UPSTREAM COMPONENTS of MTORC1 by Li Li a Dissertation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MARK4 with an Alzheimer's Disease-Related Mutation Promotes
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.107284; this version posted May 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MARK4 with an Alzheimer’s disease-related mutation promotes tau hyperphosphorylation directly and indirectly and exacerbates neurodegeneration Toshiya Obaa, Taro Saitoa,b, Akiko Asadaa,b, Sawako Shimizua, Koichi M. Iijimac,d and Kanae Andoa,b, * aGraduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan, bDepartment of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan, cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan, dDepartment of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan *Corresponding author Kanae Ando, Ph.D. E-mail: [email protected] Running title: Mutant MARK4 enhances phospho-tau accumulation Abstract Accumulation of the microtubule-associated protein tau is associated with Alzheimer’s disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser262 and Ser356 play critical roles in tau accumulation and toxicity. Microtubule-affinity regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317InsD, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser262/356-dependent and -independent mechanisms. -
A Feed-Forward Cycle
GMJ.2020;9:e1681 www.gmj.ir Received 2019-08-08 Revised 2019-11-11 Accepted 2019-11-24 Tau Abnormalities and Autophagic Defects in Neurodegenerative Disorders; A Feed-forward Cycle Nastaran Samimi 1, 2, Akiko Asada 3, 4, Kanae Ando 3, 4 1 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran 2 Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran 3 Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan 4 Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan Abstract Abnormal deposition of misfolded proteins is a neuropathological characteristic shared by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of excessive amounts of aggregated proteins and impairment of degradation systems for misfolded proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules that contribute to both these effects are emerging as critical players in disease pathogenesis. Furthermore, impairment of autophagy under disease conditions can be both a cause and a consequence of abnormal protein accumulation. Specifically, disease-causing proteins can impair autophagy, which further enhances the accumulation of abnormal proteins. In this short review, we focus on the relationship between the microtubule-associated protein tau and autophagy to highlight a feed-forward mechanism in disease pathogenesis. [GMJ.2020;9:e1681] DOI:10.31661/gmj.v9i0.1681 Keywords: Neurodegenerative Diseases; Tauopathy; Autophagy; Microtubule Binding Pro- tein; Tau; Phosphorylation; Vesicle Trafficking Tau phosphorylation in physiology and dis- However, tau detaches from microtubules and ease misfolds to form insoluble filaments in neuro- isfolded tau protein is deposited in a fibrillary tangles in the brains of patients with Mgroup of neurodegenerative diseases tauopathies [4-9]. -
'Stress–Response' Kinase Pathways in Alzheimer's Disease Progression
Available online at www.sciencedirect.com ScienceDirect Involvement of ‘stress–response’ kinase pathways in Alzheimer’s disease progression 1 Georges Mairet-Coello and Franck Polleux Alzheimer’s disease (AD) is the most prevalent cause of oligomers of Ab are causal to synaptic toxicity [2], trigger dementia, affecting more than 25 million people worldwide. synaptic dysfunction, synapse loss and impaired long- Current models of the pathophysiological mechanisms of AD term potentiation (LTP) [3]. The exact nature of the suggest that the accumulation of soluble oligomeric forms of Ab species (dimers, trimers, Ab*56, protofibrils) respon- amyloid-b (Ab) peptides causes early loss of excitatory sible for this early synaptotoxicity is still under investi- synapses and impairs synaptic plasticity. The signaling gation [4]. Most experimental designs use a mixture of pathways mediating Ab oligomer-induced impairment of various forms of synthetic Ab oligomers, or natural Ab synaptic plasticity and loss of excitatory synapses are only oligomers isolated from the brain of AD subjects, to beginning to be unraveled. Here, we review recent evidence induce rapid loss of excitatory synapses in hippocampal supporting the critical contribution of conserved ‘stress– and cortical neurons in vitro [5–10]. Transgenic mouse response’ kinase pathways in AD progression. models of AD engineered to overexpress human mutant forms of Amyloid Precursor Protein (hAPP), with or with- Addresses out overexpression of mutant presenilins (PS), produce The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037- high levels of Ab1–40 and Ab1–42 peptides and oligo- 1000, USA mers, recapitulate the reduction of excitatory synapses, exhibit neuronal network dysfunction and cognitive def- Corresponding author: Polleux, Franck ([email protected]) 1 icits in spatial learning [6,11]. -
Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
A Calcium- and Calmodulin-Dependent Kinase I␣/ Microtubule Affinity Regulating Kinase 2 Signaling Cascade Mediates Calcium-Dependent Neurite Outgrowth
The Journal of Neuroscience, April 18, 2007 • 27(16):4413–4423 • 4413 Cellular/Molecular A Calcium- and Calmodulin-Dependent Kinase I␣/ Microtubule Affinity Regulating Kinase 2 Signaling Cascade Mediates Calcium-Dependent Neurite Outgrowth Nataliya V. Uboha,1 Marc Flajolet,2 Angus C. Nairn,1,2 and Marina R. Picciotto1 1Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and 2Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021 Calcium is a critical regulator of neuronal differentiation and neurite outgrowth during development, as well as synaptic plasticity in adulthood. Calcium- and calmodulin-dependent kinase I (CaMKI) can regulate neurite outgrowth; however, the signal transduction cascades that lead to its physiological effects have not yet been elucidated. CaMKI␣ was therefore used as bait in a yeast two-hybrid assay and microtubule affinity regulating kinase 2 (MARK2)/Par-1b was identified as an interacting partner of CaMKI in three independent screens. The interaction between CaMKI and MARK2 was confirmed in vitro and in vivo by coimmunoprecipitation. CaMKI binds MARK2 within its kinase domain, but only if it is activated by calcium and calmodulin. Expression of CaMKI and MARK2 in Neuro-2A (N2a) cells and in primary hippocampal neurons promotes neurite outgrowth, an effect dependent on the catalytic activities of these enzymes. In addition, decreasing MARK2 activity blocks the ability of the calcium ionophore ionomycin to promote neurite outgrowth. Finally, CaMKI phosphorylates MARK2 on novel sites within its kinase domain. Mutation of these phosphorylation sites decreases both MARK2 kinase activity and its ability to promote neurite outgrowth. -
Profiling Data
Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8 -
Synthesis, Biological Evaluation and in Silico Studies of Certain Oxindole–Indole Conjugates As Anticancer CDK Inhibitors
molecules Article Synthesis, Biological Evaluation and In Silico Studies of Certain Oxindole–Indole Conjugates as Anticancer CDK Inhibitors Tarfah Al-Warhi 1, Ahmed M. El Kerdawy 2,3 , Nada Aljaeed 1, Omnia E. Ismael 4, Rezk R. Ayyad 5, Wagdy M. Eldehna 6,* , Hatem A. Abdel-Aziz 7 and Ghada H. Al-Ansary 8,9,* 1 Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 12271, Saudi Arabia; [email protected] (T.A.-W.); [email protected] (N.A.) 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; [email protected] 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo–Alexandria Desert Road, Cairo 12577, Egypt 4 Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt; [email protected] 5 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt; [email protected] 6 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt 7 Department of Applied Organic Chemistry, National Research Center, Dokki, Giza 12622, Egypt; [email protected] 8 Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah 6231, Saudi Arabia 9 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt * Correspondence: [email protected] (W.M.E.); [email protected] (G.H.A.) Academic Editor: Sandra Gemma Received: 3 April 2020; Accepted: 23 April 2020; Published: 27 April 2020 Abstract: On account of their overexpression in a wide range of human malignancies, cyclin-dependent kinases (CDKs) are among the most validated cancer targets, and their inhibition has been featured as a valuable strategy for anticancer drug discovery. -
Supplementary Table 1
SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee -
Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction
Int. J. Mol. Sci. 2014, 15, 4671-4713; doi:10.3390/ijms15034671 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction Anna Mietelska-Porowska, Urszula Wasik, Marcelina Goras, Anna Filipek and Grazyna Niewiadomska * Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, Warsaw 02-093, Poland; E-Mails: [email protected] (A.M.-P.); [email protected] (U.W.); [email protected] (M.G.); [email protected] (A.F.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-22-589-2409, Fax: +48-22-822-5342. Received: 29 November 2013; in revised form: 11 February 2014 / Accepted: 4 March 2014 / Published: 18 March 2014 Abstract: Tau protein is abundant in the central nervous system and involved in microtubule assembly and stabilization. It is predominantly associated with axonal microtubules and present at lower level in dendrites where it is engaged in signaling functions. Post-translational modifications of tau and its interaction with several proteins play an important regulatory role in the physiology of tau. As a consequence of abnormal modifications and expression, tau is redistributed from neuronal processes to the soma and forms toxic oligomers or aggregated deposits. The accumulation of tau protein is increasingly recognized as the neuropathological hallmark of a number of dementia disorders known as tauopathies. Dysfunction of tau protein may contribute to collapse of cytoskeleton, thereby causing improper anterograde and retrograde movement of motor proteins and their cargos on microtubules. -
Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene, -
Rosmarinic Acid Exhibits Anticancer Effects Via MARK4 Inhibition
www.nature.com/scientificreports OPEN Rosmarinic Acid Exhibits Anticancer Efects via MARK4 Inhibition Saleha Anwar1,7, Anas Shamsi1,7, Mohd Shahbaaz2,3, Aarfa Queen1,4, Parvez Khan 1, Gulam Mustafa Hasan5, Asimul Islam 1, Mohamed F. Alajmi6, Afzal Hussain6, Faizan Ahmad1 & Md. Imtaiyaz Hassan 1 ✉ Microtubule afnity regulating kinase (MARK4) is a potential drug target for diferent types of cancer as it controls the early step of cell division. In this study, we have screened a series of natural compounds and fnally identifed rosmarinic acid (RA) as a potential inhibitor of MARK4. Molecular docking and 500 ns all-atom simulation studies suggested that RA binds to the active site pocket of MARK4, forming enough number of non-covalent interactions with critical residues and MARK4-RA complex is stable throughout the simulation trajectory. RA shows an excellent binding afnity to the MARK4 with a 7 −1 binding constant (K) of 10 M . Furthermore, RA signifcantly inhibits MARK4 activity (IC50 = 6.204 µM). The evaluation of enthalpy change (∆H) and entropy change (∆S) suggested that the MARK4-RA complex formation is driven by hydrogen bonding and thus complexation process is seemingly specifc. The consequence of MARK4 inhibition by RA was further evaluated by cell-based tau-phosphorylation studies, which suggested that RA inhibited the phosphorylation of tau. The treatment of cancer cells with RA signifcantly controls cell growth and subsequently induces apoptosis. Our study provides a rationale for the therapeutic evaluation of RA and RA-based inhibitors in MARK4 associated cancers and other diseases. Protein kinases are key regulators of signaling pathways and their abnormal expression is directly associated with cancer, neurodegenerative and other metabolic diseases1. -
Analysis of 3-Phosphoinositide-Dependent Kinase-1 Signaling and Function in ES Cells
EXPERIMENTAL CELL RESEARCH 314 (2008) 2299– 2312 available at www.sciencedirect.com www.elsevier.com/locate/yexcr Research Article Analysis of 3-phosphoinositide-dependent kinase-1 signaling and function in ES cells Tanja Tamgüneya,b, Chao Zhangc, Dorothea Fiedlerc, Kevan Shokatc, David Stokoea,⁎ aUCSF Cancer Research Institute, USA bMolecular Medicine Program, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany cDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA ARTICLE INFORMATION ABSTRACT Article Chronology: 3-Phosphoinositide-dependent kinase-1 (PDK1) phosphorylates and activates several Received 5 February 2008 kinases in the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) family. Revised version received Many putative PDK1 substrates have been identified, but have not been analyzed following 15 April 2008 transient and specific inhibition of PDK1 activity. Here, we demonstrate that a previously Accepted 16 April 2008 characterized PDK1 inhibitor, BX-795, shows biological effects that are not consistent with Available online 23 April 2008 PDK1 inhibition. Therefore, we describe the creation and characterization of a PDK1 mutant, L159G, which can bind inhibitor analogues containing bulky groups that hinder access to the − − Keywords: ATP binding pocket of wild type (WT) kinases. When expressed in PDK1 / ES cells, PDK1 PDK1 L159G restored phosphorylation of PDK1 targets known to be hypophosphorylated in these PKB/Akt cells. Screening of multiple inhibitor analogues showed that 1-NM-PP1 and 3,4-DMB-PP1 − − PI3K optimally inhibited the phosphorylation of PDK1 targets in PDK1 / ES cells expressing PDK1 Chemical genetics L159G but not WT PDK1. These compounds confirmed previously assumed PDK1 substrates, AGC kinases but revealed distinct dephosphorylation kinetics.