The Bryological Times Number 127 April 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Revision and Checklist of the Moss Families Bartramiaceae and Mniaceae in Vietnam Timo KOPONEN1, Thanh-Luc NGUYEN2, Thien-Tam L
Hattoria 10: 69–107. 2019 Revision and checklist of the moss families Bartramiaceae and Mniaceae in Vietnam Timo KOPONEN1, Thanh-Luc NGUYEN2, Thien-Tam LUONG3, 4 & Sanna HUTTUNEN4 1 Finnish-Chinese Botanical Foundation, Mailantie 109, FI-08800 Lohja, Finland & Finnish Museum of Natural History, Botany Unit (bryology), P.O. Box 7 (Unioninkatu 4), FI-00014 University of Helsinki, Finland 2 Southern Institute of Ecology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi, District 1, Ho Chi Minh City, Vietnam 3 University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam 4 Herbarium (TUR), Biodiversity Unit, FI 20014 University of Turku, Finland Author for correspondence: Thanh-Luc NGUYEN, [email protected] Abstract The genera Fleischerobryum Loeske and Philonotis Brid. of the Bartramiaceae and the family Mniaceae (excluding Pohlia Hedw.) are revised for Vietnam, based on specimens studied and literature reports. Four species are added to the flora: Orthomnion javense (M.Fleisch.) T.J.Kop., Philonotis asperifolia Mitt., P. laii T.J.Kop., P. speciosa (Griff.) Mitt. syn. nov. (based on P. mercieri Paris & Broth.), and Plagiomnium wui (T.J.Kop.) Y.J.Yi & S.He. Eight species are excluded from the flora. Two taxa are considered doubtful. The flora now includes one species of Fleischerobryum, eight species of Philonotis, one species of Mnium Hedw. (doubtful), three species of Orthomnion Wills. and five species of Plagiomnium (one doubtful). The 15 species are divided into phytogeographical elements. Eight belong to the Southeast Asiatic temperate to meridional element, and seven to the Southeast Asiatic meridional to subtropical element. -
Floristic Study of Bryophytes in a Subtropical Forest of Nabeup-Ri at Aewol Gotjawal, Jejudo Island
− pISSN 1225-8318 Korean J. Pl. Taxon. 48(1): 100 108 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.1.100 Korean Journal of ORIGINAL ARTICLE Plant Taxonomy Floristic study of bryophytes in a subtropical forest of Nabeup-ri at Aewol Gotjawal, Jejudo Island Eun-Young YIM* and Hwa-Ja HYUN Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Seogwipo 63582, Korea (Received 24 February 2018; Revised 26 March 2018; Accepted 29 March 2018) ABSTRACT: This study presents a survey of bryophytes in a subtropical forest of Nabeup-ri, known as Geumsan Park, located at Aewol Gotjawal in the northwestern part of Jejudo Island, Korea. A total of 63 taxa belonging to Bryophyta (22 families 37 genera 44 species), Marchantiophyta (7 families 11 genera 18 species), and Antho- cerotophyta (1 family 1 genus 1 species) were determined, and the liverwort index was 30.2%. The predominant life form was the mat form. The rates of bryophytes dominating in mesic to hygric sites were higher than the bryophytes mainly observed in xeric habitats. These values indicate that such forests are widespread in this study area. Moreover, the rock was the substrate type, which plays a major role in providing micro-habitats for bryophytes. We suggest that more detailed studies of the bryophyte flora should be conducted on a regional scale to provide basic data for selecting indicator species of Gotjawal and evergreen broad-leaved forests on Jejudo Island. Keywords: bryophyte, Aewol Gotjawal, liverwort index, life-form Jejudo Island was formed by volcanic activities and has geological, ecological, and cultural aspects (Jeong et al., 2013; unique topological and geological features. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
2.10 Meesia Longiseta HEDW. Code: 1389 Anhang: II
2.10 Meesia longiseta HEDW. Code: 1389 Anhang: II KLAUS WEDDELING, GERHARD LUDWIG & MONIKA HACHTEL, Bonn Namen: D: Langstieliges Schwanenhalsmoos, Langstieliges Meesemoos, Gestreckte Langborste E: Long-stalked Thread Moss, Long-shafted Swan Moss, F: – Systematik/Taxonomie: Bryophyta, Bryopsida, Bryidae, Splachnales, Meesiaceae. Synonyme: Amblyodon longisetus (HEDW.) P. BEAUV. Kennzeichen/Artbestimmung: Meesia longiseta ist ein 4–8 (–10) cm hohes, akrokarpes, unverzweigtes Laubmoos von grün-schwärzlicher Färbung. Die Art wächst in lockeren, weichen Rasen (Abb. 2.9). Das Stämmchen ist bis in die Spitze wurzelhaarig und im Moose Querschnitt dreikantig. Die Blättchen sind mehr oder weniger deutlich in 3 oder 6 Rei- hen angeordnet und vom Stämmchen abgespreizt. Die 2–3,5 mm langen, spitzen Blätt- chen laufen deutlich am Stämmchen herab, sind oberwärts gekielt, ganzrandig oder an der Spitze etwas gezähnt. Ihre deutlich entwickelte Rippe endet unterhalb der Blattspitze. Der Blattrand ist flach. Die Laminazellen sind rechteckig bis rhombisch und etwa 14 µm breit. Die rötlichen, gedrehten Seten der synözischen Art können über 10 cm lang wer- den. Die langbirnenförmige, aufrechte Kapsel hat einen deutlichen Hals. Bei der Spo- renreife im Juni und Juli werden die mit 36–44 µm Durchmesser recht großen Sporen frei- gesetzt. Die Chromosomenzahl ist nicht bekannt (FRITSCH 1991). Differenzierende Merkmale zu den ähnlichen Arten Meesia uliginosa und M. hexasticha sind der nicht ein- gerollte Blattrand, die kleineren Sporen und der Rippenquerschnitt mit kleinen, inneren Zellen (zusammengestellt nach CRUM & ANDERSON 1981, FRAHM 1979, LIMPRICHT 1895). Abbildungen der Art finden sich bei CRUM & ANDERSON (1981, Fig. 296, 297, S. 628, 629: Blättchen, Blattspitze, Habitus, Kapsel) und FRAHM (1979, Fig. -
On the Genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia К Систематике Рода Hedwigia (Hedwigiaceae, Bryophyta) В России Elena A
Arctoa (2016) 25: 241–277 doi: 10.15298/arctoa.25.20 ON THE GENUS HEDWIGIA (HEDWIGIACEAE, BRYOPHYTA) IN RUSSIA К СИСТЕМАТИКЕ РОДА HEDWIGIA (HEDWIGIACEAE, BRYOPHYTA) В РОССИИ ELENA A. IGNATOVA1, OXANA I. KUZNETSOVA2, VLADIMIR E. FEDOSOV1 & MICHAEL S. IGNATOV1,2 ЕЛЕНА А. ИГНАТОВА1, ОКСАНА И. КУЗНЕЦОВА2, ВЛАДИМИР Э. ФЕДОСОВ1, МИХАИЛ С. ИГНАТОВ1,2 Abstract An integrative molecular and morphological study of the genus Hedwigia in Russia revealed at least five distinct species in its territory. Hedwigia czernyadjevae sp. nov. appears to have a wide distribution in Transbaikalia, Yakutia and high mountains of the Russian Far East, although it never occurs frequently. Previously its specimens were identified as H. stellata, but straight leaf apices, strongly incrassate and porose laminal cells and hairy calyptrae differentiate H. czernyadjevae from this species, in addition to sequence data, which place the Siberian species closer to American H. detonsa. Hedwigia nemoralis sp. nov. occurs in southern regions of Russia, from the Caucasus to the Russian Far East, with one locality in Central European Russia. It was also revealed from eastern North America. It is characterized by a small plant size, shortly acuminate, secund leaves with short, denticulate hyaline hair points and weakly ciliate perichaetial leaves. Hedwigia mollis sp. nov. has shortly recurved leaf margins, weakly sinuose laminal cells and spores 20–25(–28) m. It was re- vealed in European Russia, from the southern Murmansk Province and Karelia to the Caucasus, and from South Urals and Altai Mts. Hedwigia ciliata is infrequent in Russia, occurring mainly in the North-Western European Russia, with few localities in its central part. -
Flora of New Zealand Mosses
FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1 -
Online Supplemental Material: Tables S1-S3, Figures S1-S5, References to Online Material
Infraspecific diversity in a spore-dispersed species with limited distribution range Systematics and Biodiversity Lars Hedenäs (corresponding author) Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden; ph. +46-8-51954214; email: [email protected] Irene Bisang Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden; ph. +46-8-51954130; email: [email protected] ONLINE SUPPLEMENTAL MATERIAL: TABLES S1-S3, FIGURES S1-S5, REFERENCES TO ONLINE MATERIAL Supplementary Online Table S1 Geographical location of the 33 study plots of the Baltic study, all in Sweden. Öland. 1: Räpplinge, Alvaret E of Strandtorp, 56° 49.776’ N, 16° 37.688’ E, Periodically wet depression, 3 May 2011. 2: Räpplinge, Alvaret E of Strandtorp, 56° 49.878’ N, 16° 37.793’ E, Periodically wet depression, 3 May 2011. 3: Räpplinge, Alvaret E of Strandtorp, 56° 49.867’ N, 16° 37.797’ E, Periodically wet depression, 3 May 2011. 4: Vickleby, 500 m E of Lilla Vickleby, 56° 34.064’ N, 16° 28.087’ E, Periodically wet depression, 4 May 2011. 6: Resmo, 2 km NNE of Resmo, 56° 33.366’ N, 16° 27.986’ E, Periodically wet depression, 4 May 2011. 7: Resmo, 1.5 km N of Resmo, 56° 33.311’ N, 16° 27.396’ E, Periodically wet depression, 4 May 2011. 8: Torslunda, S of Gamla Skogsby, 56° 36.878’ N, 16° 29.715’ E, Periodically wet depression, 5 May 2011. 9: Torslunda, S of Gamla Skogsby, 56° 36.789’ N, 16° 29.685’ E, Periodically wet depression, 5 May 2011. -
Moss Occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia
Biodiversity Data Journal 7: e32307 doi: 10.3897/BDJ.7.e32307 Data Paper Moss occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia Galina Zheleznova‡, Tatyana Shubina‡, Svetlana Degteva‡‡, Ivan Chadin , Mikhail Rubtsov‡ ‡ Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia Corresponding author: Tatyana Shubina ([email protected]) Academic editor: Yasen Mutafchiev Received: 10 Dec 2018 | Accepted: 25 Mar 2019 | Published: 01 Apr 2019 Citation: Zheleznova G, Shubina T, Degteva S, Chadin I, Rubtsov M (2019) Moss occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia. Biodiversity Data Journal 7: e32307. https://doi.org/10.3897/BDJ.7.e32307 Abstract Background This study produced a dataset containing information on moss occurrences in the territory of Yugyd Va National Park, located in the Subpolar and Northern Urals, European North- East Russia. The dataset summarises occurrences noted by long-term bryological explorations in remote areas of the Subpolar and Northern Urals from 1943 to 2015 and from studies published since 1915. The dataset consists of 4,120 occurrence records. The occurrence data were extracted from herbarium specimen labels (3,833 records) and data from published literature (287 records). Most of the records (4,104) are georeferenced. A total of 302 moss taxa belonging to 112 genera and 36 families are reported herein to occur in Yugyd Va National Park. The diversity of bryophytes in this National Park has not yet been fully explored and further exploration will lead to more taxa. -
Molecular Phylogeny of Chinese Thuidiaceae with Emphasis on Thuidium and Pelekium
Molecular Phylogeny of Chinese Thuidiaceae with emphasis on Thuidium and Pelekium QI-YING, CAI1, 2, BI-CAI, GUAN2, GANG, GE2, YAN-MING, FANG 1 1 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China. 2 College of Life Science, Nanchang University, 330031 Nanchang, China. E-mail: [email protected] Abstract We present molecular phylogenetic investigation of Thuidiaceae, especially on Thudium and Pelekium. Three chloroplast sequences (trnL-F, rps4, and atpB-rbcL) and one nuclear sequence (ITS) were analyzed. Data partitions were analyzed separately and in combination by employing MP (maximum parsimony) and Bayesian methods. The influence of data conflict in combined analyses was further explored by two methods: the incongruence length difference (ILD) test and the partition addition bootstrap alteration approach (PABA). Based on the results, ITS 1& 2 had crucial effect in phylogenetic reconstruction in this study, and more chloroplast sequences should be combinated into the analyses since their stability for reconstructing within genus of pleurocarpous mosses. We supported that Helodiaceae including Actinothuidium, Bryochenea, and Helodium still attributed to Thuidiaceae, and the monophyletic Thuidiaceae s. lat. should also include several genera (or species) from Leskeaceae such as Haplocladium and Leskea. In the Thuidiaceae, Thuidium and Pelekium were resolved as two monophyletic groups separately. The results from molecular phylogeny were supported by the crucial morphological characters in Thuidiaceae s. lat., Thuidium and Pelekium. Key words: Thuidiaceae, Thuidium, Pelekium, molecular phylogeny, cpDNA, ITS, PABA approach Introduction Pleurocarpous mosses consist of around 5000 species that are defined by the presence of lateral perichaetia along the gametophyte stems. Monophyletic pleurocarpous mosses were resolved as three orders: Ptychomniales, Hypnales, and Hookeriales (Shaw et al. -
Aquatic and Wet Marchantiophyta, Order Metzgeriales: Aneuraceae
Glime, J. M. 2021. Aquatic and Wet Marchantiophyta, Order Metzgeriales: Aneuraceae. Chapt. 1-11. In: Glime, J. M. Bryophyte 1-11-1 Ecology. Volume 4. Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 11 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-11: AQUATIC AND WET MARCHANTIOPHYTA, ORDER METZGERIALES: ANEURACEAE TABLE OF CONTENTS SUBCLASS METZGERIIDAE ........................................................................................................................................... 1-11-2 Order Metzgeriales............................................................................................................................................................... 1-11-2 Aneuraceae ................................................................................................................................................................... 1-11-2 Aneura .......................................................................................................................................................................... 1-11-2 Aneura maxima ............................................................................................................................................................ 1-11-2 Aneura mirabilis .......................................................................................................................................................... 1-11-7 Aneura pinguis .......................................................................................................................................................... -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
Hypnaceaeandpossiblyrelatedfn
Hikobial3:645-665.2002 Molecularphylo窪enyOfhypnobrJ/aleanmOssesasin化rredfroma lar淫e-scaledatasetofchlOroplastlbcL,withspecialre他rencetothe HypnaceaeandpOssiblyrelatedfnmilies1 HIRoMITsuBoTA,ToMoTsuGuARIKAwA,HIRoYuKIAKIYAMA,EFRAINDELuNA,DoLoREs GoNzALEz,MASANoBuHIGucHIANDHIRoNoRIDEGucHI TsuBoTA,H、,ARIKAwA,T,AKIYAMA,H,,DELuNA,E,GoNzALEz,,.,HIGucHI,M 4 &DEGucHI,H、2002.Molecularphylogenyofhypnobryaleanmossesasinferred fiPomalarge-scaledatasetofchloroplastr6cL,withspecialreferencetotheHypnaceae andpossiblyrelatedfamiliesl3:645-665. ▲ Phylogeneticrelationshipswithinthehypnobryaleanmosses(ie,theHypnales,Leuco- dontales,andHookeriales)havebeenthefbcusofmuchattentioninrecentyears Herewepresentphylogeneticinfierencesonthislargeclade,andespeciallyonthe Hypnaceaeandpossiblyrelatedftlmilies,basedonmaximumlikelihoodanalysisof l81r6cLsequences、Oursmdycorroboratesthat(1)theHypnales(sstr.[=sensu Vittl984])andLeucodontalesareeachnotmonophyleticentities、TheHypnalesand LeucodontalestogethercompriseawellsupportedsistercladetotheHookeriales;(2) theSematophyllaceae(s」at[=sensuTsubotaetaL2000,2001a,b])andPlagiothecia‐ ceae(s・str.[=sensupresentDareeachresolvedasmonophyleticgroups,whileno particularcladeaccommodatesallmembersoftheHypnaceaeandCryphaeaceae;and (3)theHypnaceaeaswellasitstypegenusノリDlwz"川tselfwerepolyphyletioThese resultsdonotconcurwiththesystemsofVitt(1984)andBuckandVitt(1986),who suggestedthatthegroupswithasinglecostawouldhavedivergedfiFomthehypnalean ancestoratanearlyevolutionarystage,fbllowedbythegroupswithadoublecosta (seealsoTsubotaetall999;Bucketal2000)OurresultsfiPomlikelihoodanalyses