Toxicity Review of DEHA

Total Page:16

File Type:pdf, Size:1020Kb

Toxicity Review of DEHA CPSC Staff Statement on University of Cincinnati Report “Toxicity Review for Bis(2-ethylhexyl) Adipate (DEHA)”1 October 2018 The U.S. Consumer Product Safety Commission (CPSC) contracted with the University of Cincinnati to conduct toxicology assessments for six dialkyl o-phthalate (o-DAP) substitutes: acetyl tri-n-butyl citrate (ATBC); bis(2-ethylhexyl) adipate (DEHA); di-2-ethylhexyl terephthalate (DEHT); 1,2-cyclohexanedicarboxylic acid, dinonyl ester, branched and linear (DINX); trioctyltrimellitate (TOTM); and 2,2,4-trimethyl-1,3-pentanediol-diisobutyrate (TPIB). The reports will be used to inform staff’s assessment of products that may contain these compounds and is the first step in the risk assessment process. CPSC staff assesses a product’s potential health effects to consumers under the Federal Hazardous Substances Act (FHSA). The FHSA is risk-based. To be considered a “hazardous substance” under the FHSA, a consumer product must satisfy a two-part definition. First, it must be “toxic” under the FHSA, or present one of the other hazards enumerated in the statute. Second, it must have the potential to cause “substantial personal injury or substantial illness during or as a proximate result of any customary or reasonably foreseeable handling or use.” Therefore, exposure and risk must be considered in addition to toxicity when assessing potential hazards of products under the FHSA. The first step in the risk assessment process is hazard identification, which consists of a review of the available toxicity data for the chemical. If it is concluded that a substance may be “toxic”, then a quantitative assessment of exposure and risk is performed to evaluate whether a specified product may be considered a “hazardous substance”. The toxicity review for DEHA follows. 1 This statement was prepared by the CPSC staff, and the attached report was produced by the University of Cincinnati for CPSC staff. The statement and report have not been reviewed or approved by, and do not necessarily represent the views of, the Commission. TOXICITY REVIEW FOR BIS(2-ETHYLHEXYL)ADIPATE (DEHA) Contract No. CPSC-D-17-0001 Task Order No. 003 Prepared by: Risk Science Center Department of Environmental Health University of Cincinnati 160 Panzeca Way, Room G24 Cincinnati, OH 45267 Prepared for: Kent R. Carlson, Ph.D. U.S. Consumer Product Safety Commission 4330 East West Highway Bethesda, MD 20814 August 8, 2018 * This report was prepared for the Commission pursuant to contract CPSC-D-17-0001 It has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. This page intentionally left blank. 2 Table of Contents 1 Introduction ............................................................................................................................. 4 2 Physico-Chemical Characteristics ........................................................................................... 5 3 Manufacture, Supply, and Use ................................................................................................ 6 4 Toxicokinetics ......................................................................................................................... 8 5 Hazard Information ................................................................................................................ 10 5.1 Acute Single Dose Toxicity ........................................................................................... 10 5.1.1 Acute Oral Toxicity .................................................................................................... 10 5.1.2 Acute Dermal Toxicity ............................................................................................... 11 5.1.3 Acute Inhalation Toxicity ........................................................................................... 11 5.1.4 Irritation/Sensitization ................................................................................................ 11 5.2 Repeated Dose Toxicity ................................................................................................. 12 5.3 Chronic Toxicity/Carcinogenicity .................................................................................. 14 5.4 Reproductive Toxicity .................................................................................................... 17 5.5 Prenatal, Perinatal, and Postnatal Toxicity..................................................................... 20 5.6 Genotoxicity ................................................................................................................... 22 5.7 Mechanistic Studies........................................................................................................ 23 5.8 Mode of Action (MOA) ................................................................................................. 24 5.9 Lowest Hazard Endpoints by Organ System and Exposure Duration ........................... 25 5.10 Uncertainties and Data Gaps .......................................................................................... 26 6 Exposure ................................................................................................................................ 34 7 Discussion .............................................................................................................................. 36 7.1 Toxicity Under FHSA ........................................................................................................ 36 8 References ............................................................................................................................. 37 Appendix 1. Literature Search Terms Used …………………………………………..…………47 Appendix 2. Explanation of Physico-chemical Parameters .......................................................... 48 3 1 Introduction This report summarizes available data on the identity, physicochemical properties, manufacture, supply, use, toxicity, and exposure associated with bis(2-ethylhexyl)adipate (DEHA). It is an update of a previous contractor report to CPSC (Versar, 2010). Literature searches for physico-chemical, toxicological, exposure, and risk information were performed in November 2017 using the CAS number and synonyms (see Appendix 1 for the full list of search terms), and using the following databases: EPA SRS PUBMED RTECS TSCATS (included in TOXLINE) TOXNET databases, including o TOXLINE o CCRIS o DART/ETIC o GENE-TOX o HSDB Searches of the PubMed and Toxline databases covered all dates through the date of the search (November, 2017). However, studies dated up to 2007 were screened out of the library during the screening process using the Endnote files, as the current report supplements and updates a staff report prepared in 2010 (Versar, 2010). Other databases and websites were also used to identify additional key information, particularly authoritative reviews. Searches for authoritative reviews addressing general toxicity and physicochemical information were conducted with the following databases using the CAS number for DEHA and synonyms. These sites included: ANSES Information on Chemicals (https://www.anses.fr/en) ChemIDPlus (https://chem.nlm.nih.gov/chemidplus/) ECHA Information on Chemicals (https://echa.europa.eu/information-on-chemicals) EFSA (https://www.efsa.europa.eu/) EPA (https://www.epa.gov/) EPA chemistry dashboard (https://comptox.epa.gov/dashboard) EPA IRIS (https://www.epa.gov/iris) FDA (https://www.fda.gov/) Google 4 Health Canada (https://www.canada.ca/en/health-canada.html) IARC (https://www.iarc.fr/) INCHEM (http://www.inchem.org/) JECFA (http://www.who.int/foodsafety/areas_work/chemical-risks/jecfa/en/) NICNAS (https://www.nicnas.gov.au/) NTP (https://ntp.niehs.nih.gov/) OECD (http://www.oecd.org/) WHO (http://www.who.int/en/) Two new DEHA toxicology studies were identified in the literature searches. These were an evaluation of ovarian toxicity, female fertility and developmental toxicity in rats (Wato et al., 2009) and a developmental toxicity study in rabbits (Anonymous, 2014, as cited by ECHA, 2018). Other new studies that were found in the primary literature included studies on toxicokinetics, exposure and mechanism of action, as well as reviews. Several of the key toxicity studies were unpublished and not available as the primary studies. Therefore, these studies were evaluated based on authoritative reviews and data compilations, including SCENIHR (2008), Danish EPA (2010), OECD (2012), ANSES (2015), ECHA (2018), and Eastman Chemical (2010). Several additional review publications have been published since the previous CPSC assessment (Versar, 2010). Reviews and posted data from ECHA (2018) provided useful new information. 2 Physico-Chemical Characteristics DEHA is an ester of 2-ethylhexanol and adipic acid. Physical-chemical properties for this compound are highlighted in Table 1. Table 1: Physicochemical Properties and Identification Information for Di(2-ethylhexyl) Adipate Chemical Name Di(2-ethylhexyl) adipate Synonyms Hexanedioic acid, 1,6-bis(2-ethylhexyl) ester; Bis(2-ethylhexyl) hexanedioate; Di-(2-ethylhexyl) adipate; Dioctyl adipate; Hexanedioic acid, bis(2-ethylhexyl) ester; Adipic acid, bis(2- ethylhexyl) ester; Bis(2-ethylhexyl) adipate; DEHA; Di(2-ethylhexyl) adipate; Di(2-ethylhexyl) adipate; Di-2-ethylhexyl adipate; Hexanedioic acid, dioctyl ester; Octyl adipate CAS Number 103-23-1 Structure 5 (EPA Chemistry Dashboard) Chemical Formula C22H42O4 Molecular Weight 370.574 g/mol Physical State Liquid (MSDS Eastman
Recommended publications
  • Greenchem Industries Chemical and Solvent Product List A-Z
    GreenChem Industries Chemical And Solvent Product List A-Z 1,4-Butanediol (BDO) Formic Acid, 80%, 85%, 90%, 95% N-Butanol 2-Ethylhexanol (2-EH) Gamma Butyrolactone (GBL) N-Butyl Acetate (BUTAC) 2-Ethylhexyl Acrylate (2-EHA) Glacial Acetic Acid (GAA) N-Heptane 911P Glutaraldehyde 50% N-Methyl Pyrrolidone (NMP) Acetic Acid Glycerin USP K & Tech Grade N-Propanol Acetone Glycol Ether DB N-Propyl Acetate Acetonitrile Glycol Ether DE Neopentyl Glycol (NPG) Adipic Acid Glycol Ether DM Nitromethane Alpha-Methylstyrene (AMS) Glycol Ether DPM Nonyl Phenol Asphalt Cutback Glycol Ether DPM Acetate (DPM Acetate) NP-9, NP-10, NP-12 Benzoic Acid Glycol Ether DPnB Odorless Mineral Spirits (OMS) Benzyl Alcohol USP & TECH Glycol Ether DPnP Oxalic Acid 99.6% Benzyl Chloride Glycol Ether EB P-Chlorbenzotrifluoride (PCBTF) Boric Acid Glycol Ether EEP Perchloroethylene (PERC) Butyl Acrylate Glycol Ether EM Phenol 85%, 90%, 99% Caustic Potash 90% Glycol Ether EP Phthalic Anhydride Glycol Ether EPH Polyethylene Glycol (PEG) Caustic Soda Flakes & Beads Glycol Ether PM Propylene Carbonate (PC) Citric Acid, USP Kosher Glycol Ether PMA Propylene Glycol USP (PG USP K) Cyclohexane Glycol Ether PnB Propylene Glycol Industrial (PGI) Cyclohexylamine Glycol Ether PnP Sebacic Acid Cylcohexanone Glycol Ether TPM Secondary Butanol (SBA) D-Limonene Glycolic Acid 70% Sodium Laurel Sulfate (SLES) 28%, 60%, 70% DB Acetate GreenCool (Inhibited Glycols) Solv 100 Diacetone Alcohol (DAA) Hexane Solv 150 Dibasic Ester (DBE) Hexylene Glycol (HG) Solv 200 Dibutyl Phthalate (DBP) Hydrochloric
    [Show full text]
  • Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
    EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams.
    [Show full text]
  • Blown Films for Chilled and Frozen Food Packaging Applications
    polymers Article Evaluation of the Suitability of Poly(Lactide)/Poly(Butylene-Adipate-co-Terephthalate) Blown Films for Chilled and Frozen Food Packaging Applications Arianna Pietrosanto, Paola Scarfato * , Luciano Di Maio , Maria Rossella Nobile and Loredana Incarnato Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; [email protected] (A.P.); [email protected] (L.D.M.); [email protected] (M.R.N.); [email protected] (L.I.) * Correspondence: [email protected] Received: 20 December 2019; Accepted: 12 March 2020; Published: 3 April 2020 Abstract: The use of biopolymers can reduce the environmental impact generated by plastic materials. Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) prove to have adequate performances for food packaging applications. Therefore, the present work deals with the production and the characterization of blown films based on PLA and PBAT blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food packaging materials, thus extending their range of applications. The blends were fully characterized: they showed the typical two-phase structure, with a morphology varying from fibrillar to globular in accordance with their viscosity ratio. The increase of PBAT content in the blends led to a decrease of the barrier properties to oxygen and water vapor, and to an increase of the toughness of the films. The mechanical properties of the most ductile blends were also evaluated at 4 C and 25 C. The ◦ − ◦ decrease in temperature caused an increase of the stiffness and a decrease of the ductility of the films to a different extent, depending upon the blend composition.
    [Show full text]
  • High Performance Ester Plasticizers
    High Performance Ester Plasticizers Abstract Traditional elastomer polymers, such as nitrile, polychloroprene, chlorinated polyethylene and chlorosulfonated polyethylene, have for years used moderate- to low- performance ester plasticizers. However, longevity requirements for rubber articles made from these elastomers have created a need for higher-performance ester plasticizers. With the increasing high-temperature demands required by automotive, other elastomers such as acrylic, high-saturated nitrile, epichlorohydrin and ethylene propylene diene monomer EPDM are replacing the more traditional elastomers. Plasticizers commonly used for the traditional and the high-temperature polymers are extractable, incompatible or too volatile. This paper provides information on plasticizers that are designed for traditional elastomers and high-performance polymers. The test data will include heat aging, extraction by hydrocarbons and low-temperature as molded after aging. The information provided indicates that the permanence of the plasticizer after these various agings is the key to the retention of physical properties. Introduction End uses for elastomer compounds are quite diverse, but they can be loosely categorized as being either general performance or higher performance applications. Each of these performance categories requires a different set of considerations in terms of compounding with ester plasticizers. An ester plasticizer, in its simplest concept, is a high-boiling organic solvent that when added to an elastomeric polymer reduces stiffness and permits easier processing.1 For general performance applications, compounders require moderate performance in several areas without particular emphasis on any one. Some general performance ester plasticizers used in the marketplace today are DOA, DIDA, DIDP, DOP, DINP and other phthalates and adipates made from straight-chain alcohols of 7–11 carbons in length.
    [Show full text]
  • A Glimpse of Biodegradable Polymers and Their Biomedical Applications
    Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger e-Polymers 2019; 19: 385–410 Self-dual Leonard pairs Review Article Open Access https://doi.org/10.1515/spma-2019-0001 Received May 8, 2018; accepted September 22, 2018 Tejas V. Shah and Dilip V. Vasava* Abstract: Let F denote a eld and let V denote a vector space over F with nite positive dimension. Consider A glimpse of biodegradablea pair A, A∗ of diagonalizable polymersF-linear maps and on V ,their each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which biomedical applicationsthere exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ https://doi.org/10.1515/epoly-2019-0041 duality. In particular,NIPAM we - displayN-isopropylacrylamide an invertible F-linear map T on V such that the map X TXT− is the duality Received December 04, 2018; accepted March 29, 2019. → A A∗. We expressDEAMT -as N, a N-diethyl polynomial acrylamide in A and A∗. We describe how T acts on ags, decompositions, ↔ NVC - N-vinylcaprolactam Abstract: Over the past two decades, biodegradableand 24 bases for V. MVE - Methyl vinyl ether polymers (BPs) have been widely used in biomedical Keywords: LeonardPEO pair,- poly(ethylene tridiagonal matrix, oxide) self-dual applications such as drug carrier, gene delivery, tissue PPO - poly(propylene oxide) engineering, diagnosis, medical devices, and antibac- Classication: 17B37,15A21AAc - Acrylic acid terial/antifouling biomaterials.
    [Show full text]
  • Influence of Different Polymeric Matrices on the Properties of Pentaerythritol Tetranitrate
    Defence Science Journal, Vol. 71, No. 2, March 2021, pp. 177-184, DOI : 10.14429/dsj.71.16132 © 2021, DESIDOC Influence of Different Polymeric Matrices on the Properties of Pentaerythritol Tetranitrate Ahmed Elbeih*, Mahmoud Abdelhafiz, and Ahmed K. Hussein Military Technical College, Cairo, Egypt *E-mail: [email protected] ABSTRACT Six different polymeric matrices were fabricated to reduce the sensitivity of PETN (Pentaerythritol tetranitrate). The polymeric matrices used were individually based on Acrylonitrile butadiene rubber (NBR) softened by plasticizer, styrene-butadiene rubber (SBR) softened by oil, polymethyl methacrylate (PMMA) plasticised by dioctyl adipate (DOA), polydimethylsiloxane (PDMS), polyurethane matrix, and Fluorel binder. A computerised plastograph mixer was utilised for producing three polymer-bonded explosives (PETN-NBR, PETN-SBR, and PETN-PDMS) based on the non-aqueous method. A cast-cured method was used to prepare PBX based on polyurethane (PETN-HTPB), while the slurry technique was used to prepare beads of PETN coated by either fluorel binder (PETN-FL) or based on PMMA forming (PETN-PMMA). The heat of combustion and sensitivities were investigated. The velocity of detonation was measured, while the characteristics of the detonation wave were deduced theoretically by the EXPLO 5 (thermodynamic code). The ballistic mortar experiment was performed to determine the explosive strength. By comparing the results, it was found that PDMS has the highest influence on decreasing the impact sensitivity of PETN, while the cast cured PETN-HTPB has the lowest friction sensitivity. On the other side, PETN-FL has the highest detonation parameters with high impact sensitivity. Several relationships were verified and the matching between the measured results with the calculated ones was confirmed.
    [Show full text]
  • Surface Modification of Engineering Plastics Through Swelling In
    #2008 The Society of Polymer Science, Japan Surface Modification of Engineering Plastics through Swelling in Supercritical Carbon Dioxide By Toshimi TAKAJO,1;2 Atsushi TAKAHARA,1;Ã and Takefumi KICHIKAWA2 In order to improve the tribological characteristics of polymer materials, the authors tried to impregnate the surface of engineering plastics with the lubricating oil by using supercritical carbon dioxide. The oil impregnation ratio on crystalline polymer was influenced by both the glass transition temperature (Tg) and the degree of crystallinity. In case of using the polymer possessing lower Tg with large difference between the Tg and treatment temperature, the higher impregnation ratio was obtained, and the crystallite in crystalline polymer prevented the impregnation of lubricating oil. The results of polarized optical microscopic observations and FT-IR spectroscopy studies indicated that the lubricating oil was preferentially impregnated to the amorphous region in crystalline polymer, and the high-concentration layer of lubricating oil having the thickness of ca. 30 mm was formed at the vicinity of surface area. The result obtained in this study, which reports the preferential lubricating oil impregnation to the surface of crystalline polymer under supercritical carbon dioxide, suggests that the tribological characteristics of crystalline polymer would be improved by applying this oil impregnation method without sacrificing the bulk mechanical strength. KEY WORDS: Supercritical Carbon Dioxide / Oil Impregnation / Engineering Plastic / Tribology / Crystallinity / Many studies carried out by utilizing supercritical fluid have lubricating oil at high temperature over long periods of time to been recently reported, and the representative examples of the impregnate the product with lubricating oil. According to such studies are as follows: researches for the polymerization the method, however, it is unavoidable that the deterioration of reaction in supercritical fluid, the supercritical extraction- polymer is accelerated.
    [Show full text]
  • Raw Materials, Chemicals and Additives Handbook – March 2009 Product Listings
    Raw Materials, Chemicals and Additives Handbook – March 2009 Product Listings A. ADDITIVES AND CHEMICAL SPECIALTIES 13350 Polyfunctional Aziridines 10100 Accelerating and Vulcanizing Agents: 13400 Polyols 10150 Abrasives 13450 Resorcinol Resins 10200 Dithiocarbamates 13500 Silane 10250 Sulfur 13550 Silicone 10300 Thiazoles 13600 Toluene Diisocyanate (TDI) 10350 Thiuram Sulfides 13650 Urea-Formaldehyde Resins 10400 Zinc Oxides 13700 Zinc Salts 10450 Acids (Non-Fatty) 13750 Zirconium 10500 Additives 13800 Defoamers: 10550 Adhesion Promoters: 13850 Aluminum Stearate 10600 Adhesive Bonding Primers 13900 Amyl Alcohol 10650 Alpha Methyl-Styrene Polymers 13950 Capryl Alcohol 10700 Hydrogenated Resins 14000 Castor Oil 10750 Pentaerythritol Esters 14050 Corn Oil 10800 Phenolic Resins 14100 Decyl Alcohol 10850 Resorcinol 14150 Diethylene Glycol Monolaurate 10900 Silane 14200 Glyceryl Monostearate 10950 Silicone 14250 Mineral Oil 11000 Unsaturated Polyesters 14300 Nonyl Alcohol 11050 Vinyl Pyridine Monomer 14350 Octyl Alcohol 11100 Amine Neutralizers 14400 Palmitic Acid 11150 Ammonia 14450 Pine Oil 11200 Anti-Foaming Agents: 14500 Polyalkyl Glycol 11250 Non-Silicone 14550 Silicone Oils 11300 Silicone 14600 Stearic Acid 11350 Antioxidants: 14650 Sulfonic Acid Salts 11400 Phenolic 14700 Tri-Butyl Citrate 11450 Phosphite 14750 Tri-Butyl Phosphate 11500 Anti-Settling Agents 14800 Turkey Red Oil 11550 Anti-Skinning Agents 14900 Dispensing Agents 11600 Anti-Static Chemicals 14950 Dispersing Agents, see 22900 Surfactants and 11650 Anti-Tack Agents Dispersing
    [Show full text]
  • Bio-Based Food Packaging in Sustainable Development
    Bio-based food packaging in Sustainable Development Challenges and opportunities to utilize biomass residues from agriculture and forestry as a feedstock for bio-based food packaging Author: Rubie van Crevel, intern Supervisor: Valeria Khristolyubova, Officer Forest Products Team Forestry Policy and Resources Division February 2016-June 2016 Table of contents Executive summary ......................................................................................................................... 4 1. Bio-based food packaging as a function of sustainable development ....................................... 7 2. Food packaging materials and environmental concerns .......................................................... 10 2.1 Methodology to assess environmental performances of a packaging material ................ 10 Life cycle thinking .................................................................................................................. 10 Life Cycle Assessment ........................................................................................................... 10 Limitations of Life Cycle Assessments .................................................................................. 12 2.2 Bio-based feedstock ............................................................................................................ 13 Defining bio-based products ................................................................................................. 13 Primary versus secondary biomass resources .....................................................................
    [Show full text]
  • Biodegradation and Hydrolysis Rate of Aliphatic Aromatic Polyester
    Polymer Degradation and Stability 95 (2010) 2641e2647 Contents lists available at ScienceDirect Polymer Degradation and Stability journal homepage: www.elsevier.com/locate/polydegstab Biodegradation and hydrolysis rate of aliphatic aromatic polyester Thitisilp Kijchavengkul a, Rafael Auras a,*, Maria Rubino a, Susan Selke a, Mathieu Ngouajio b, R. Thomas Fernandez b a School of Packaging, Packaging Building, Michigan State University, East Lansing, MI 48824-1223, USA b Department of Horticulture, Plant & Soil Science Building, Michigan State University, East Lansing, MI 48824-1223, USA article info abstract Article history: The biodegradation and hydrolysis rates of an aliphatic aromatic copolyester were measured in manure, Received 20 April 2010 food, and yard compost environments and in phosphate buffer solution (pH ¼ 8.0) and vermiculite at Received in revised form 58 C. Mineralization, molecular weight reduction, and structural changes determined by DSC, FTIR, and 8 July 2010 1H NMR were used as indicators of the biodegradation and hydrolysis rates. Poly(butylene adipate- Accepted 26 July 2010 co-terephthalate), PBAT, film biodegraded at distinctive rates in manure, food, and yard compost envi- Available online 4 August 2010 ronments having different microbial activities. The highest biodegradation rate was found in manure compost, which had the highest CO emissions and lowest C/N ratio. The possible presence of extra- Keywords: 2 Mineralization cellular enzymes in manure and food composts may facilitate the hydrolytic reaction since greater 1 Poly(butylene adipate-co-terephthalate) molecular weight reduction rates were observed in these composts. H NMR and thermal analysis PBAT revealed that, while PBAT is a semi-crystalline copolyester with cocrystallization of BT and BA dimers, the Composting soft aliphatic domain (BA) and the amorphous region are more susceptible to hydrolysis and biodeg- radation than the rigid aromatic domain (BT) and the crystalline region.
    [Show full text]
  • Review of Exposure and Toxicity Data for Phthalate Substitutes
    EXECUTIVE SUMMARY In August 2008, the U.S. Congress passed the Consumer Product Safety Improvement Act of 2008 (CPSIA) placing restrictions on the use of six dialkyl ortho-phthalates (o- DAPs) in children’s toys or child care articles. The CPSIA also directs the Consumer Product Safety Commission (CPSC) to convene a Chronic Hazard Advisory Panel to investigate the potential health effects of phthalates and phthalate substitutes. The purpose of this report is to identify o-DAP substitutes that are currently being used in children’s articles, or are probable future candidates, and to summarize the potential human health risks associated with using these chemicals in this manner. Chemicals were identified as the most likely alternatives to o-DAPs in children’s articles based on a variety of factors which included their compatibility with polyvinyl chloride (PVC). The five chemicals identified by this report as the most likely o-DAP alternatives are acetyl tri-n-butyl citrate (ATBC), di(2-ethylhexyl) adipate (DEHA), 1,2- cyclohexanedicarboxylic acid, dinonyl ester (DINCH), trioctyltrimellitate (TOTM),and di(2-ethylhexyl) terephthalate (DEHT or DOTP). All, except TOTM, have been cited as already being used in children’s articles. However, TOTM is compatible with PVC – the most popular resin for children’s soft plastic toys and other articles – and thus a likely o- DAP alternative. The review of the potential risks of using these chemicals in children’s articles focused on the amount and quality of data available for the chemical. Key parameters included physical-chemical properties, migration rates, and all available exposure, hazard, and dose-response information.
    [Show full text]
  • Environmental Impact of Food Packaging Materials: a Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials
    materials Review Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials Lindani Koketso Ncube 1, Albert Uchenna Ude 1,*, Enoch Nifise Ogunmuyiwa 2, Rozli Zulkifli 3 and Isaac Nongwe Beas 4 1 Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), Private Mail Bag 16, Palapye, Botswana; [email protected] 2 Department of Chemical, Materials &Metallurgical Engineering Academic, FET, BIUST, Private Mail Bag 16, Palapye, Botswana; [email protected] 3 Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia, UKM, Bangi 43600, Malaysia; rozlizulkifl[email protected] 4 Botswana Institute for Technology Research and Innovation (BITRI), Private Bag 0082, Gaborone, Botswana; [email protected] * Correspondence: [email protected] Received: 24 August 2020; Accepted: 28 September 2020; Published: 6 November 2020 Abstract: Plastics have remained the material of choice, and after serving their intended purpose, a large proportion ends up in the environment where they persist for centuries. The packaging industry is the largest and growing consumer of synthetic plastics derived from fossil fuels. Food packaging plastics account for the bulk of plastic waste that are polluting the environment. Additionally, given the fact that petroleum reserves are finite and facing depletion, there is a need for the development of alternative materials that can serve the same purpose as conventional plastics. This paper reviews the function of packaging materials and highlights the future potential of the adoption of green materials.
    [Show full text]