Foraminiferal Assemblages As Bioindicators of Potentially Toxic Elements in Biscayne Bay, Florida
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent and Quaternary Foraminifera Collected Around New Caledonia
Plates 6/1 & 6/2 Recent and Quaternary foraminifera collected around New Caledonia Jean-Pierre DEBENAY 1 & Guy CABIOCH 2 1 UPRES EA, Universite d'Angers, 2 Bd Lavoisiere, 49045, Angers cedex, France 2 Institut de Recherche pour Developpement, UR 055, Paliotropique, Centre IRD, BPA5, 98848 Noumea cedex, Nouvelle-Caledonie [email protected] Abstract The compilation of the works carried out on Recent and Quaternary foraminifera collected in the waters surrounding New Caledonia allowed us to identify 574 species. These species are listed according to the classification of Loeblish & Tappan (1988), updated for the Recent species by Debenay et al. (1996). Their affinity with microfaunas from other regions is briefly discussed. Resume La compilation des travaux sur les foramini:feres actuels et quaternaires recoltes dans les eaux entourant la Nouvelle-Caledonie nous a permis de repertorier 574 especes. Ces especes sont presen tees selon la classification de Loeblish & Tappan (1988), mise ajour pour les especes actuelles par Debenay et al. (1996). Leur affinite avec les microfaunes d'autres regions est discutee brievement. Introduction The first study about foraminifera from the southwestern Pacific near New Caledonia was carried out by Brady (1884) during the voyage of H.M.S. Challenger (1873-1876), updated by Barker (1960), The nearest station was station 177, near Vanuatu (16°45'S-168°5'E). However, studies concerning directly New Caledonia began much later, with partial and local inventories in coastal samples (Gambini,1958, 1959; Renaud-Debyser, 1965; Toulouse, 1965, 1966). Samples of recent and fossil sediments collected during the Singer-Polignac mission (1960-1965) were further used for several studies of foraminiferal assemblages (Coudray & Margerel, 1974; Coudray, 1976; Margerel, 1981). -
Checklist, Assemblage Composition, and Biogeographic Assessment of Recent Benthic Foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes
Zootaxa 4731 (2): 151–192 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4731.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:560FF002-DB8B-405A-8767-09628AEDBF04 Checklist, assemblage composition, and biogeographic assessment of Recent benthic foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes JOACHIM SCHÖNFELD1,3 & JULIA LÜBBERS2 1GEOMAR Helmholtz-Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 2Institute of Geosciences, Christian-Albrechts-University, Ludewig-Meyn-Straße 14, 24118 Kiel, Germany 3Corresponding author. E-mail: [email protected] Abstract We describe for the first time subtropical intertidal foraminiferal assemblages from beach sands on São Vincente, Cape Verdes. Sixty-five benthic foraminiferal species were recognised, representing 47 genera, 31 families, and 8 superfamilies. Endemic species were not recognised. The new checklist largely extends an earlier record of nine benthic foraminiferal species from fossil carbonate sands on the island. Bolivina striatula, Rosalina vilardeboana and Millettiana milletti dominated the living (rose Bengal stained) fauna, while Elphidium crispum, Amphistegina gibbosa, Quinqueloculina seminulum, Ammonia tepida, Triloculina rotunda and Glabratella patelliformis dominated the dead assemblages. The living fauna lacks species typical for coarse-grained substrates. Instead, there were species that had a planktonic stage in their life cycle. The living fauna therefore received a substantial contribution of floating species and propagules that may have endured a long transport by surface ocean currents. The dead assemblages largely differed from the living fauna and contained redeposited tests deriving from a rhodolith-mollusc carbonate facies at <20 m water depth. -
A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L. -
Foraminiferal Evidence for Inner Neritic Deposition of Lower Cretaceous (Upper Aptian) Radiolarian-Rich Black Shales on the Western Australian Margin
Journal of Micropalaeontology, 24: 55–75. 0262-821X/05 $15.00 2005 The Micropalaeontological Society Foraminiferal evidence for inner neritic deposition of Lower Cretaceous (Upper Aptian) radiolarian-rich black shales on the Western Australian margin DAVID W. HAIG School of Earth & Geographical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia (e-mail: [email protected]). ABSTRACT – Diverse foraminifera, Lingula-like brachiopods and the geological setting indicate that Aptian radiolarian-rich black shales forming the Windalia Radiolarite were deposited at water depths probably less than 40 m in the Southern Carnarvon Basin. Elsewhere in Australia, coeval radiolarian-rich deposits are widespread in other western-margin basins and in vast interior basins. The organic-rich mudstones containing the radiolaria include the foraminiferal Ammobaculites Association, a sparse benthic macrofauna and kerogens of mainly terrestrial plant origin. The deposits suggest that there was substantial high-nutrient freshwater input into the epeiric seas as well as high levels of dissolved silica resulting from marine flooding of a mature silicate-rich landscape bordered on the eastern and western continental margins by large volcanic provinces. The widespread presence of organic-rich muds through the broad, shallow Southern Carnarvon Basin and through the coeval interior basins suggests that regional geomorphology controlled the distribution of eutrophic facies in the Australian Aptian rather than any global expansion of the oceanic oxygen minimum zone. The foraminiferal assemblage from the Windalia Radiolarite consists of calcareous hyaline benthic types (diverse Lagenida as well as abundant Lingulogavelinella, Epistomina and Coryphostoma) and organic-cemented agglutinated species (including common Ammobaculites humei, Haplophragmoides–Recurvoides spp., and Verneuilinoides howchini). -
Three New Records of Recent Benthic Foraminifera from Korea
Journal of Species Research 8(4):389-394, 2019 Three new records of recent benthic Foraminifera from Korea Somin Lee and Wonchoel Lee* Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea *Correspondent: [email protected] Foraminifera are protists that inhabit diverse marine environments and show high abundance and diversity. However, previous studies on foraminifera in Korea mostly focused on geological and paleoecological fields and were conducted in a limited area. Therefore, there is a high possibility for discovering new and unrecor- ded species. Here we describe three newly recorded foraminiferal species from the southwestern part of Jeju Island during a survey on the meiofaunal community, which belongs to three different genera (Ammobaculites, Cylindroclavulina, Saracenaria), three families (Lituolidae, Vaginulinidae, Valvulinidae), and three orders (Lituolida, Textulariida, Vaginulinida): Ammobaculites formosensis Nakamura, 1937, Cylindroclavulina bradyi (Cushman, 1911), and Saracenaria hannoverana (Franke, 1936). These species have been reported from Chinese region in the East China Sea, however this is the first report from Korean waters. Particularly, Cylindroclavulina bradyi is the first report of the genus Cylindroclavulina in Korean waters. The present study supports the diversity of foraminiferal species in Korea, and the necessity of further surveys in Korean waters. Keywords: East China Sea, extant species, Globothalamea, modern foraminifera Ⓒ 2019 National Institute of Biological Resources DOI:10.12651/JSR.2019.8.4.389 INTRODUCTION al., 2000; Woo and Choi, 2006; Woo and Lee, 2006; Woo, 2007; Choi et al., 2010; Jeong et al., 2016). Therefore, a Foraminifera are single-celled amoeboid protists, which high possibility of discovering new and unrecorded spe- inhabit a wide range of marine environments, and show cies is expected, particularly from uninvestigated regions high abundance and species diversity (Sen Gupta, 1999; such as the northeastern coast and open ocean regions. -
Chamber Arrangement Versus Wall Structure in the High-Rank Phylogenetic Classification of Foraminifera
Editors' choice Chamber arrangement versus wall structure in the high-rank phylogenetic classification of Foraminifera ZOFIA DUBICKA Dubicka, Z. 2019. Chamber arrangement versus wall structure in the high-rank phylogenetic classification of Fora- minifera. Acta Palaeontologica Polonica 64 (1): 1–18. Foraminiferal wall micro/ultra-structures of Recent and well-preserved Jurassic (Bathonian) foraminifers of distinct for- aminiferal high-rank taxonomic groups, Globothalamea (Rotaliida, Robertinida, and Textulariida), Miliolida, Spirillinata and Lagenata, are presented. Both calcite-cemented agglutinated and entirely calcareous foraminiferal walls have been investigated. Original test ultra-structures of Jurassic foraminifers are given for the first time. “Monocrystalline” wall-type which characterizes the class Spirillinata is documented in high resolution imaging. Globothalamea, Lagenata, porcel- aneous representatives of Tubothalamea and Spirillinata display four different major types of wall-structure which may be related to distinct calcification processes. It confirms that these distinct molecular groups evolved separately, probably from single-chambered monothalamids, and independently developed unique wall types. Studied Jurassic simple bilocular taxa, characterized by undivided spiralling or irregular tubes, are composed of miliolid-type needle-shaped crystallites. In turn, spirillinid “monocrystalline” test structure has only been recorded within more complex, multilocular taxa pos- sessing secondary subdivided chambers: Jurassic -
Surface Ocean Metabarcoding Confirms Limited Diversity in Planktonic Foraminifera but Reveals Unknown Hyper-Abundant Lineages
www.nature.com/scientificreports OPEN Surface ocean metabarcoding confrms limited diversity in planktonic foraminifera but reveals Received: 19 July 2017 Accepted: 24 January 2018 unknown hyper-abundant lineages Published: xx xx xxxx Raphaël Morard1,2, Marie-José Garet-Delmas2, Frédéric Mahé3, Sarah Romac2, Julie Poulain4, Michal Kucera1 & Colomban de Vargas2 Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009–2012). We identifed 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and fnite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages. Afer ~250 years of Linnean taxonomic work, >90% of the ocean’s biodiversity still appears to be undescribed1. -
Universidade Federal De Santa Catarina, Como Requisito Para a Obtenção Do Título De Mestre Em Geografia
Daniela Lemos Polla FORAMINÍFEROS BENTÔNICOS RECENTES APLICADOS A CARACTERIZAÇÃO AMBIENTAL DA PLATAFORMA CONTINENTAL ADJACENTE A FOZ DO RIO PARAÍBA DO SUL (RJ) Dissertação apresentada ao Programa de Pós-Graduação em Geografia da Universidade Federal de Santa Catarina, como requisito para a obtenção do título de Mestre em Geografia. Orientadora: Dra Carla Bonetti Coorientadora: Dra Patrícia Eichler Florianópolis 2016 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Polla, Daniela Lemos FORAMINÍFEROS BENTÔNICOS RECENTES APLICADOS A CARACTERIZAÇÃO AMBIENTAL DA PLATAFORMA CONTINENTAL ADJACENTE A FOZ DO RIO PARAÍBA DO SUL (RJ)/ Daniela Lemos Polla; orientadora, Carla Bonetti; coorientadora, Patrícia Eichler- Florianópolis, SC, 2016. 155p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Filosofia e Ciências Humanas. Programa de Pós-Graduação em Geografia. Inclui referências 1. Geografia. 2. Foraminíferos Bentônicos. 3. Bacia de Campos. 4. Taxonomia. 5. Caracterização. I. Bonetti, Carla. II. Eichler, Patrícia. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Geografia. IV. Título. Daniela Lemos Polla FORAMINÍFEROS BENTÔNICOS RECENTES APLICADOS A CARACTERIZAÇÃO AMBIENTAL DA PLATAFORMA CONTINENTAL ADJACENTE A FOZ DO RIO PARAÍBA DO SUL (RJ) Esta Dissertação foi julgada adequada para obtenção do Título de Mestre e aprovada em sua forma final pelo Programa de Pós-Graduação em Geografia. Florianópolis, 15 de Abril de 2016. ________________________ Prof. Dr. Aloysio Marthins de Araújo Júnior Coordenador do Curso Banca Examinadora: Prof.ª Dr.ª Carla Bonetti Prof.ª Dr.ª Sibelle T. Disaró Orientadora – UFSC Membro Externo - UFPR Prof.ª Dr.ª Patrícia Eichler Prof.ª Dr.ª Alessandra Fonseca Coorientadora UFRN-UNISUL Membro Interno - UFSC __________________________ Prof. -
The Evolution of Early Foraminifera
The evolution of early Foraminifera Jan Pawlowski†‡, Maria Holzmann†,Ce´ dric Berney†, Jose´ Fahrni†, Andrew J. Gooday§, Tomas Cedhagen¶, Andrea Haburaʈ, and Samuel S. Bowserʈ †Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland; §Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, United Kingdom; ¶Department of Marine Ecology, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark; and ʈWadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201 Communicated by W. A. Berggren, Woods Hole Oceanographic Institution, Woods Hole, MA, August 11, 2003 (received for review January 30, 2003) Fossil Foraminifera appear in the Early Cambrian, at about the same loculus to become globular or tubular, or by the development of time as the first skeletonized metazoans. However, due to the spiral growth (12). The evolution of spiral tests led to the inadequate preservation of early unilocular (single-chambered) formation of internal septae through the development of con- foraminiferal tests and difficulties in their identification, the evo- strictions in the spiral tubular chamber and hence the appear- lution of early foraminifers is poorly understood. By using molec- ance of multilocular forms. ular data from a wide range of extant naked and testate unilocular Because of their poor preservation and the difficulties in- species, we demonstrate that a large radiation of nonfossilized volved in their identification, the unilocular noncalcareous for- unilocular Foraminifera preceded the diversification of multilocular aminifers are largely ignored in paleontological studies. In a lineages during the Carboniferous. Within this radiation, similar previous study, we used molecular data to reveal the presence of test morphologies and wall types developed several times inde- naked foraminifers, perhaps resembling those that lived before pendently. -
International Symposium on Foraminifera FORAMS 2014 Chile, 19-24 January 2014
International Symposium on Foraminifera FORAMS 2014 Chile, 19-24 January 2014 Abstract Volume Edited by: Margarita Marchant & Tatiana Hromic International Symposium on Foraminifera FORAMS 2014 Chile, 19–24 January 2014 Abstract Volume Edited by: Margarita Marchant & Tatiana Hromic Grzybowski Foundation, 2014 International Symposium on Foraminifera FORAMS 2014, Chile 19–24 January 2014 Abstract Volume Edited by: Margarita Marchant Universidad de Concepción, Concepción, Chile and Tatiana Hromic Universidad de Magallanes, Punta Arenas, Chile Published by The Grzybowski Foundation Grzybowski Foundation Special Publication No. 20 First published in 2014 by the Grzybowski Foundation a charitable scientific foundation which associates itself with the Geological Society of Poland, founded in 1992. The Grzybowski Foundation promotes and supports education and research in the field of Micropalaeontology through its Library (located at the Geological Museum of the Jagiellonian University), Special Publications, Student Grant-in-Aid Programme, Conferences (the MIKRO- and IWAF- meetings), and by organising symposia at other scientific meetings. Visit our website: www.gf.tmsoc.org Grzybowski Foundation Special Publications Editorial Board (2012-2016): M.A. Gasiński (PL) M.A. Kaminski (GB/KSA) M. Kučera (D) E. Platon (Utah) P. Sikora (Texas) R. Coccioni (Italy) J. Van Couvering (NY) P. Geroch (CA) M. Bubík (Cz.Rep) S. Filipescu (Romania) L. Alegret (Spain) S. Crespo de Cabrera (Kuwait) J. Nagy (Norway) J. Pawłowski (Switz.) J. Hohenegger (Austria) C. -
Checklist, Assemblage Composition, and Biogeographic Assessment of Recent Benthic Foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes
Zootaxa 4731 (2): 151–192 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4731.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:560FF002-DB8B-405A-8767-09628AEDBF04 Checklist, assemblage composition, and biogeographic assessment of Recent benthic foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes JOACHIM SCHÖNFELD1,3 & JULIA LÜBBERS2 1GEOMAR Helmholtz-Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 2Institute of Geosciences, Christian-Albrechts-University, Ludewig-Meyn-Straße 14, 24118 Kiel, Germany 3Corresponding author. E-mail: [email protected] Abstract We describe for the first time subtropical intertidal foraminiferal assemblages from beach sands on São Vincente, Cape Verdes. Sixty-five benthic foraminiferal species were recognised, representing 47 genera, 31 families, and 8 superfamilies. Endemic species were not recognised. The new checklist largely extends an earlier record of nine benthic foraminiferal species from fossil carbonate sands on the island. Bolivina striatula, Rosalina vilardeboana and Millettiana milletti dominated the living (rose Bengal stained) fauna, while Elphidium crispum, Amphistegina gibbosa, Quinqueloculina seminulum, Ammonia tepida, Triloculina rotunda and Glabratella patelliformis dominated the dead assemblages. The living fauna lacks species typical for coarse-grained substrates. Instead, there were species that had a planktonic stage in their life cycle. The living fauna therefore received a substantial contribution of floating species and propagules that may have endured a long transport by surface ocean currents. The dead assemblages largely differed from the living fauna and contained redeposited tests deriving from a rhodolith-mollusc carbonate facies at <20 m water depth. -
Ultra-Deep Sequencing of Foraminiferal Microbarcodes Unveils Hidden Richness of Early Monothalamous Lineages in Deep-Sea Sediments
Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments Béatrice Lecroqa,b,1, Franck Lejzerowicza,1, Dipankar Bacharc,d, Richard Christenc,d, Philippe Eslinge, Loïc Baerlocherf, Magne Østeråsf, Laurent Farinellif, and Jan Pawlowskia,2 aDepartment of Genetics and Evolution, University of Geneva, CH-1211 Geneva 4, Switzerland; bInstitute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan; cCentre National de la Recherche Scientifique, UMR 6543 and dUniversité de Nice-Sophia-Antipolis, Unité Mixte de Recherche 6543, Centre de Biochimie, Faculté des Sciences, F06108 Nice, France; eInstitut de Recherche et Coordination Acoustique/Musique, 75004 Paris, France; and fFASTERIS SA, 1228 Plan-les-Ouates, Switzerland Edited* by James P. Kennett, University of California, Santa Barbara, CA, and approved June 20, 2011 (received for review December 8, 2010) Deep-sea floors represent one of the largest and most complex of distinctive morphological characters, and their unfamiliarity to ecosystems on Earth but remain essentially unexplored. The meiofaunal workers, which means that they are often overlooked. vastness and remoteness of this ecosystem make deep-sea sam- During the past decade, molecular studies revealed an aston- pling difficult, hampering traditional taxonomic observations and ishing diversity of early foraminifera (4), along with numerous diversity assessment. This problem is particularly true in the case of descriptions of new deep-sea monothalamous species and genera the deep-sea meiofauna, which largely comprises small-sized, frag- (5). The sequences of early lineages were particularly abundant fi ile, and dif cult-to-identify metazoans and protists. Here, we in- in environmental DNA surveys of marine (6), freshwater (7), and troduce an ultra-deep sequencing-based metagenetic approach to soil (8) ecosystems.