Appendix 1–4 Appendix 1

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1–4 Appendix 1 Oikos OIK-07274 Fisogni, A., Hautekèete, N., Piquot, Y., Brun, M., Vanappelghem, C., Michez, D. and Massol, F. 2020. Urbanization drives an early spring for plants but not for pollinators. – Oikos doi: 10.1111/oik.07274 Appendix 1–4 Appendix 1 Table A1a. List of the flowering plant species observed in this study throughout the sampling season in all the 12 study sites. For each species we report its origin (i.e. if it grew from the seed bank or if it was included in the standardised seed mix sown in all study sites by local practitioners). Family Species Origin Compositae Achillea millefolium L. seed mix Apiaceae Anthriscus sylvestris (L.) Hoffm. seed bank Compositae Arctium lappa L. seed bank Compositae Bellis perennis L. seed bank Brassicaceae Brassica nigra (L.) K.Koch seed bank Brassicaceae Capsella bursa-pastoris (L.) Medik. seed bank Brassicaceae Carduus crispus L. seed bank Compositae Cardamine hirsuta L. seed bank Compositae Centaurium erythraea Rafn seed bank Gentianaceae Centaurea jacea L. seed mix Caryophyllaceae Cerastium fontanum Baumg. seed bank Caryophyllaceae Cerastium glomeratum Thuill. seed bank Compositae Cichorium intybus L. seed mix Compositae Cirsium arvense (L.) Scop. seed bank Lamiaceae Clinopodium vulgare L. seed mix Convolvulaceae Convolvulus arvensis L. seed bank Compositae Cyanus segetum Hill seed mix Apiaceae Daucus carota L. seed mix Boraginaceae Echium vulgare L. seed mix Rubiaceae Galium mollugo L. seed mix Geraniaceae Geranium dissectum L. seed bank Geraniaceae Geranium pyrenaicum L. seed mix Geraniaceae Geranium sylvaticum L. seed bank Lamiaceae Glechoma hederacea L. seed bank Asparagaceae Hyacinthoides hispanica (Mill.) Rothm. seed bank Hypericaceae Hypericum perforatum L. seed mix Compositae Hypochaeris radicata L. seed bank Brassicaceae Isatis tinctoria L. seed bank Compositae Jacobaea vulgaris Gaertn. seed bank Caprifoliaceae Knautia arvensis (L.) Coult. seed bank Lamiaceae Lamium album L. seed bank Lamiaceae Lamium purpureum L. seed bank Compositae Leontodon hispidus L. seed mix Brassicaceae Lepidium draba L. seed bank Compositae Leucanthemum vulgare (Vaill.) Lam. seed mix Fabaceae Lotus corniculatus L. seed mix Malvaceae Malva moschata L. seed mix Compositae Matricaria chamomilla L. seed bank Fabaceae Medicago lupulina L. seed mix Fabaceae Medicago sativa L. seed bank Boraginaceae Myosotis arvensis (L.) Hill seed bank Orchidaceae Ophrys apifera Huds. seed bank Lamiaceae Origanum vulgare L. seed mix Papaveraceae Papaver rhoeas L. seed mix Compositae Picris hieracioides L. seed mix Orchidaceae Platanthera chlorantha (Custer) Rchb. seed bank Rosaceae Potentilla reptans L. seed bank Lamiaceae Prunella vulgaris L. seed mix Ranunculaceae Ranunculus acris L. seed mix Ranunculaceae Ranunculus repens L. seed bank Brassicaceae Raphanus raphanistrum L. seed bank Resedaceae Reseda lutea L. seed mix Resedaceae Reseda luteola L. seed mix Orobanchaceae Rhinanthus minor L. seed bank Lamiaceae Salvia pratensis L. seed bank Fabaceae Securigera varia (L.) Lassen seed bank Compositae Senecio vulgaris L. seed bank Caryophyllaceae Silene flos-cuculi (L.) Greuter & Burdet seed mix Caryophylaceae Silene latifolia Poir. seed mix Caryophyllaceae Silene vulgaris (Moench) Garcke seed mix Caryophylaceae Stellaria media (L.) Vill. seed bank Boraginaceae Symphytum officinale L. seed bank Compositae Tanacetum vulgare L. seed bank Compositae Taraxacum sect. Ruderalia seed bank Compositae Tragopogon pratensis L. seed mix Compositae Tripleurospermum inodorum (L.) Sch.Bip. seed bank Fabaceae Trifolium pratense L. seed mix Fabaceae Trifolium repens L. seed bank Plantaginacae Verbena officinalis L. seed bank Verbenaceae Veronica chamaedrys L. seed bank Plantaginacae Veronica persica Poir. seed bank Plantaginacae Veronica serpyllifolia L. seed bank Fabaceae Vicia sativa L. seed bank Table A1b. List of the pollinator species sampled in this study throughout the sampling season in all the 12 study sites. Species abundance in each site at each sampling period is available in the Zenodo Digital Repository [anonymized for double-blind peer review] Order Family Species Hymenoptera Andrenidae Andrena angustior (Kirby, 1802) Hymenoptera Andrenidae Andrena bicolor Fabricius, 1775 Hymenoptera Andrenidae Andrena carantonica Pérez, 1902 Hymenoptera Andrenidae Andrena chrysosceles (Kirby, 1802) Hymenoptera Andrenidae Andrena cineraria (Linnaeus, 1758) Hymenoptera Andrenidae Andrena dorsata (Kirby, 1802) Hymenoptera Andrenidae Andrena flavipes Panzer, 1799 Hymenoptera Andrenidae Andrena fulva (Müller, 1766) Hymenoptera Andrenidae Andrena gravida Imhoff, 1832 Hymenoptera Andrenidae Andrena haemorrhoa (Fabricius, 1781) Hymenoptera Andrenidae Andrena labialis (Kirby, 1802) Hymenoptera Andrenidae Andrena gr. minutula (Kirby, 1802) Hymenoptera Andrenidae Andrena mitis Schmiedeknecht, 1883 Hymenoptera Andrenidae Andrena nigroaenea (Kirby, 1802) Hymenoptera Andrenidae Andrena nitida (Müller, 1776) Hymenoptera Andrenidae Andrena praecox (Scopoli, 1763) Hymenoptera Andrenidae Andrena cfr semilaevis Pérez, 1903 Hymenoptera Andrenidae Andrena sp. Hymenoptera Andrenidae Andrena subopaca Nylander, 1848 Hymenoptera Andrenidae Andrena tibialis (Kirby, 1802) Hymenoptera Andrenidae Andrena vaga Panzer, 1799 Hymenoptera Andrenidae Andrena ventralis Imhoff, 1832 Hymenoptera Andrenidae Andrena wilkella (Kirby, 1802) Hymenoptera Andrenidae Panurgus dentipes Latreille, 1811 Hymenoptera Apidae Anthophora bimaculata (Panzer, 1798) Hymenoptera Apidae Anthophora plumipes (Pallas, 1772) Hymenoptera Apidae Bombus hortorum (Linnaeus, 1761) Hymenoptera Apidae Bombus hypnorum (Linnaeus, 1758) Hymenoptera Apidae Bombus lapidarius (Linnaeus, 1758) Hymenoptera Apidae Bombus pascuorum (Scopoli, 1763) Hymenoptera Apidae Bombus pratorum (Linnaeus, 1761) Hymenoptera Apidae Bombus sylvestris (Lepeletier, 1832) Hymenoptera Apidae Bombus terrestris (Linnaeus, 1758) Hymenoptera Apidae Bombus vestalis (Geoffroy, 1785) Hymenoptera Apidae Ceratina cyanea (Kirby, 1802) Hymenoptera Apidae Melecta albifrons (Forster, 1771) Hymenoptera Apidae Nomada alboguttata Herrich-Schäffer, 1839 Hymenoptera Apidae Nomada fabriciana (Linné, 1767) Hymenoptera Apidae Nomada flava Panzer, 1798 Hymenoptera Apidae Nomada flavoguttata (Kirby, 1802) Hymenoptera Apidae Nomada fucata Panzer, 1798 Hymenoptera Apidae Nomada fulvicornis Fabricius, 1793 Hymenoptera Apidae Nomada goodeniana (Kirby, 1802) Hymenoptera Apidae Nomada integra Brullé, 1832 Hymenoptera Apidae Nomada lathburiana (Kirby, 1802) Hymenoptera Apidae Nomada panzeri Lepeletier, 1841 Hymenoptera Apidae Nomada ruficornis (Linnaeus, 1758) Hymenoptera Apidae Nomada sheppardana (Kirby, 1802) Hymenoptera Apidae Nomada signata Jurine, 1807 Hymenoptera Apidae Nomada zonata Panzer, 1798 Hymenoptera Colletidae Colletes daviesanus Smith, 1846 Hymenoptera Colletidae Colletes similis Schenck, 1853 Hymenoptera Colletidae Colletes sp. Hymenoptera Colletidae Hylaeus dilatatus (Kirby, 1802) Hymenoptera Colletidae Hylaeus gredleri Förster, 1871 Hymenoptera Colletidae Hylaeus hyalinatus Smith, 1842 Hymenoptera Colletidae Hylaeus signatus (Panzer, 1798) Hymenoptera Colletidae Hylaeus cfr styriacus Förster, 1871 Hymenoptera Halictidae Halictus maculatus Smith, 1848 Hymenoptera Halictidae Halictus rubicundus (Christ, 1791) Hymenoptera Halictidae Halictus tumulorum (Linnaeus, 1758) Hymenoptera Halictidae Lasioglossum calceatum (Scopoli, 1763) Hymenoptera Halictidae Lasioglossum laticeps (Schenck, 1870) Hymenoptera Halictidae Lasioglossum leucozonium (Schrank, 1781) Hymenoptera Halictidae Lasioglossum majus (Nylander, 1852) Hymenoptera Halictidae Lasioglossum malachurum (Kirby, 1802) Hymenoptera Halictidae Lasioglossum minutissimum (Kirby, 1802) Hymenoptera Halictidae Lasioglossum morio (Fabricius, 1793) Hymenoptera Halictidae Lasioglossum nitidulum (Fabricius, 1804) Hymenoptera Halictidae Lasioglossum pauxillum (Schenck, 1853) Hymenoptera Halictidae Lasioglossum punctatissimum (Schenck, 1853) Hymenoptera Halictidae Lasioglossum semilucens (Alfken, 1914) Hymenoptera Halictidae Lasioglossum villosulum (Kirby, 1802) Hymenoptera Halictidae Lasioglossum xanthopus (Kirby, 1802) Hymenoptera Halictidae Lasioglossum zonulum (Smith, 1848) Hymenoptera Halictidae Sphecodes ephippius (Linné, 1767) Hymenoptera Halictidae Sphecodes geoffrellus (Kirby, 1802) Hymenoptera Halictidae Sphecodes monilicornis (Kirby, 1802) Hymenoptera Halictidae Sphecodes reticulatus Thomson, 1870 Hymenoptera Megachilidae Anthidiellum strigatum (Panzer, 1805) Hymenoptera Megachilidae Anthidium manicatum (Linnaeus, 1758) Hymenoptera Megachilidae Coelioxys elongata Lepeletier, 1841 Hymenoptera Megachilidae Coelioxys inermis (Kirby, 1802) Hymenoptera Megachilidae Heriades truncorum (Linnaeus, 1758) Hymenoptera Megachilidae Hoplitis adunca (Panzer, 1798) Hymenoptera Megachilidae Hoplitis leucomelana (Kirby, 1802) Hymenoptera Megachilidae Hoplitis tridentata (Dufour & Perris, 1840) Hymenoptera Megachilidae Megachile alpicola Alfken, 1924 Hymenoptera Megachilidae Megachile centuncularis (Linnaeus, 1758) Hymenoptera Megachilidae Megachile ericetorum Lepeletier, 1841 Hymenoptera Megachilidae Megachile lagopoda (Linnaeus, 1761) Hymenoptera Megachilidae Megachile rotundata (Fabricius, 1793) Hymenoptera Megachilidae Megachile willughbiella (Kirby, 1802) Hymenoptera Megachilidae Osmia bicornis (Linnaeus, 1758) Hymenoptera Megachilidae Osmia caerulescens (Linnaeus, 1758) Hymenoptera Megachilidae Osmia cornuta (Latreille, 1805) Hymenoptera Megachilidae Osmia leaiana (Kirby, 1802) Hymenoptera Megachilidae Osmia
Recommended publications
  • Influence of Mulching and Foliar Nutrition on The
    Journal of Elementology ISSN 1644-2296 Błażewicz-Woźniak M., Wach D., Najda A., Mucha S. 2019. Influence of mulching and foliar nutrition on the formation of bulbs and content of some components in leaves and bulbs of Spanish bluebell (Hyacinthoides hispanica (Mill.) Rothm.). J. Elem., 24(1): 305-318. DOI: 10.5601/jelem.2018.23.1.1646 RECEIVED: 12 March 2018 ACCEPTED: 23 August 2018 ORIGINAL PAPER INFLUENCE OF MULCHING AND FOLIAR NUTRITION ON THE FORMATION OF BULBS AND CONTENT OF SOME COMPONENTS IN LEAVES AND BULBS OF SPANISH BLUEBELL (HYACINTHOIDES HISPANICA (MILL.) ROTHM.)* Marzena Błażewicz-Woźniak1, Dariusz Wach1, Agnieszka Najda2, Sylwia Mucha1 1 Department of Cultivation and Nutrition of Plants 2 Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, Poland ABSTRACT Hyacinthoides hispanica (Mill.) Rothm. is a typical spring geophyte and has been cultivated for a long time in gardens as an ornamental bulbous plant. Bulbs are not only the storage and dor- mant organs, but also a means for the plant’s vegetative reproduction. In Poland, due to the climate, the wintering and reproduction of this plant can be a problem. The aim of the study was to determine the effect of foliar nutrition using phosphorous fertilizer and soil mulching on the formation of bulbs and content of some components in leaves and bulbs of H. hispanica. To this end, a field experiment was carried out in 2010-2012. Mulching the soil with pine bark had a beneficial effect on the weight of bulbs in the core, the average weight of one bulb and the weight, length, diameter and circumference of the largest bulb from the H.
    [Show full text]
  • Identification of the Species of the Cheilosia Variabilis Group
    Contributions to Zoology, 78 (3) 129-140 (2009) Identification of the species of the Cheilosia variabilis group (Diptera, Syrphidae) from the Balkan Peninsula using wing geometric morphometrics, with the revision of status of C. melanopa redi Vujić, 1996 Lj. Francuski1, A. Vujić1, A. Kovačević1, J. Ludosˇki1 ,V. Milankov1, 2 1 Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia 2 E-mail: [email protected] Key words: Cheilosia variabilis group, geometric morphometrics, intraspecific divergent units, species delimita- tion, wing shape, wing size Abstract Recognition of phenotypic units .......................................... 134 Phenotypic relationships ....................................................... 136 The present study investigates phenotypic differentiation pat- Discussion ...................................................................................... 137 terns among four species of the Cheilosia variabilis group (Dip- Species delimitation ............................................................... 137 tera, Syrphidae) using a landmark-based geometric morphomet- Intraspecies phenotypic diversity ........................................ 138 ric approach. Herein, wing geometric morphometrics established Phenetic relationships ............................................................ 138 species boundaries that confirm C. melanopa and C. redi stat. Acknowledgements .....................................................................
    [Show full text]
  • Linear and Non-Linear Effects of Goldenrod Invasions on Native Pollinator and Plant Populations
    Biol Invasions (2019) 21:947–960 https://doi.org/10.1007/s10530-018-1874-1 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Linear and non-linear effects of goldenrod invasions on native pollinator and plant populations Dawid Moron´ . Piotr Sko´rka . Magdalena Lenda . Joanna Kajzer-Bonk . Łukasz Mielczarek . Elzbieta_ Rozej-Pabijan_ . Marta Wantuch Received: 28 August 2017 / Accepted: 7 November 2018 / Published online: 19 November 2018 Ó The Author(s) 2018 Abstract The increased introduction of non-native and native plants. The species richness of native plants species to habitats is a characteristic of globalisation. decreased linearly with goldenrod cover, whereas the The impact of invading species on communities may abundance and species richness of bees and butterflies be either linearly or non-linearly related to the decreased non-linearly with increasing goldenrod invaders’ abundance in a habitat. However, non-linear cover. However, no statistically significant changes relationships with a threshold point at which the across goldenrod cover were noted for the abundance community can no longer tolerate the invasive species and species richness of hover flies. Because of the non- without loss of ecosystem functions remains poorly linear response, goldenrod had no visible impact on studied. We selected 31 wet meadow sites that bees and butterflies until it reached cover in a habitat encompassed the entire coverage spectrum of invasive of about 50% and 30–40%, respectively. Moreover, goldenrods, and surveyed the abundance and diversity changes driven by goldenrod in the plant and of pollinating insects (bees, butterflies and hover flies) D. Moron´ (&) Ł. Mielczarek Institute of Systematics and Evolution of Animals, Polish Department of Forests and Nature, Krako´w Municipal Academy of Sciences, Sławkowska 17, 31-016 Krako´w, Greenspace Authority, Reymonta 20, 30-059 Krako´w, Poland Poland e-mail: [email protected] e-mail: [email protected] P.
    [Show full text]
  • Hymenoptera: Apiformes) in the Narew National Park
    POLSKIE P I S M O ENTOMOLOGICZNE P O L I S H JOURNAL OF ENTOMOLOGY VOL. 75 : 511-538 Bydgoszcz 31 December 2006 Bees (Hymenoptera: Apiformes) in the Narew National Park JÓZEF BANASZAK Institute of Biology and Environmental Protection, Kazimierz Wielki University, 12 Ossoli ńskich Av., 85-093 Bydgoszcz, Poland; e-mail: [email protected] ABSTRACT . In wetlands and adjacent habitats in the Narew National Park (northeastern Poland), 125 species of Apiformes were recorded. The bee diversity of the area was distinguished by very high contributions of Andrenidae (particularly of Andrena s. str.) and Apidae, but relatively low contributions of Megachilidae and Anthophoridae. Characteristic species include Bombus jonellus , while Andrena fulva has its easternmost locality there . KEY WORDS: wild bees, Apoidea, Apiformes, Narew National Park, wetlands . INTRODUCTION The Narew National Park comprises the valley of the middle section of the river Narew in northeastern Poland (about 50 km northwest of the Białowie ża Forest). This is one of the largest and best-preserved areas of wetlands in Poland. The wetlands cover over 95% of the bottom of the Narew valley. The Narew NP includes a 35-km-long section of the river, between Sura ż town in the south and the village of Rz ędziany in the north (Fig. 1). This section of the river has numerous anastomosing distributaries, i.e. streams that leave and link up again with the main river, forming an irregular, complicated network. The Narew valley within the Park is flat and waterlogged, and its width ranges from 2 to 4 km (Banaszuk 2000, Gradzi ński 2001).
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Flower Preferences and Pollen Transport Networks for Cavity‐Nesting Solitary Bees: Implications for the Design of Agri‐Envir
    Received: 14 February 2018 | Revised: 22 April 2018 | Accepted: 23 April 2018 DOI: 10.1002/ece3.4234 ORIGINAL RESEARCH Flower preferences and pollen transport networks for cavity- nesting solitary bees: Implications for the design of agri- environment schemes Catherine E. A. Gresty1 | Elizabeth Clare2 | Dion S. Devey3 | Robyn S. Cowan3 | Laszlo Csiba3 | Panagiota Malakasi3 | Owen T. Lewis1 | Katherine J. Willis1,3 1Department of Zoology, University of Oxford, Oxford, UK Abstract 2School of Biological and Chemical Floral foraging resources are valuable for pollinator conservation on farmland, and Sciences, Queen Mary University of London, their provision is encouraged by agri- environment schemes in many countries. Across London, UK Europe, wildflower seed mixtures are widely sown on farmland to encourage pollina- 3Royal Botanic Gardens, Kew, Richmond, UK tors, but the extent to which key pollinator groups such as solitary bees exploit and Correspondence benefit from these resources is unclear. We used high- throughput sequencing of 164 Catherine E. A. Gresty, Department of Zoology, New Radcliffe House, Radcliffe pollen samples extracted from the brood cells of six common cavity- nesting solitary Observatory Quarter, 6GG, Woodstock Rd, bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile Oxford OX2, UK. Email: [email protected] ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in south- ern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wild- flower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L.
    [Show full text]
  • Bees and Wasps of the East Sussex South Downs
    A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 Abstract For six years between 2003 and 2008, over 100 site visits were made to fifteen chalk grassland and chalk heath sites within the South Downs of Vice-county 14 (East Sussex). This produced a list of 227 bee and wasp species and revealed the comparative frequency of different species, the comparative richness of different sites and provided a basic insight into how many of the species interact with the South Downs at a site and landscape level. The study revealed that, in addition to the character of the semi-natural grasslands present, the bee and wasp fauna is also influenced by the more intensively-managed agricultural landscapes of the Downs, with many species taking advantage of blossoming hedge shrubs, flowery fallow fields, flowery arable field margins, flowering crops such as Rape, plus plants such as buttercups, thistles and dandelions within relatively improved pasture. Some very rare species were encountered, notably the bee Halictus eurygnathus Blüthgen which had not been seen in Britain since 1946. This was eventually recorded at seven sites and was associated with an abundance of Greater Knapweed. The very rare bees Anthophora retusa (Linnaeus) and Andrena niveata Friese were also observed foraging on several dates during their flight periods, providing a better insight into their ecology and conservation requirements.
    [Show full text]
  • How Habitat Influences Native Pollinators in Intensive Agricultural Landscapes
    Small Restoration, Big Impacts: How Habitat Influences Native Pollinators in Intensive Agricultural Landscapes by Caitlin Paterson A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Caitlin Paterson, October, 2014 ABSTRACT SMALL RESTORATION, BIG IMPACTS: HOW HABITAT INFLUENCES NATIVE POLLINATORS IN INTENSIVE AGRICULTURAL LANDSCAPES Caitlin Paterson Advisor: University of Guelph, 2014 Professor A.S. MacDougall This study examined the impact of small-scale restoration of tallgrass prairie on native bee community composition on farms in Southern Ontario, Canada. Three farms with various crops (corn (Zea), Saskatoon berries (Amelanchier alnifolia), squash, pumpkin, zucchini, melon (Curcurbitaceae), soybeans (Glycine), and green beans (Phaseolus)) were surveyed in the summer of 2013. Availability of nesting and foraging habitat for bees was estimated and a combination of pan-trapping and sweep netting was used to capture specimens on 40 plots per farm. Results were analysed using ordination-based techniques in R, and indicated that prairie provides a diverse floral resource on which a complex and abundant array of bees forage. Restored habitat accounted for 33% of the total richness and 72% of the total abundance of native bees. This demonstrates that even small-scale restoration (~10% of each farm) may have an impact on the ability of farms in southern Ontario to support native bees. ACKNOWLEDGMENTS Firstly, thank you to my advisor Andrew MacDougall and the rest of the MacDougall lab for their assistance and guidance with this project for the past two years. I would like to thank the lab/field technicians who assisted me in conducting my field work and identifying and sorting through specimens: Cara Bulger, April Clyburne-Sherin, and Felicia Syer.
    [Show full text]
  • Flower Visitation by Hoverflies (Diptera: Syrphidae)
    A peer-reviewed version of this preprint was published in PeerJ on 3 December 2018. View the peer-reviewed version (peerj.com/articles/6025), which is the preferred citable publication unless you specifically need to cite this preprint. Klecka J, Hadrava J, Biella P, Akter A. 2018. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 6:e6025 https://doi.org/10.7717/peerj.6025 Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network Jan Klecka1, Jir´ıHadravaˇ 1,2, Paolo Biella1,3, and Asma Akter1,3 1Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceskˇ e´ Budejovice,ˇ Czech Republic 2Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic 3Department of Zoology, Faculty of Science, University of South Bohemia, Ceskˇ e´ Budejovice,ˇ Czech Republic Corresponding author: Jan Klecka Email address: [email protected] ABSTRACT Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less attention than bees. They are usually thought to be rather opportunistic flower visitors, although pre- vious studied demonstrated that they show colour preferences and their nectar feeding is affected by morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species rich community of syrphids in a Central European grassland and to evaluate how species traits shape the structure of the plant-hoverfly flower visitation network.
    [Show full text]
  • Perennial 2018 Report
    2018 Perennial Trial Evaluation Department of Horticulture and Landscape Architecture, Colorado State University Scientific Name Acanthus longifolius Source Denver Botanic Gardens Common Name Bear's Breech Tsnum: 96147 Variety Bed: B Cultivar Family Acanthaceae Plant Type: Herbaceous perennial Plant Habit: Upright spreading clump Plant Quality: Good Foliage Color: Medium green Plant Height: 10 inches Plant Width: Around 4 feet Cultural Problems: Nuisances: Insect Problems: Disease Problems: Landscape Uses: Specimen, border Flower Effectiveness: Good Flower Color: Mauve and greenish white Flower Size: Inflorescence up to 10 inches in size Flower Height: Up to 4 feet Flower Effectiveness: Good Comments on plant: 3/8 5/18 budding 6/7 70 7/5 100 8/2 100 9/12 10/3 3/20 5/22 Hailstor 6/20 100 7/18 100 8/15 100 9/26 10/17 4/4 8/29 60 4/22 budding Page 1 of 1013 2018 Perennial Trial Evaluation Department of Horticulture and Landscape Architecture, Colorado State University Scientific Name Achillea Source Blooms of Bressingham Common Name Hybrid Yarrow Tsnum: 09141 Variety Bed: GB Cultivar 507 Family Asteraceae Plant Type: Herbaceous Plant Habit: Upright Plant Quality: Good Foliage Color: Medium Green Plant Height: 8-10 inches Plant Width: About 1 foot Cultural Problems: Nuisances: Insect Problems: Disease Problems: Landscape Uses: Border, mass, cut flowers fresh or dried Flower Effectiveness: Good Flower Color: Light Peach to Pink Flower Size: clusters up to 5 inches Flower Height: Up to 2 feet Flower Effectiveness: Good Comments on plant: 3/8
    [Show full text]
  • Naturschutz Im Land Sachsen-Anhalt, Jahresheft 2019
    ZTURSCHUTNA Naturschutz im Land Sachsen-Anhalt 56. Jahrgang | Jahresheft 2019 Landesamt für Umweltschutz Bereits im zeitigen Frühjahr bildet das Breitblättrige Knabenkraut eine Scheinrosette aus. Foto: S. Dullau. Das breitblättrige Knabenkraut, Orchidee des Jahres 2020, hier auf der Struthwiese im Biosphärenreservat Karstlandschaft Südharz. Foto: N. Adert. Inhalt Aufsätze Sandra Dullau, Nele Adert, Maren Helen Meyer, Frank Richter, Armin Hoch & Sabine Tischew Das Breitblättrige Knabenkraut im Biosphärenreservat Karstlandschaft Südharz – Zustand der Vorkommen und Habitate . 3 Susen Schiedewitz Untersuchungen zur Diversität der Tagfalter und Libellen in der Hägebachaue nördlich von Samswegen . 27 Andreas Mölder, Marcus Schmidt, Ralf-Volker Nagel & Peter Meyer Erhaltung der Habitatkontinuität in Eichenwäldern – Aktuelle Forschungsergeb nisse aus Sachsen-Anhalt . 61 Christoph Saure & Andreas Marten Bienen, Wespen und Schwebfliegen (Hymenoptera, Diptera part.) auf Borkenkäfer-Befallsflächen im Nationalpark Harz . 79 Informationen Brünhild Winter-Huneck & Antje Rössler Übersicht der im Land Sachsen-Anhalt nach Naturschutz- recht geschützten Gebiete und Objekte und Informationen zu in den Jahren 2017 und 2018 erfolgten Veränderungen . 142 Michael Wallaschek Gegenrede zur Erwiderung von L. Reichhoff auf die Interpretation des Wörlitzer Warnungsaltars durch M. Wallaschek [Naturschutz im Land Sachsen-Anhalt 55 (2018) JH: 73−78] . 146 Mitteilungen/Ehrungen Frank Meyer & Wolf-Rüdiger Grosse Zum Gedenken an Jürgen Buschendorf (1938–2019) . 150 Christian Unselt & Elke Baranek Guido Puhlmann mit der Ehrennadel des Landes Sachsen- Anhalt ausgezeichnet . 152 Guido Puhlmann, Klaus Rehda & Olaf Tschimpke Armin Wernicke im (Un-)Ruhestand . 154 Fred Braumann Zum Gedenken an Helmut Müller (1960–2018) . 158 Hans-Ulrich Kison & Uwe Wegener Hagen Herdam zum 80. Geburtstag . 164 Hans-Ulrich Kison & Uwe Wegener Peter Hanelt zum Gedenken (1930–2019) .
    [Show full text]
  • Kew Science Publications for the Academic Year 2017–18
    KEW SCIENCE PUBLICATIONS FOR THE ACADEMIC YEAR 2017–18 FOR THE ACADEMIC Kew Science Publications kew.org For the academic year 2017–18 ¥ Z i 9E ' ' . -,i,c-"'.'f'l] Foreword Kew’s mission is to be a global resource in We present these publications under the four plant and fungal knowledge. Kew currently has key questions set out in Kew’s Science Strategy over 300 scientists undertaking collection- 2015–2020: based research and collaborating with more than 400 organisations in over 100 countries What plants and fungi occur to deliver this mission. The knowledge obtained 1 on Earth and how is this from this research is disseminated in a number diversity distributed? p2 of different ways from annual reports (e.g. stateoftheworldsplants.org) and web-based What drivers and processes portals (e.g. plantsoftheworldonline.org) to 2 underpin global plant and academic papers. fungal diversity? p32 In the academic year 2017-2018, Kew scientists, in collaboration with numerous What plant and fungal diversity is national and international research partners, 3 under threat and what needs to be published 358 papers in international peer conserved to provide resilience reviewed journals and books. Here we bring to global change? p54 together the abstracts of some of these papers. Due to space constraints we have Which plants and fungi contribute to included only those which are led by a Kew 4 important ecosystem services, scientist; a full list of publications, however, can sustainable livelihoods and natural be found at kew.org/publications capital and how do we manage them? p72 * Indicates Kew staff or research associate authors.
    [Show full text]