Dynamic Symmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory. -
If 1+1=2 Then the Pythagorean Theorem Holds, Or One More Proof of the Oldest Theorem of Mathematics
!"#$%"&"!'()**#%"$'+&'%,#'`.#%/)'01"+/P'3$"4#/5"%6'+&'7/9)'0)/#2 Vol. 10 (XXVII) no. 1, 2013 ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM) If 1+1=2 then the Pythagorean theorem holds, or one more proof of the oldest theorem of mathematics Alexandru HORVATH´ ”Petru Maior” University of Tg. Mures¸, Romania e-mail: [email protected] ABSTRACT The Pythagorean theorem is one of the oldest theorems of mathematics. It gained dur- ing the time a central position and even today it continues to be a source of inspiration. In this note we try to give a proof which is based on a hopefully new approach. Our treatment will be as intuitive as it can be. Keywords: Pythagorean theorem, geometric transformation, Euclidean geometry MSC 2000: 51M04, 51M05, 51N20 One of the oldest theorems of mathematics – the T T Pythagorean theorem – states that the area of the square drawn on the hypotenuse (the side opposite the right angle) of a right angled triangle, is equal to the sum of the areas of the squares constructed on the other two sides, (the catheti). That is, 2 2 2 a + b = c , if we denote the length of the sides of the triangle by a, b, c respectively. Figure 1. The transformation Loomis ([3]) collected several hundreds of different proofs of this theorem, and classified them in categories. Maor ([4]) traces the evolution of the Pythagorean theorem and its impact on mathematics and on our culture in gen- Let us assume T is such a transformation having a as the eral. -
Painting by the Numbers: a Porter Postscript
Painting by the Numbers: A Porter Postscript Chris Bartlett Art Department Towson University 8000 York Road Towson, MD, 21252, USA. E-mail: [email protected] Abstract At the 2005 Bridges conference the author presented a paper titled, “Fairfield Porter’s Secret Geometry”. Porter (1907-1975), an important American painter, is known for his “naturalness” and seems to eschew any system of proportioning. This paper briefly traces other influences on Porter’s use of geometry in art and offers an analysis of two more of his paintings to reveal detailed and sophisticated geometric structures based on the Golden Ratio and Dynamic Symmetry. Introduction Artists throughout history have sought a key to beauty in proportioning systems in composition, a procedural method for compositional structure. Starting in the late 19th century there was a general resurgence of interest in geometrical structure as a basis for painting. Artists were researching aids to producing analogous and self-similar areas and repetitions of ratios in assigning the elements of a painting. In the 1920’s in America compositional methods gained new popularity fueled by Matila Ghyka and Jay Hambidge such that Milton Brown was prompted to title a critical article in the Magazine of Art, “Twentieth Century Nostrums: Pseudo-Scientific Theory in American Painting”. [1] More recently there have been growing circles criticizing the hegemony of the Golden Mean as a universal aesthetic panacea. [2] The principle of beauty underlining the application of the Golden Ratio and Dynamic Symmetry proportioning in a composition is not irrefutable, but what seems like a more useful exercise than to debate research in perception of elegant proportion is to look at the works of artists who seem to have fallen under its spell. -
9 · the Growth of an Empirical Cartography in Hellenistic Greece
9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter spheres, together with maps of the inhabited world that ranean world. -
Pythagoras and the Pythagoreans1
Pythagoras and the Pythagoreans1 Historically, the name Pythagoras meansmuchmorethanthe familiar namesake of the famous theorem about right triangles. The philosophy of Pythagoras and his school has become a part of the very fiber of mathematics, physics, and even the western tradition of liberal education, no matter what the discipline. The stamp above depicts a coin issued by Greece on August 20, 1955, to commemorate the 2500th anniversary of the founding of the first school of philosophy by Pythagoras. Pythagorean philosophy was the prime source of inspiration for Plato and Aristotle whose influence on western thought is without question and is immeasurable. 1 c G. Donald Allen, 1999 ° Pythagoras and the Pythagoreans 2 1 Pythagoras and the Pythagoreans Of his life, little is known. Pythagoras (fl 580-500, BC) was born in Samos on the western coast of what is now Turkey. He was reportedly the son of a substantial citizen, Mnesarchos. He met Thales, likely as a young man, who recommended he travel to Egypt. It seems certain that he gained much of his knowledge from the Egyptians, as had Thales before him. He had a reputation of having a wide range of knowledge over many subjects, though to one author as having little wisdom (Her- aclitus) and to another as profoundly wise (Empedocles). Like Thales, there are no extant written works by Pythagoras or the Pythagoreans. Our knowledge about the Pythagoreans comes from others, including Aristotle, Theon of Smyrna, Plato, Herodotus, Philolaus of Tarentum, and others. Samos Miletus Cnidus Pythagoras lived on Samos for many years under the rule of the tyrant Polycrates, who had a tendency to switch alliances in times of conflict — which were frequent. -
Influences of the Ideas of Jay Hambidge on Art and Design
Computers Math. Appltc. Vol. 17, No. 4-6, pp. 1001-1008, 1989 0097-4943/89 $3.00+0.00 Printed in Great Britain. All rights reserved Copyright © 1989 Pergamon Press plc INFLUENCES OF THE IDEAS OF JAY HAMBIDGE ON ART AND DESIGN H. J. McWmNNm Department of Design, University of Maryland, College Park, MD 20742, U.S.A. AImtraet--The system of dynamic symmetry, as an approach to decision-making in design, by Jay Hambidge in the early 1920s had a strong influence on industrial design as well as upon the work of painters. This paper will review the design theories of Jay Hambidge and dynamic symmetry in terms of the use of proportions in design which are humanistically based upon the proportions of the human body. Recent research in the general area known as the golden section hypothesis will be reviewed as a means of justification not only for Hambidge's theory of proportions in design but as a validation for recent ideas in design, especially those of Robert Venturi. The paper will demonstrate the utility of studies from the behaviorial sciences for questions of design history as well as for present-day design theory and practice. The work of contemporary artists and designers will be shown to demonstrate that these ideas, the golden section and dynamic symmetry, while popular in the 1920s, have a renewed sense of relevance to current ideas and approaches in design theory. The influence upon industrial design, while it may not be clear as say the influence of dynamic symmetry or the work of Bellows or Rothko, is nevertheless also quite clear. -
Aesthetical Issues of Leonardo Da Vinci's and Pablo Picasso's
heritage Article Aesthetical Issues of Leonardo Da Vinci’s and Pablo Picasso’s Paintings with Stochastic Evaluation G.-Fivos Sargentis * , Panayiotis Dimitriadis and Demetris Koutsoyiannis Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece; [email protected] (P.D.); [email protected] (D.K.) * Correspondence: fi[email protected] Received: 7 April 2020; Accepted: 21 April 2020; Published: 25 April 2020 Abstract: A physical process is characterized as complex when it is difficult to analyze or explain in a simple way. The complexity within an art painting is expected to be high, possibly comparable to that of nature. Therefore, constructions of artists (e.g., paintings, music, literature, etc.) are expected to be also of high complexity since they are produced by numerous human (e.g., logic, instinct, emotions, etc.) and non-human (e.g., quality of paints, paper, tools, etc.) processes interacting with each other in a complex manner. The result of the interaction among various processes is not a white-noise behavior, but one where clusters of high or low values of quantified attributes appear in a non-predictive manner, thus highly increasing the uncertainty and the variability. In this work, we analyze stochastic patterns in terms of the dependence structure of art paintings of Da Vinci and Picasso with a stochastic 2D tool and investigate the similarities or differences among the artworks. Keywords: aesthetic of art paintings; stochastic analysis of images; Leonardo Da Vinci; Pablo Picasso 1. Introduction The meaning of beauty is linked to the evolution of human civilization, and the analysis of the connection between the observer and the beauty in art and nature has always been of high interest in both philosophy and science. -
|||GET||| Geometry Theorems and Constructions 1St Edition
GEOMETRY THEOREMS AND CONSTRUCTIONS 1ST EDITION DOWNLOAD FREE Allan Berele | 9780130871213 | | | | | Geometry: Theorems and Constructions For readers pursuing a career in mathematics. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed Geometry Theorems and Constructions 1st edition theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. Then the 'construction' or 'machinery' follows. For example, propositions I. The Triangulation Lemma. Pythagoras c. More than editions of the Elements are known. Euclidean geometryelementary number theoryincommensurable lines. The Mathematical Intelligencer. A History of Mathematics Second ed. The success of the Elements is due primarily to its logical presentation of most of the mathematical knowledge available to Euclid. Arcs and Angles. Applies and reinforces the ideas in the geometric theory. Scholars believe that the Elements is largely a compilation of propositions based on books by earlier Greek mathematicians. Enscribed Circles. Return for free! Description College Geometry offers readers a deep understanding of the basic results in plane geometry and how they are used. The books cover plane and solid Euclidean geometryelementary number theoryand incommensurable lines. Cyrene Library of Alexandria Platonic Academy. You can find lots of answers to common customer questions in our FAQs View a detailed breakdown of our shipping prices Learn about our return policy Still need help? View a detailed breakdown of our shipping prices. Then, the 'proof' itself follows. Distance between Parallel Lines. By careful analysis of the translations and originals, hypotheses have been made about the contents of the original text copies of which are no longer available. -
Hipparchus's Table of Chords
ApPENDIX 1 Hipparchus's Table of Chords The construction of this table is based on the facts that the chords of 60° and 90° are known, that starting from chd 8 we can calculate chd(180° - 8) as shown by Figure Al.1, and that from chd S we can calculate chd ~8. The calculation of chd is goes as follows; see Figure Al.2. Let the angle AOB be 8. Place F so that CF = CB, place D so that DOA = i8, and place E so that DE is perpendicular to AC. Then ACD = iAOD = iBOD = DCB making the triangles BCD and DCF congruent. Therefore DF = BD = DA, and so EA = iAF. But CF = CB = chd(180° - 8), so we can calculate CF, which gives us AF and EA. Triangles AED and ADC are similar; therefore ADIAE = ACIDA, which implies that AD2 = AE·AC and enables us to calculate AD. AD is chd i8. We can now find the chords of 30°, 15°, 7~0, 45°, and 22~0. This gives us the chords of 150°, 165°, etc., and eventually we have the chords of all R P chord 8 = PQ, C chord (180 - 8) = QR, QR2 = PR2 _ PQ2. FIGURE A1.l. 235 236 Appendix 1. Hipparchus's Table of Chords Ci"=:...-----""----...........~A FIGURE A1.2. multiples of 71°. The table starts: 2210 10 8 2 30° 45° 522 chd 8 1,341 1,779 2,631 3,041 We find the chords of angles not listed and angles whose chords are not listed by linear interpolation. For example, the angle whose chord is 2,852 is ( 2,852 - 2,631 1)0 . -
John Sharp Spirals and the Golden Section
John Sharp Spirals and the Golden Section The author examines different types of spirals and their relationships to the Golden Section in order to provide the necessary background so that logic rather than intuition can be followed, correct value judgments be made, and new ideas can be developed. Introduction The Golden Section is a fascinating topic that continually generates new ideas. It also has a status that leads many people to assume its presence when it has no relation to a problem. It often forces a blindness to other alternatives when intuition is followed rather than logic. Mathematical inexperience may also be a cause of some of these problems. In the following, my aim is to fill in some gaps, so that correct value judgements may be made and to show how new ideas can be developed on the rich subject area of spirals and the Golden Section. Since this special issue of the NNJ is concerned with the Golden Section, I am not describing its properties unless appropriate. I shall use the symbol I to denote the Golden Section (I |1.61803 ). There are many aspects to Golden Section spirals, and much more could be written. The parts of this paper are meant to be read sequentially, and it is especially important to understand the different types of spirals in order that the following parts are seen in context. Part 1. Types of Spirals In order to understand different types of Golden Section spirals, it is necessary to be aware of the properties of different types of spirals. This section looks at spirals from that viewpoint. -
Toward How to Add an Aesthetic Image to Mathematics Education
TOWARD HOW TO ADD AN AESTHETIC IMAGE TO MATHEMATICS EDUCATION Paul Betts University of Winnipeg [email protected] Abstract: The goal of this paper is to suggest how an aesthetic image can be added to mathematics education. Calls for reform in mathematics education (e.g., National Council for Teachers of Mathematics, 1989, 2000) are premised on shifting teacher attention from an absolutist toward a social constructivist philosophy of mathematics and mathematics education. The goal of reform is success for all students of mathematics. In a previous paper, I used ideas from art education to suggest that success for all might be achieved by fostering an aesthetic image of mathematics (Betts & McNaughton, 2003). This paper continues the argument by shifting from questions of why to how. Introduction In 1989, the National Council of Teachers of Mathematics (NCTM) published an influential mathematics curriculum framework document (see National Council of Teachers of Mathematics, 1989) calling for reform in mathematics and success for all mathematics students. This call for reform is based on social constructivism as a philosophy of mathematics and mathematics education. Proponents of social constructivism, as a philosophy of mathematics, view mathematics as fallible, changing and a product of human endeavor (Ernest, 1998). For example, the genesis of mathematical knowledge is a continual cycle of conjecture and refutation, and deduction is not the logic of mathematical discovery (Lakatos, 1976). In other words, mathematical truths are socially constructed via a process of error correction. Social constructivsm as a philosophy of mathematics education is based on fostering opportunities for students to experience, discover, discuss and re-construct the socially negotiated nature of mathematics. -
An Annotated Bibliography of Books for Architecture and Mathematics
The Virtual Library An Annotated Bibliography of Books for Architecture and Mathematics ACKERMAN,JAMES S. Distance Points: Essays in Theory and Renaissance Art and Architecture. (Cambridge MA: MIT Press, 1991). Referenced in Lionel March’s article, NNJ vol. 3 no. 2. ———. Origins, Imitation, Conventions (Cambridge: The MIT Press, 2002). Reviewed by Michael Chapman in the NNJ vol. 5 no. 1. AICHER,OTL. Analogous and Digital (Berlin: Ernst & Sohn, 1994). Referenced in Marco Frascari’s article in NNJ vol. 1. ALBERTI,LEON BATTISTA. The Ten Books of Architecture, 1755. (Rpt. New York: Dover Publications, Inc., 1986). Referenced in Marco Frascari’s article in NNJ vol. 1 no. 3 and in Reza Sarghangi’s article in NNJ vol. 1. ———. On the Art of Building in Ten Books. Joseph Rykwert (Introduction), Robert Tavernor and Neil Leach, trans. (Cambridge, MA: MIT Press, 1991). Referenced in Stephen Wassell’s article in NNJ vol. 1. ALEXANDER,CHRISTOPHER. A Pattern Language (New York: Oxford University Press, 1977). Referenced in Nikos Salingaros’ article in NNJ vol. 1. ———. A Timeless Way of Building (New York: Oxford University Press, 1979). Referenced in Nikos Salingaros’ article in NNJ vol. 1. ARTMANN,BENNO. Euclid: The Creation of Mathematics (Heidelberg: Springer-Verlag, 1999). This is the long awaited book by Benno Artmann, who presented a paper on the Cloisters of Hauterive at Nexus ‘96. Reviewed by Kim Williams in NNJ vol.2. BALMAND,CECIL. Number Nine: The Search for the Sigma Code (Munich: Prestel,1999). Reviewed by Jay Kappraff in the NNJ vol. 2. BARRALLO,JAVIER (ed.). Mathematics and Design 98. Proceedings of the Second International Conference on Mathematics and Design.