudis Catalans, Barcelona, Catalonia doi: 10.2436/20.7010.01.159 ISSN: 1575-6343 www.cat-science.cat OPENA ACCESS The Nobel Prizes of 2011 Crystallography and the Nobel Prizes: On the 2011 Nobel Prize in Chemistry, awarded to Dan Shechtman Joan F. Piniella Department of Geology, Autonomous University of Barcelona, Barcelona, Catalonia Based on the lecture given by the Summary. Crystallography has a considerable presence among Nobel Prize laureates. In- author at the IEC, Barcelona, on 13 deed, 48 of them have close links to crystallography. The 2011 Nobel Prize in Chemistry December 2011 for the Nobel Prizes was awarded to Dan Shechtman for his discovery of quasicrystals. In addition to the scien- of 2011 Sessions. tific merit of the work, the Prize is a personal recognition of Dan Shechtman, whose ideas Correspondence: were initially rejected by the international scientific community. Yet, reason prevailed in the Departament de Geologia end, supported by arguments that arrived from seemingly unrelated directions, such as the Facultat de Ciències Universitat Autònoma de Barcelona study of Arab building tiles and the mathematical concept of tessellation. Concepts of a 08193 Bellaterra, Catalonia more crystallographic nature, such as twinned crystals and modulated and incommensu- Tel. +34-935813088 rate crystal structures, also played an important role. Finally, in 1992, the International Fax +34-935811263 Union of Crystallography modified the definition of “crystal” to include quasicrystals. E-mail: [email protected] Received: 24.10.13 Keywords: crystal structure · electron diffraction · quasicrystals · tessellations Accepted: 25.11.13 Resum.
    [Show full text]