Philosophical Perspectives on Theropod Track Morphology: Blending Qualities and Quantities in the Science of Ichnology

Total Page:16

File Type:pdf, Size:1020Kb

Philosophical Perspectives on Theropod Track Morphology: Blending Qualities and Quantities in the Science of Ichnology GAIA N° 15, LlSBOAlLISBON, DEZEMBRO/DECEMBER 1998, pp. 279-300 (ISSN: 0871 -5424) PHILOSOPHICAL PERSPECTIVES ON THEROPOD TRACK MORPHOLOGY: BLENDING QUALITIES AND QUANTITIES IN THE SCIENCE OF ICHNOLOGY Martin LOCKLEY Department of Geology, Campus Box 172, University of Colorado at Denver. P.O. Box 173364, DENVER. COLORADO, 80217-3364, USA E-mail: [email protected] ABSTRAct: Theropod tracks are sometimes viewed as lacking much morphological variation owing to the conservatism of the theropod foot. A review of the Mesozoic track record for this group, with special reference to the western United States shows that this is not the case, and that the theropod tracks are quite diverse in comparison with the tracks of other groups. Study of large samples of well-known latest Triassic (Rhaetian) to latest Cretaceous (Maastrichtian) theropod tracks from North America, indicates that there are a variety of dis­ tinctive morphologies recognized by the ichnogenera Grallator, Kayentapus, Eubrontes, Carme/opodus, Therangospodus, Mega/osauripus, /renesauripus, Saurexallopus, Tyran­ nosauripus, and at least one other unnamed ichnotaxon. The study of theropod, mainly tri­ dactyl, tracks has benefited from the application of a wide range of different morphometric techniques, in recent years. These techniques are, however not usually applied with consis­ tency nor used as the basis for subsequent taxonomic revisions. Given the history of re­ search into theropod tracks, it is argued that most tracks have been discriminated and named using the human eye and selected techniques of morphometric analysis rather than the application of any standardized or comprehensive methodology. Although this method may sound "unscientific" it nevertheless appears to have been successful to some degree, though in other cases it has lead to the erection of ichnotaxa that are of dubious validity. Re­ cent efforts to apply objective quantitative techniques, have also failed to adhere to any standardized approach, and frequently employ morphometric methods that can hardly be described as comprehensive. Many such studies fail to pay much attention to large samples of tracks. Given the precision of the human eye and the ability of experienced ichnologists to recognize distinctive morphologies, it is argued that any attempt to quantify morphologi­ cal variation in fossil footprints, is unlikely to be successful, or widely accepted without first laying out a careful rationale regarding exactly what should be measured, and why chosen parameters are important. It is argued herein that selection of suitable morphometric para­ meters for analysis should be based primarily, though not exclusively, on the phenomeno­ logical approach of simply establishing which characters are most distinctive, and that it is impossible and often unrewarding to try and measure every variable. This approach recog­ nizes and describes diversity of form that arises from within the unity of the entire sample. By contrast the approach of pooling all data tends to artificially blur otherwise valid distinc­ tions (Le., impose unity on diversity) by creating composite assemblages that do not exist in nature. Caution is urged in the comparison oftracks from different stratigraphic sequences (series and stages), owing to growing evidence for palichnostratigraphic track zones. Simi­ larly comparison of tracks and track makers from different ages, epochs and periods is also misleading again imposing an artificial homogenization on real biostratigraphic diversity by creating potential correlations for which no geological (chronological) evidence exists. Efforts to correlate tracks ofthe same age, however, can be rewarding, though caution must be exercised in correctly determining their stratigraphic contexts. 279 artigos/papers M. LOCKLEY INTRODUCTION purely quantitative or a purely qualitative description that satisfies general scientific and taxonomic con­ How WE OBSERVE: MORPHOLOGICAL QUALITIES vention). The extentto which the description that dif­ AND QUANTITIES ferentiates two morphotypes is applicable to other theropod tracks should also be considered, but can Scientists are conditioned, to some extent, to be­ only be standardized if the assumption is made that lieve that in order to be scientific in our approach to all other tracks share similar features. This assump­ organisms, we must "objectively" measure and tion is likely to be valid in most, but notall, cases. As I quantify their component parts, and understand the hope to show, vertebrate ichnology provides a good mechanisms by which they function. As a result opportunity to review our methodologies, and I have modern biology has sometimes been regarded as chosen the subject of variation in theropod tracks as unduly mechanistic, and inclined to ignore the attrib­ a case study. utes of the entire organism and the dynamic pro­ cesses of function (cf. SCHAD, 1971; LOCKLEY, Theropod footprints are relatively simple mor­ 1999a). For example we may study the genetic ma­ phologically, consisting of the impressions of three ke up of an organism without really looking at the or­ digits (11,111 and IV) in most cases, though in some ganism itself as a complex system (GOODWIN, footprints the impression of a fourth digit (the hallux 1994). Morphometric analysis also reduces a com­ or digit I) is present (Fig. 1). Other vertebrates in­ plex array of attributes of an actual organism to a cluding ornithopod dinosaurs, stegosaurs, pro­ matrix of numbers that are no longer in biological sauropods and birds may also leave similar tridactyl context. The utility of such quantitative data, is to a and tetradactyl tracks. For the purposes of conven­ significant extent dependent on the assumptions ience I will refrain from listing all the other verte­ made by the researcher collecting and analyzing the brates from crocodiles to ceratopsians that can data. For example if the integrity of the sample is leave tetradactyl tracks. But I will ask what would questionable (e. g., not representative of a popula­ seem to be a logical question. In order to narrow the tion in either a biological or statistical sense), or the field of study to theropod tracks, or at least to tracks measurements selected, are not meaningful with re­ that have a good probability of being of theropodan spect to the organism's growth or anatomy, or if affinity, how do we distinguish them from the foot­ questionable statistical tests and interpretations are prints of other vertebrate groups, that in a strict applied during synthesis, the utility of both the data quantitative sense (number of digit impressions) and the resultant interpretations may be compro­ have a comparable morphology? Have quantitative mised. analyses and morphometric studies been under­ taken to discriminate major track groups in the first This perspective also applies, quite forcibly to place? The answer is almost always no. Except in a paleontology, where it is not possible to examine the few cases (e.g., OLSEN, 1980; MORATALLA, SANZ & complete organism or observe itfunctioning as a dy­ JIMENEZ, 1988; DEMATHIEU, 1990; WEEMS, 1992; namic living organism. Thus the temptation is per­ FARLOW & LOCKLEY, 1993; FARLOW & CHAPMAN, haps even greater, than in Biology, to measure and 1997), little in the way of quantitative analysis has quantify the limited amount of material available to been presented. It is worth noting here that the ana­ squeeze out all available "data". Because paleontol­ lytical techniques employed by these authors are far ogy is concerned with evolutionary relationships, from being standardized, and some do not even ap­ cladistic analysis helps to standardize, and objectify proach the quantitative study of tracks through the (though not quantify in a strict sense) the characters footprints themselves, but rather deal with the mor­ that are selected, defined and compared. But again, phology of foot bones of potential trackmakers. the subjectivity that creeps into the selection and definition process, and the choice of analytic tech­ None of these studies have yet made broad con­ niques, colors the eventual "results" and interpreta­ tributions to the differentiation of a wide range of dis­ tions. This is not to say that any ofthe analytical and tinct morphotypes. On the contrary they have quantitative techniques in current use should be tended to suggest that tridactyl tracks are hard to dif­ abandoned, unless they are shown to be ineffective ferentiate. But this may be in part because they se­ or misleading. Rather, I wish only to remind practitio­ lected ichnogenera which show limited mor­ ners that we must periodically review our methodol­ phological variation relative to one another. As I ogy in the context of our objectives. hope to show the inability to achieve striking suc­ cess in distinguishing different tridactyl and tetra­ For example if everyone agrees that two thero­ dactyl track types, is not necessarily a function of pod track morphologies are obviously or even subtly morphological homogeneity or conservatism in the different, then the main objective should be to con­ feet of theropods and other vertebrates, though this cisely describe this difference by appropriate may be a partial explanation. Particularly in the case means, whether quantitative, qualitative or both. (In of certain samples such as those from the classic this regard it is practically impossible to have a 280 PHILOSOPHICAL PERSPECTIVES ON THEROPOD TRACK MORPHOLOGY width tirety, (i.e., the sum of morphological features,
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Cretaceous Research 32 (2011) 135e142 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes A reassessment of large theropod dinosaur tracks from the mid-Cretaceous (late AlbianeCenomanian) Winton Formation of Lark Quarry, central-western Queensland, Australia: A case for mistaken identity Anthony Romilio a,*, Steven W. Salisbury a,b a School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia b Vertebrate Paleontology Section, Carnegie Museum of Natural History, 4400 Forbes Ave, Pittsburgh, PA 15213-4080, USA article info abstract Article history: Multivariate analysis is used to differentiate shape variations between ichnites of theropod and Received 9 June 2010 ornithopod dinosaurs. Tracks of an alleged theropod cf. Tyrannosauropus from the mid-Cretaceous (late Accepted in revised form 10 November 2010 AlbianeCenomanian) Winton Formation of Lark Quarry, central-western Queensland, Australia were Available online 22 November 2010 examined and foot shape ratios calculated. Multivariate analysis of these shape variables indicates this track-maker was an ornithopod dinosaur.
    [Show full text]
  • Stegosaurian Footprints from the Morrison Formation of Utah and Their Implications for Interpreting Other Ornithischian Tracks Gerard D
    Stegosaurian footprints from the Morrison Formation of Utah and their implications for interpreting other ornithischian tracks Gerard D. Gierliński and Karol Sabath Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland. e-mail: [email protected] ABSTRACT - The supposed stegosaurian track Deltapodus Whyte & Romano, 1994 (Middle Jurassic of England) is sauro- pod-like, elongate and plantigrade, but many blunt-toed, digitigrade, large ornithopod-like footprints (including pedal print cast associated with the manus of Stegopodus Lockley & Hunt, 1998) from the Upper Jurassic of Utah, better fit the stego- saurian foot pattern. The Morrison Formation of Utah yielded other tracks fitting the dryomorph (camptosaur) foot pattern (Dinehichnus Lockley et al., 1998) much better than Stegopodus. If the Stegopodus pedal specimen (we propose to shift the emphasis from the manus to the pes in the revised diagnosis of this ichnotaxon) and similar ichnites are proper stegosaur foot- prints, Deltapodus must have been left by another thyreophoran trackmaker. Other Deltapodus-like (possibly ankylosaurian) tracks include Navahopus Baird,1980 and Apulosauripus Nicosia et al., 1999. Heel-dominated, short-toed forms within the Navahopus-Deltapodus-Apulosauripus plexus differ from the gracile, relatively long-toed Tetrapodosaurus Sternberg, 1932, traditionally regarded as an ankylosaurian track. Thus, the original interpretation of the latter as a ceratopsian track might be correct, supporting early (Aptian) appearance of ceratopsians in North America. Isolated pedal ichnites from the Morrison Formation (with a single tentatively associated manus print, and another one from Poland) and the only known trackways with similar footprints (Upper Jurassic of Asturias, Spain) imply bipedal gait of their trackmakers. Thus, problems with stegosaur tracks possibly stem from the expectation of their quadrupedality.
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]
  • The Evolution of Ornithischian Quadrupedality
    J Iber Geol DOI 10.1007/s41513-017-0036-0 REVIEW PAPER The evolution of ornithischian quadrupedality 1 2 Paul M. Barrett • Susannah C. R. Maidment Received: 27 February 2017 / Accepted: 16 June 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Ornithischian dinosaurs were primitively bipe- Resumen Los dinosaurios Ornitı´squios, bı´pedos en origen, dal, but reverted to quadrupedality on at least three (and revertieron a la condicio´n cuadru´peda en al menos tres potentially several more) occasions: in Ceratopsia, Thyr- (y potencialmente ma´s) ocasiones: en Ceratopsia, eophora and Hadrosauriformes. Each of these reversals was Thyreophora y Hadrosauriformes. Cada una de estas accompanied by anatomical changes to the whole skeleton reversiones vino acompan˜ada de cambios anato´micos en el that enabled the forelimb to function in weight bearing and resto de esqueleto que permitieron a la extremidad anterior that also resulted in numerous changes to the hip and hind funcionar para soportar su peso y llevaron a cambios en la limb musculature. Each quadrupedal clade acquired a suite cadera y la musculatura dela extremidad posterior. Cada of similar biomechanical characters, although they varied clado cuadru´pedo adquirio´ una serie de caracteres in terms of function and in how these character complexes biomeca´nicos parecidos, aunque variaron en su funcio´ny were assembled. Some similar changes occurred in parallel en la manera en la que estos conjuntos de caracteres enca- among sauropodomorph dinosaurs as they transitioned jaban. Cambios parecidos aparecieron paralelamente entre from bipedality to quadrupedality. It is unclear why bipedal los dinosaurios sauropodomorfos durante su transicio´nde ornithischians reverted to quadrupedalism, but neither bı´pedos a cuadru´pedos.
    [Show full text]
  • An Inventory of Non-Avian Dinosaurs from National Park Service Areas
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 703 AN INVENTORY OF NON-AVIAN DINOSAURS FROM NATIONAL PARK SERVICE AREAS JUSTIN S. TWEET1 and VINCENT L. SANTUCCI2 1National Park Service, 9149 79th Street S., Cottage Grove, MN 55016 -email: [email protected]; 2National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240 -email: [email protected] Abstract—Dinosaurs have captured the interest and imagination of the general public, particularly children, around the world. Paleontological resource inventories within units of the National Park Service have revealed that body and trace fossils of non-avian dinosaurs have been documented in at least 21 National Park Service areas. In addition there are two historically associated occurrences, one equivocal occurrence, two NPS areas with dinosaur tracks in building stone, and one case where fossils have been found immediately outside of a monument’s boundaries. To date, body fossils of non- avian dinosaurs are documented at 14 NPS areas, may also be present at another, and are historically associated with two other parks. Dinosaur trace fossils have been documented at 17 NPS areas and are visible in building stone at two parks. Most records of NPS dinosaur fossils come from park units on the Colorado Plateau, where body fossils have been found in Upper Jurassic and Lower Cretaceous rocks at many locations, and trace fossils are widely distributed in Upper Triassic and Jurassic rocks. Two NPS units are particularly noted for their dinosaur fossils: Dinosaur National Monument (Upper Triassic through Lower Cretaceous) and Big Bend National Park (Upper Cretaceous).
    [Show full text]
  • CORE View Metadata, Citation and Similar Papers at Core.Ac.Uk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Abstract Book-INTERNATIONAL SYMPOSIUM ON DINOSAURS AND OTHER VERTEBRATES PALAEOICHNOLOGY (2005) FUMANYA, BARCELONA 2 Abstract Book-INTERNATIONAL SYMPOSIUM ON DINOSAURS AND OTHER VERTEBRATES PALAEOICHNOLOGY (2005) FUMANYA, BARCELONA Organizing Committee Jean Le Loeuff, Musée des Dinosaures, Espéraza Bernat Vila, Consorci Ruta Minera, PhD student Josep Marmi, Consorci Ruta Minera Àngel Galobart, Institut de Paleontologia M. Crusafont de Sabadell Oriol Oms, Dep. Geologia (Estratigrafia), Fac. de Ciencies Univ. Autònoma de Barcelona Organizing Institutions Consorci Ruta Minera Dinosauria by means of European Project INTERREG-IIIA funds Collaborations Museu de les Mines de Cercs Cercs Town council Diputació de Barcelona Universitat Autònoma de Barcelona Fundación Patrimonio Paleontológico de La Rioja Museo Geominero (I.GM.E.) Obra Social “Fundació La Caixa” Scientific Committee Eric BUFFETAUT - Université Paris, France F.M. DALLA VECCHIA - Museo Paleontologico Cittadino, Monfalcone, Italy Àngel GALOBART- Institut de Paleontologia de Sabadell, Barcelona José Carlos GARCÍA-RAMOS - Universidad de Oviedo, España Jean LE LOEUFF - Musée des Dinosaures, Espéraza, France Martin G. LOCKLEY - University of Colorado, Denver, USA José Joaquin MORATALLA- Museo Geominero, (IGME), Madrid, España Oriol OMS- Universitat Autònoma de Barcelona Félix PÉREZ-LORENTE - Universidad de La Rioja , España Vanda Faria dos SANTOS - Museo Nacional de Historia
    [Show full text]
  • Download Full Article 2.2MB .Pdf File
    Memoirs of Museum Victoria 74: 63–71 (2016) Published 2016 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ A close look at Victoria's first known dinosaur tracks ANTHONY J. MARTIN Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322 USA ([email protected]) Abstract Martin, A.J. 2016. A close look at Victoria's first known dinosaur tracks. Memoirs of Museum Victoria 74: 63–71. Lower Cretaceous (Aptian-Albian) rocks of Victoria, Australia are well known for their dinosaur body fossils, but not so much for their trace fossils. For example, the first known dinosaur track from the Eumeralla Formation (Albian) of Knowledge Creek, Victoria, was not discovered until 1980. This specimen, along with two more Eumeralla tracks found at Skenes Creek in 1989, constituted all of the dinosaur tracks recognised in Lower Cretaceous strata of southern Australia until the late 2000s. Unfortunately, none of these first-known dinosaur tracks of Victoria were properly described and diagnosed. Hence, the main purpose of this study is to document these trace fossils more thoroughly. Remarkably, the Knowledge Creek and one of the Skenes Creek tracks are nearly identical in size and form; both tracks are attributed to small ornithopods. Although poorly expressed, the second probable track from Skenes Creek provides a search image for less obvious dinosaur tracks in Lower Cretaceous strata of Victoria. The Skenes Creek tracks were also likely from the same trackway, and thus may represent the first discovered dinosaur trackway from Victoria. These tracks are the first confirmed ornithopod tracks for Victoria, augmenting abundant body fossil evidence of small ornithopods (‘hypsilophodontids’) in formerly polar environments during the Early Cretaceous.
    [Show full text]
  • Contributions in Science
    NUMBER 515 23 AUGUST 2007 CONTRIBUTIONS IN SCIENCE THE XOCHIXTLAPILCO DINOSAUR ICHNOFAUNA, MIDDLE JURASSIC OF OAXACA,SOUTHEASTERN MEXICO:DESCRIPTION AND PALEONTOLOGIC SIGNIFICANCE ISMAEL FERRUSQUI´A-VILLAFRANCA, VI´CTOR MANUEL BRAVO-CUEVAS, AND EDUARDO JIME´NEZ-HIDALGO The scientific publications of the Natural History Museum SERIAL of Los Angeles County have been issued at irregular in- tervals in three major series; the issues in each series are PUBLICATIONS numbered individually, and numbers run consecutively, re- gardless of the subject matter. OF THE N Contributions in Science, a miscellaneous series of tech- NATURAL HISTORY nical papers describing original research in the life and earth sciences. MUSEUM OF N Science Bulletin, a miscellaneous series of monographs describing original research in the life and earth sciences. LOS ANGELES This series was discontinued in 1978 with the issue of Numbers 29 and 30; monographs are now published by COUNTY the Museum in Contributions in Science. N Science Series, long articles and collections of papers on natural history topics. Copies of this publication are available through the Scholarly Publications Office at 213/763-3330 or by vis- iting our website at Æhttp://www.nhm.orgæ for a PDF file version. SCIENTIFIC PUBLICATIONS COMMITTEE NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY John Heyning, Deputy Director 900 EXPOSITION BOULEVARD for Research and Collections LOS ANGELES,CALIFORNIA 90007 John M. Harris, Committee Chairman Brian V. Brown Joel W. Martin Xiaoming Wang Printed at Allen Press, Inc., Lawrence, Kansas K. Victoria Brown, Managing Editor ISSN 0459-8113 THE XOCHIXTLAPILCO DINOSAUR ICHNOFAUNA,MIDDLE JURASSIC OF OAXACA,SOUTHEASTERN MEXICO: DESCRIPTION AND PALEONTOLOGIC SIGNIFICANCE ISMAEL FERRUSQUI´A-VILLAFRANCA,1 VI´CTOR MANUEL BRAVO-CUEVAS,2 AND EDUARDO JIME´NEZ-HIDALGO3 ABSTRACT.
    [Show full text]
  • Tracking Late Jurassic Ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic Implications
    Tracking Late Jurassic ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic implications DIEGO CASTANERA, BRUNO C. SILVA, VANDA F. SANTOS, ELISABETE MALAFAIA, and MATTEO BELVEDERE Castanera, D., Silva, B.C., Santos, V.F., Malafaia, E., and Belvedere, M. 2020. Tracking Late Jurassic ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic implications. Acta Palaeontologica Polonica 65 (X): xxx–xxx. The Sociedade de História Natural in Torres Vedras, Portugal houses an extensive collection of as yet undescribed dino- saur tracks with ornithopod affinities. They have been collected from different Late Jurassic (Kimmeridgian–Tithonian) geological formations (Praia de Amoreira-Porto Novo, Alcobaça, Sobral, and Freixial) that outcrop along the Portuguese coast, and belong to two different sub-basins of the Lusitanian Basin (the Consolação and Turcifal sub-basins). Three main morphotypes can be distinguished on the basis of size, mesaxony and the morphology of the metatarsophalan- geal pad impression. The minute to small-sized morphotype is similar to the Anomoepus-like tracks identified in other Late Jurassic areas. The small to medium-sized morphotype resembles the Late Jurassic–Early Cretaceous ichnotaxon Dinehichnus, already known in the Lusitanian Basin. Interestingly, these two morphotypes can be distinguished qualita- tively (slightly different size, metatarsophalangeal pad impression and digit morphology) but are nevertheless difficult to discriminate by quantitatively analysing their length-width ratio and mesaxony. The third morphotype is considered a large ornithopod footprint belonging to the ichnofamily Iguanodontipodidae. This ichnofamily is typical for Cretaceous tracksites but the new material suggests that it might also be present in the Late Jurassic. The three morphotypes show a negative correlation between size and mesaxony, so the smaller tracks show the stronger mesaxony, and the larger ones weaker mesaxony.
    [Show full text]
  • 100 Years of Managing Fossils on Federal Lands
    Bulletin 34 New Mexico Museum of Natural History & Science A Division of the DEPARTMENT OF CULTURAL AFFAIRS America’s Antiquities: 100 Years of Managing Fossils on Federal Lands edited by Spencer G. Lucas, Justin A. Spielmann, Patricia M. Hester, Jason P. Kenworthy and Vincent L. Santucci Albuquerque, 2006 Bulletin 34 New Mexico Museum of Natural History & Science A Division of the DEPARTMENT OF CULTURAL AFFAIRS America’s Antiquities: 100 Years of Managing Fossils on Federal Lands edited by Spencer G. Lucas, Justin A. Spielmann, Patricia M. Hester, Jason P. Kenworthy and Vincent L. Santucci Printed with the support of the U.S. Government Albuquerque, 2006 STATE OF NEW MEXICO Department of Cultural Affairs Stuart Ashman, Secretary NEW MEXICO MUSEUM OF NATURAL HISTORY AND SCIENCE Adrian P. Hunt, Ph.D., Director BOARD OF TRUSTEES Bill Richardson, Governor, State of New Mexico, ex officio Adrian P. Hunt, Ph.D., Director, ex officio Gary Friedman, President Mary B. Gavin, Emerita Peter F. Gerity, Ph.D. Jerry Langheim Laurence Lattman, Ph.D. Morton Lieberman, Ph. D. Imogene Lindsay, Emerita John Montgomery, Ph.D. Osbjorn Pearson, Ph.D. Joseph Powell, Ph.D. Alexa Tysseling Ron V. Wilmot Cover illustration: Seventh Federal Fossil Conference logo. Disclaimer: Opinions expressed in the papers of this volume are those of the author(s) and do not necessarily reflect those of the Bureau of Land Management, National Park Service, U.S. Forest Service, Bureau of Reclamation, or other federal agency. EDITORIAL BOARD Spencer G. Lucas, Ph.D., Managing editor Adrian P. Hunt, Ph.D. Gary S. Morgan, M.S. Justin A.
    [Show full text]
  • Tracking Late Jurassic Ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic Implications
    Tracking Late Jurassic ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic implications DIEGO CASTANERA, BRUNO C. SILVA, VANDA F. SANTOS, ELISABETE MALAFAIA, and MATTEO BELVEDERE Castanera, D., Silva, B.C., Santos, V.F., Malafaia, E., and Belvedere, M. 2020. Tracking Late Jurassic ornithopods in the Lusitanian Basin of Portugal: Ichnotaxonomic implications. Acta Palaeontologica Polonica 65 (2): 399–412. The Sociedade de História Natural in Torres Vedras, Portugal houses an extensive collection of as yet undescribed dino- saur tracks with ornithopod affinities. They have been collected from different Late Jurassic (Kimmeridgian–Tithonian) geological formations (Praia de Amoreira-Porto Novo, Alcobaça, Sobral, and Freixial) that outcrop along the Portuguese coast, and belong to two different sub-basins of the Lusitanian Basin (the Consolação and Turcifal sub-basins). Three main morphotypes can be distinguished on the basis of size, mesaxony and the morphology of the metatarsophalan- geal pad impression. The minute to small-sized morphotype is similar to the Anomoepus-like tracks identified in other Late Jurassic areas. The small to medium-sized morphotype resembles the Late Jurassic–Early Cretaceous ichnotaxon Dinehichnus, already known in the Lusitanian Basin. Interestingly, these two morphotypes can be distinguished qualita- tively (slightly different size, metatarsophalangeal pad impression and digit morphology) but are nevertheless difficult to discriminate by quantitatively analysing their length-width ratio and mesaxony. The third morphotype is considered a large ornithopod footprint belonging to the ichnofamily Iguanodontipodidae. This ichnofamily is typical for Cretaceous tracksites but the new material suggests that it might also be present in the Late Jurassic. The three morphotypes show a negative correlation between size and mesaxony, so the smaller tracks show the stronger mesaxony, and the larger ones weaker mesaxony.
    [Show full text]