The Long and Winding Road to Rational Treatment of Cancer Associated with LKB1/AMPK/TSC/Mtorc1 Signaling

Total Page:16

File Type:pdf, Size:1020Kb

The Long and Winding Road to Rational Treatment of Cancer Associated with LKB1/AMPK/TSC/Mtorc1 Signaling Oncogene (2011) 30, 2289–2303 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc REVIEW The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling W van Veelen, SE Korsse1, L van de Laar1 and MP Peppelenbosch Department of Gastroenterology and Hepatology, Erasmus Medical University Center, Rotterdam, The Netherlands The liver kinase B1 (LKB1)/adenosine mono-phosphate- The metabolic LKB1/AMPK/TSC/mTORC1 signaling activated protein kinase (AMPK)/tuberous sclerosis pathway complex (TSC)/mammalian target of rapamycin (mTOR) complex (mTORC1) cassette constitutes a canonical The liver kinase B1 (LKB1)/adenosine mono phosphate signaling pathway that integrates information on the activated protein kinase (AMPK)/tuberous sclerosis metabolic and nutrient status and translates this into complex (TSC)/mammalian target of rapamycin regulation of cell growth. Alterations in this pathway are (mTOR) complex 1 (mTORC1) signaling pathway associated with a wide variety of cancers and hereditary signaling pathway is central in regulating cellular hamartoma syndromes, diseases in which hyperactivation metabolism and cell growth by integrating information of mTORC1 has been described. Specific mTORC1 regarding the intracellular energy and oxygen status, the inhibitors have been developed for clinical use, and these presence of growth factors and nutrient availability. drugs have been anticipated to provide efficient treatment Under circumstances of sufficient energy and nutrient for these diseases. In the present review, we provide an sources, this metabolic pathway stimulates cell growth. overview of the metabolic LKB1/AMPK/TSC/mTORC1 In cases of stress, metabolic processes are adjusted to pathway, describe how its aberrant signaling associates restore resources in the cell. with cancer development, and indicate the difficulties encountered when biochemical data are extrapolated to provide avenues for rational treatment of disease when LKB1/AMPK signaling targeting this signaling pathway. A careful examination of LKB1 (also referred to as serine/threonine kinase 11) preclinical and clinical studies performed with rapamycin is a 50 kDa serine/threonine kinase and is ubiquitously or derivatives thereof shows that although results are expressed in adult and fetal tissues, particularly in encouraging, we are only half way in the long and winding pancreas, liver, testes and skeletal muscle (Hemminki road to design rationale treatment targeted at the LKB1/ et al., 1998; Jenne et al., 1998). Lacking a nuclear export AMPK/TSC/mTORC1 pathway. Inherited cancer syn- domain of its own, in the absence of stimulation, LKB1 dromes associated with this pathway such as the Peutz– is retained in the nucleus in an inactive state (Figure 1). Jeghers syndrome and TSC, provide perfect models to Activation of LKB1 is associated with its translocation study the relationship between genetics and disease to the cytoplasm, which is induced upon formation of a phenotype, and to delineate the complexities that underlie heterotrimer with the STE20-related adaptor protein a translation of biochemical and genetical information to (STRADa) and scaffolding mouse 25 protein (MO25) clinical management, and thus provide important clues for (Baas et al., 2003; Boudeau et al., 2003; Brajenovic et al., devising novel rational medicine for cancerous diseases in 2004) (Figure 1). By facilitating the binding of exportins general. to LKB1 and acting as a competitor for importin-a/b, Oncogene (2011) 30, 2289–2303; doi:10.1038/onc.2010.630; STRADa prevents nuclear re-localization of LKB1 published online 24 January 2011 (Dorfman and Macara, 2008) (Figure 1). MO25 merely serves as a stabilizer of the LKB1-STRADa interaction Keywords: mTOR; rapamycin; hamartoma syndromes; (Boudeau et al., 2003). In addition to inducing its cancer; PTEN/PI3K/PKB signaling translocation, LKB1-STRADa interaction also results in LKB1 (auto) phosphorylation at various residues. However, the functional relevance of this remains debatable, as prevention of phosphorylation does not appear to affect LKB1 kinase activity (Jansen et al., 2009). When activated, LKB1 phosphorylates and activates Correspondence: Professor MP Peppelenbosch, Department of AMPKa and its related serine/threonine kinases Gastroenterology and Hepatology, Erasmus MC, Room L-457, (Figure 1) (Hawley et al., 2003; Lizcano et al., 2004; ‘s Gravendijkwal 230, Rotterdam 3015 CE, The Netherlands. Shaw et al., 2004; Jaleel et al., 2005; Lim et al., 2010). E-mail: [email protected] 1These authors contributed equally to this work. Via the regulation of MARK isoforms and PAR Received 13 October 2010; revised and accepted 15 December 2010; proteins, LKB1 establishes cell polarity (Figure 1) published online 24 January 2011 (Spicer et al., 2003; Lizcano et al., 2004). AMPKa is Road to treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling W van Veelen et al 2290 plasma memb rane low glucose low oxygen AMPKα1, AMPKα2 plasma NUAK1, NUAK2 membrane SIK1, SIK2 QSK ↑ AMP p MARK1, MARK2, MARK3, MARK4 STRADα translocation BRSK1, BRSK2 MO25 SNRK LKB1 active GLUT4 p AMPKγAMPKβ LKB1 ↑ 2+ Ca CaMKK p AMPKα STRADα MO25 LKB1 PP2A, PP2C STRADα MO25 β cytoplasm a nd Imp α export TSC2 FOXO3 ↑ NAD+ ACC1 Imp α dependent import raptor HNF4 ACC2 Exp7 or CRM1 dependent export P53 PGC1α HMGCR passive diffusion Exp7 or CRM1 nucleus dependent P27 HDAC LKB1 LKB1 CRTC2 SIRT1 STRADα STRADα inactive MO25 MO25 Figure 1 Activation and translocation of LKB1. LKB1 is activated by its translocation from the nucleus to the cytoplasm. Normally, LKB1 remains in the nucleus in an inactive state. Upon activation, LKB1 is bound by STE20-related adaptor protein a (STRADa) and mouse protein 25 (MO25), proteins that enter the CELL GROWTH and METABOLISM nucleus either by passive diffusion or active import by importins a/b (Impa, Impb). The stable LKB1/STRADa/MO25 complex is Figure 2 LKB1/AMPK signaling. The LKB1/AMPK signaling actively exported out of the nucleus by exportin 7 and CRM1. In pathway regulates cell growth and metabolism via various down- the cytoplasm, LKB1 exerts its serine/threonine kinase activity by stream effectors. Metabolic stress induced by, for example, low phosphorylating and activating the 14 members of the AMPK glucose or oxygen levels increases intracellular AMP/ATP ratios. serine/threonine kinase family regulating cell polarity, energy AMP is bound by the AMP-dependent protein kinase g subunit metabolism and cell growth. (AMPKg), which forms a complex with AMPKa and -b. Upon formation of this complex, AMPKa is phosphorylated by LKB1. AMPKa can also be phosphorylated by calcium/calmodulin- dependent protein kinase kinase (CaMKK) and is dephosphory- activated by LKB1 in response to energy stress. When, lated by the protein phosphatases PP2A and PP2C. The activated due to either excessive ATP consumption or in the case AMPK complex induces translocation of the glucose importer of hypoxia, reduced aerobic ATP production, cellular GLUT4 to the plasma membrane to enhance glucose uptake and regulates downstream signaling controlling gene transcription and AMP/ATP ratios are increased (Figure 2). This is sensed metabolic processes. Together, this results in the restoration of the by AMPK, which through binding of AMP undergoes a energy balance in the cell. conformational change, upon which it can be phos- phorylated by LKB1 (Figure 2) (Alessi et al., 2006; Hardie, 2007; Jansen et al., 2009). AMPKa can also be downstream effectors of AMPK is TSC2 as described in phosphorylated by calcium/calmodulin-dependent pro- more detail below. In conclusion, LKB1/AMPK signal- tein kinase kinase, which is triggered through influx of ing serves to coordinate energy metabolism, cell polarity calcium (Figure 2) (Hawley et al., 1995). The phosphor- and cell growth, processes which are all crucial in the ylation of AMPKa is reversed by the phosphatases development of cancer. PP2A and PP2C (Figure 2) (Moore et al., 1991). LKB1/AMPK signaling induces several cellular pro- cesses, one of which is the control of energy metabolism Regulation of the TSC1:TSC2 complex through regulation of several downstream targets, The TSC1:TSC2 complex exists as a heterodimer of including the metabolic enzymes acetyl-CoA carbox- two proteins, the 130 kDa TSC1 (also referred to as ylase and HMG-CoA reductase (Figure 2) (Carling hamartin) and the 200 kDa TSC2 (also referred to as et al., 1987). By suppressing energy-consuming processes tuberin) (Huang and Manning, 2008). TSC1 and TSC2 such as glycogen and lipid synthesis on the one hand, are widely expressed in human tissues, such as heart, and enhancing energy-gaining pathways such as glyco- brain, lung, liver, kidney, pancreas and skeletal muscle lysis on the other, AMPK activation aids in restoration (Consortium, 1993; van Slegtenhorst et al., 1997; Huang of the cellular energy status (Kola et al., 2006). In line, and Manning, 2008). The two proteins interact through AMPK activation induces relocalization of the glucose coiled-coil domains to form a stable, functional hetero- importer GLUT4 to the plasma membrane (Figure 2) dimer (van Slegtenhorst et al., 1998). The C-terminal (Kurth-Kraczek et al., 1999). In addition, LKB1/AMPK region of TSC2 shows homology to the Rap GTPase signaling regulates factors involved in cell cycle regula- activating protein, and GTPase activating protein tion, survival and gene transcription (Figure 2) (Jansen activity to various G-proteins
Recommended publications
  • The Retinoblastoma Tumor-Suppressor Gene, the Exception That Proves the Rule
    Oncogene (2006) 25, 5233–5243 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW The retinoblastoma tumor-suppressor gene, the exception that proves the rule DW Goodrich Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA The retinoblastoma tumor-suppressor gene (Rb1)is transmission of one mutationally inactivated Rb1 allele centrally important in cancer research. Mutational and loss of the remaining wild-type allele in somatic inactivation of Rb1 causes the pediatric cancer retino- retinal cells. Hence hereditary retinoblastoma typically blastoma, while deregulation ofthe pathway in which it has an earlier onset and a greater number of tumor foci functions is common in most types of human cancer. The than sporadic retinoblastoma where both Rb1 alleles Rb1-encoded protein (pRb) is well known as a general cell must be inactivated in somatic retinal cells. To this day, cycle regulator, and this activity is critical for pRb- Rb1 remains an exception among cancer-associated mediated tumor suppression. The main focus of this genes in that its mutation is apparently both necessary review, however, is on more recent evidence demonstrating and sufficient, or at least rate limiting, for the genesis of the existence ofadditional, cell type-specific pRb func- a human cancer. The simple genetics of retinoblastoma tions in cellular differentiation and survival. These has spawned the hope that a complete molecular additional functions are relevant to carcinogenesis sug- understanding of the Rb1-encoded protein (pRb) would gesting that the net effect of Rb1 loss on the behavior of lead to deeper insight into the processes of neoplastic resulting tumors is highly dependent on biological context.
    [Show full text]
  • DNA Microarrays (Gene Chips) and Cancer
    DNA Microarrays (Gene Chips) and Cancer Cancer Education Project University of Rochester DNA Microarrays (Gene Chips) and Cancer http://www.biosci.utexas.edu/graduate/plantbio/images/spot/microarray.jpg http://www.affymetrix.com Part 1 Gene Expression and Cancer Nucleus Proteins DNA RNA Cell membrane All your cells have the same DNA Sperm Embryo Egg Fertilized Egg - Zygote How do cells that have the same DNA (genes) end up having different structures and functions? DNA in the nucleus Genes Different genes are turned on in different cells. DIFFERENTIAL GENE EXPRESSION GENE EXPRESSION (Genes are “on”) Transcription Translation DNA mRNA protein cell structure (Gene) and function Converts the DNA (gene) code into cell structure and function Differential Gene Expression Different genes Different genes are turned on in different cells make different mRNA’s Differential Gene Expression Different genes are turned Different genes Different mRNA’s on in different cells make different mRNA’s make different Proteins An example of differential gene expression White blood cell Stem Cell Platelet Red blood cell Bone marrow stem cells differentiate into specialized blood cells because different genes are expressed during development. Normal Differential Gene Expression Genes mRNA mRNA Expression of different genes results in the cell developing into a red blood cell or a white blood cell Cancer and Differential Gene Expression mRNA Genes But some times….. Mutations can lead to CANCER CELL some genes being Abnormal gene expression more or less may result
    [Show full text]
  • 'Stress–Response' Kinase Pathways in Alzheimer's Disease Progression
    Available online at www.sciencedirect.com ScienceDirect Involvement of ‘stress–response’ kinase pathways in Alzheimer’s disease progression 1 Georges Mairet-Coello and Franck Polleux Alzheimer’s disease (AD) is the most prevalent cause of oligomers of Ab are causal to synaptic toxicity [2], trigger dementia, affecting more than 25 million people worldwide. synaptic dysfunction, synapse loss and impaired long- Current models of the pathophysiological mechanisms of AD term potentiation (LTP) [3]. The exact nature of the suggest that the accumulation of soluble oligomeric forms of Ab species (dimers, trimers, Ab*56, protofibrils) respon- amyloid-b (Ab) peptides causes early loss of excitatory sible for this early synaptotoxicity is still under investi- synapses and impairs synaptic plasticity. The signaling gation [4]. Most experimental designs use a mixture of pathways mediating Ab oligomer-induced impairment of various forms of synthetic Ab oligomers, or natural Ab synaptic plasticity and loss of excitatory synapses are only oligomers isolated from the brain of AD subjects, to beginning to be unraveled. Here, we review recent evidence induce rapid loss of excitatory synapses in hippocampal supporting the critical contribution of conserved ‘stress– and cortical neurons in vitro [5–10]. Transgenic mouse response’ kinase pathways in AD progression. models of AD engineered to overexpress human mutant forms of Amyloid Precursor Protein (hAPP), with or with- Addresses out overexpression of mutant presenilins (PS), produce The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037- high levels of Ab1–40 and Ab1–42 peptides and oligo- 1000, USA mers, recapitulate the reduction of excitatory synapses, exhibit neuronal network dysfunction and cognitive def- Corresponding author: Polleux, Franck ([email protected]) 1 icits in spatial learning [6,11].
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Regulation of the Mammalian Target of Rapamycin Complex 2 (Mtorc2)
    Regulation of the Mammalian Target Of Rapamycin Complex 2 (mTORC2) Inauguraldissertation Zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Klaus-Dieter Molle aus Heilbronn, Deutschland Basel, 2006 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät Auf Antrag von Prof. Michael N. Hall und Prof. Markus Affolter. Basel, den 21.11.2006 Prof. Hans-Peter Hauri Dekan Summary The growth controlling mammalian Target of Rapamycin (mTOR) is a conserved Ser/Thr kinase found in two structurally and functionally distinct complexes, mTORC1 and mTORC2. The tumor suppressor TSC1-TSC2 complex inhibits mTORC1 by acting on the small GTPase Rheb, but the role of TSC1-TSC2 and Rheb in the regulation of mTORC2 is unclear. Here we examined the role of TSC1-TSC2 in the regulation of mTORC2 in human embryonic kidney 293 cells. Induced knockdown of TSC1 and TSC2 (TSC1/2) stimulated mTORC2-dependent actin cytoskeleton organization and Paxillin phosphorylation. Furthermore, TSC1/2 siRNA increased mTORC2-dependent Ser473 phosphorylation of plasma membrane bound, myristoylated Akt/PKB. This suggests that loss of Akt/PKB Ser473 phosphorylation in TSC mutant cells, as reported previously, is due to inhibition of Akt/PKB localization rather than inhibition of mTORC2 activity. Amino acids and overexpression of Rheb failed to stimulate mTORC2 signaling. Thus, TSC1-TSC2 also inhibits mTORC2, but possibly independently of Rheb. Our results suggest that mTORC2 hyperactivation may contribute to the pathophysiology of diseases such as cancer and Tuberous Sclerosis Complex. i Acknowledgement During my PhD studies in the Biozentrum I received a lot of support from many people around me who I mention here to express my gratefulness.
    [Show full text]
  • Lymphocyte/WBC-Based Comprehensive Testing Via Next-Gen Sequencing NF1/SPRED1 and Other Rasopathy Related Conditions on Blood/Saliva
    Last Updated October 2019 Institutional Price TAT Genetic Test CPT Codes Z codes Specimen Requirements (USD$) (working days) Lymphocyte/WBC-based Comprehensive Testing via Next-Gen Sequencing NF1/SPRED1 and Other RASopathy Related Conditions on Blood/Saliva NF1- only NGS testing and copy number analysis for the NF1 gene (NF1-NG) This testing includes an average coverage of >1600x to allow for the identification of (1) 3-6ml whole blood in EDTA (purple topped) tubes mosaicism as low as 3-5% of the alleles. In addition, novel variants identified in the $1,000 81408 25 (2) Oragene 575 saliva kit (provided by the MGL) ZB6A9 NF1 gene will be confirmed via RNA-based analysis at no additional charge. RNA- $1,600 (RUSH) 81479 15 (RUSH) (3) DNA sample (25ul volume at 3ug, O.D. value at based testing will also be provided to non-founder, multigenerational families with 260:280 ≥1.8) “classic” NF1 at no additional charge if next-generation sequencing is found negative. (1) 3-6ml whole blood in EDTA (purple topped) tubes SPRED1-only NGS testing and copy number analysis for SPRED1 (SPD1-NG) $800 81405 25 (2) Oragene 575 saliva kit (provided by the MGL) This testing includes an average coverage of >1600x to allow for the identification of ZB6AC $1,400 (RUSH) 81479 15 (RUSH) (3) DNA sample (25ul volume at 3ug, O.D. value at mosaicism as low as 3-5% of the alleles after comprehensive NF1 analysis. 260:280 ≥1.8) NF1/SPRED1 NGS testing and copy number analysis for NF1 and SPRED1 (NFSP-NG) (1) 3-6ml whole blood in EDTA (purple topped) tubes 81408 This testing includes an average coverage of >1600x to allow for the identification of $1,100 25 (2) Oragene 575 saliva kit (provided by the MGL) 81405 ZB6A8 mosaicism as low as 3-5% of the alleles.
    [Show full text]
  • Metabolism of Purines and Pyrimidines in Health and Disease
    39th Meeting of the Polish Biochemical Society Gdañsk 16–20 September 2003 SESSION 6 Metabolism of purines and pyrimidines in health and disease Organized by A. C. Sk³adanowski, A. Guranowski 182 Session 6. Metabolism of purines and pyrimidines in health and disease 2003 323 Lecture The role of DNA methylation in cytotoxicity mechanism of adenosine analogues in treatment of leukemia Krystyna Fabianowska-Majewska Zak³ad Chemii Medycznej IFiB, Uniwersytet Medyczny, ul. Mazowiecka 6/8, 92 215 £ódŸ Changes in DNA methylation have been recognized tory effects of cladribine and fludarabine on DNA as one of the most common molecular alterations in hu- methylation, after 48 hr growth of K562 cells with the man neoplastic diseases and hypermethylation of drugs, are non-random and affect mainly CpG rich is- gene-promoter regions is one of the most frequent lands or CCGG sequences but do not affect sepa- mechanisms of the loss of gene functions. For this rea- rately-located CpG sequences. The analysis showed son, DNA methylation may be a tool for detection of that cladribine (0.1 mM) reduced the methylated early cell transformations as well as predisposition to cytosines in CpG islands and CCGG sequences to a sim- metastasis process. Moreover, DNA methylation seems ilar degree. The inhibition of cytosine methylation by to be a promissing target for new preventive and thera- fludarabine (3 mM) was observed mainly in CCGG se- peutic strategies. quences, sensitive to HpaII, but the decline in the meth- Our studies on DNA methylation and cytotoxicity ylated cytosine, located in CpG island was 2-fold lower mechanism of antileukemic drugs, cladribine and than that with cladribine.
    [Show full text]
  • TSC1/TSC2 Signaling in the CNS ⇑ Juliette M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 973–980 journal homepage: www.FEBSLetters.org Review TSC1/TSC2 signaling in the CNS ⇑ Juliette M. Han, Mustafa Sahin The F.M. Kirby Neurobiology Center, Department of Neurology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA article info abstract Article history: Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex Received 5 January 2011 (TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal Revised 1 February 2011 dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign Accepted 1 February 2011 tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play Available online 15 February 2011 a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the Edited by Wilhelm Just mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in response to extracellular and intracellular factors. Findings in cancer biology have reinforced the critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the Keywords: mTOR TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and Autism finely tuned system that has distinctive roles under different conditions, depending on cell type, Translation stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its multi-faceted roles, contributes to proper neural connectivity.
    [Show full text]
  • P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
    P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) BSJ-03-123 AAK1 AAK1 94 1000 BSJ-03-123 ABL1(E255K)-phosphorylated ABL1 79 1000 BSJ-03-123 ABL1(F317I)-nonphosphorylated ABL1 89 1000 BSJ-03-123 ABL1(F317I)-phosphorylated ABL1 98 1000 BSJ-03-123 ABL1(F317L)-nonphosphorylated ABL1 86 1000 BSJ-03-123 ABL1(F317L)-phosphorylated ABL1 89 1000 BSJ-03-123 ABL1(H396P)-nonphosphorylated ABL1 76 1000 BSJ-03-123 ABL1(H396P)-phosphorylated ABL1 90 1000 BSJ-03-123 ABL1(M351T)-phosphorylated ABL1 100 1000 BSJ-03-123 ABL1(Q252H)-nonphosphorylated ABL1 56 1000 BSJ-03-123 ABL1(Q252H)-phosphorylated ABL1 97 1000 BSJ-03-123 ABL1(T315I)-nonphosphorylated ABL1 100 1000 BSJ-03-123 ABL1(T315I)-phosphorylated ABL1 85 1000 BSJ-03-123 ABL1(Y253F)-phosphorylated ABL1 100 1000 BSJ-03-123 ABL1-nonphosphorylated ABL1 60 1000 BSJ-03-123 ABL1-phosphorylated ABL1 79 1000 BSJ-03-123 ABL2 ABL2 89 1000 BSJ-03-123 ACVR1 ACVR1 100 1000 BSJ-03-123 ACVR1B ACVR1B 95 1000 BSJ-03-123 ACVR2A ACVR2A 100 1000 BSJ-03-123 ACVR2B ACVR2B 96 1000 BSJ-03-123 ACVRL1 ACVRL1 84 1000 BSJ-03-123 ADCK3 CABC1 90 1000 BSJ-03-123 ADCK4 ADCK4 91 1000 BSJ-03-123 AKT1 AKT1 100 1000 BSJ-03-123 AKT2 AKT2 98 1000 BSJ-03-123 AKT3 AKT3 100 1000 BSJ-03-123 ALK ALK 100 1000 BSJ-03-123 ALK(C1156Y) ALK 78 1000 BSJ-03-123 ALK(L1196M) ALK 100 1000 BSJ-03-123 AMPK-alpha1 PRKAA1 93 1000 BSJ-03-123 AMPK-alpha2 PRKAA2 100 1000 BSJ-03-123 ANKK1 ANKK1 89 1000 BSJ-03-123 ARK5 NUAK1 98 1000 BSJ-03-123 ASK1 MAP3K5 100 1000 BSJ-03-123 ASK2 MAP3K6 92 1000 BSJ-03-123 AURKA
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]