Food Caching by a Marine Apex Predator, the Leopard Seal (Hydrurga Leptonyx)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Skull Allometry and Sexual Dimorphism in the Ontogeny of the Southern Elephant Seal (Mirounga Leonina) B.A
19 ARTICLE Skull allometry and sexual dimorphism in the ontogeny of the southern elephant seal (Mirounga leonina) B.A. Tarnawski, G.H. Cassini, and D.A. Flores Abstract: The southern elephant seal (Mirounga leonina (L., 1758)) is one of the most dimorphic mammals, but sexual dimorphism in its skull ontogeny is poorly known. We study ontogeny of sexual dimorphism by the allometric relationships between 21 measurements and its geometric mean. Based on 66 specimens (36 females, 30 males), the bivariate and multivariate analyses indicated that both approaches were congruent in most variables. We detected that sexual dimorphism was reached mostly by sexual shape differences in the ontogenetic trajectories of males and females. Twenty-four percent of variables were associated with intercept differences (pup size proportions), while 57% of variables were associated with slope intersexual differences (relative growth rates). Contrarily, sexual dimorphism was also achieved by size differences in adult stages (19% of variables), as males exhibited an extension of their common ontogenetic trajectories. Secondary growth spurt in males was detected for few variables. Our comparison with analogous data collected from southern sea lions (Otaria byronia (de Blainville, 1820)) indicated that in both species, sexual dimorphism was mostly associated with an enhanced ability to defend territories, which was linked to the polygynic behavior. However, discrepancies between both ontogenetic patterns of dimorphism were associated with interspecific differences in their life cycles. Key words: Mirounga leonina, southern elephant seal, Otaria byronia, southern sea lion, allometric growth, cranium, morphometry, growth rate, pinniped. Résumé : Si l’éléphant de mer austral (Mirounga leonina (L., 1758)) est un des mammifères les plus dimorphes qui soit, le dimorphisme sexuel de l’ontogénie de son crâne demeure méconnu. -
56. Otariidae and Phocidae
FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig. -
Marine Ecology Progress Series 585:229
Vol. 585: 229–242, 2017 MARINE ECOLOGY PROGRESS SERIES Published December 27 https://doi.org/10.3354/meps12411 Mar Ecol Prog Ser Temporal consistency of individual trophic specialization in southern elephant seals Mirounga leonina D. Rita1,*, M. Drago1,2, F. Galimberti3, L. Cardona1 1Biodiversity Research Institute (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Science, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain 2Departamento de Ecología & Evolución, Centro Universitario Regional Este (CURE), Universidad de la República, Tacuarembó s/n, 20000 Maldonado, Uruguay 3Elephant Seal Research Group, Sea Lion Island, Falkland Islands ABSTRACT: Individual specialization can be an advantageous strategy that increases predation success and diminishes intra-population competition. However, trophic specialization can be a handicap in changing environments if the individuals are unable to use different prey or feeding grounds in response to change. Southern elephant seals Mirounga leonina allow us to explore this trade-off as they migrate, returning to haul out on land, for 2 extended periods, to breed and to moult. They fast during both periods, but the energetic cost is higher during the breeding season, leading to a poorer body condition after the breeding fast than after the moulting fast. We ana- lysed the carbon (δ13C) and nitrogen (δ15N) isotopic composition of skin and fur samples from Falk- land Islands elephant seals. The isotopic values provided information about the foraging strategy of the seals during the pre-breeding season and pre-moulting season, respectively. We assessed individual specialization as the variation between periods of an individual with respect to the variability of the whole population. -
Vocal Signalling of Male Southern Elephant Seals Is Honest but Imprecise
ANIMAL BEHAVIOUR, 2007, 73, 287e299 doi:10.1016/j.anbehav.2006.08.005 Vocal signalling of male southern elephant seals is honest but imprecise SIMONA SANVITO*†, FILIPPO GALIMBERTI† & EDWARD H. MILLER* *Department of Biology, Memorial University of Newfoundland, St John’s yElephant Seal Research Group, Sea Lion Island, Falkland Islands (Received 28 April 2006; initial acceptance 30 June 2006; final acceptance 10 August 2006; published online 17 January 2007; MS. number: A10434) In the most common models of communication, it is assumed that animals provide reliable information about phenotype, and hence can settle competitive contests without physical interactions like fights. This assumption has rarely been tested for wild mammals. Recent studies of mammals have revealed relation- ships of vocal attributes to age and body size. Here, we analyse relationships of frequency attributes of ag- onistic vocalizations to phenotype (age, body size, proboscis size and agonistic behaviour) in males of the southern elephant seal, Mirounga leonina, a species with intense male competition for access to females, and in which vocalizations are used frequently to settle maleemale contests. We analysed formant struc- ture and vocal tract size, and found that nasal and oral components of the vocal tract contribute separately to vocal formants; hence, the male’s proboscis serves to elongate the vocal tract. We also found that for- mants in the upper part of the frequency spectrum (fourth and fifth in particular) and formant dispersion convey significant information about age, size and resource holding potential at large, and, therefore, can be honest signals of a vocalizer’s phenotype. Explained variance was statistically significant in our study and in similar studies but was not high, so formant structure cannot serve as the sole basis of acoustic as- sessment. -
Southern Elephant Seal Trajectories, Fronts and Eddies in the Brazil/Malvinas Confluence
ARTICLE IN PRESS Deep-Sea Research I 53 (2006) 1907–1924 www.elsevier.com/locate/dsri Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence Claudio Campagnaa,b,Ã, Alberto R. Piolac,d, Maria Rosa Marina, Mirtha Lewisa, Teresita Ferna´ndeza aCentro Nacional Patago´nico, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (CONICET), (9120) Puerto Madryn, Chubut, Argentina bWildlife Conservation Society, 2300 Southern Blvd., Bronx NY 10460, USA cDepartamento Oceanografı´a, Servicio de Hidrografı´a Naval, Av. Montes de Oca 2124, (1271) Buenos Aires, Argentina dDepartamento de Ciencias de la Atmo´sfera y los Oce´anos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Received 20 January 2006; received in revised form 25 August 2006; accepted 28 August 2006 Abstract This study describes the association between transient, mesoscale hydrographic features along the axis of the Brazil–Malvinas Confluence, in the SW Atlantic, and the foraging behavior of 2–3-year-old (focal) juvenile southern elephant seals, Mirounga leonina, from Penı´nsula Valde´s, Argentina. Departing from the dominant pattern of foraging on predictable bathymetric fronts on the Patagonian shelf and slope, three females out of 12 satellite-tracked juveniles remained at the edge of young warm-core eddies and near the outer core of cold-core eddies, coinciding with the most productive areas of these temperature fronts. Seal trajectories along high-temperature gradients were always consistent with the speed and direction of surface currents inferred from the temperature distribution and confirmed by surface drifters. Movements of foraging seals were compared with those of surface drifters, coinciding in time and space and yielding independent and consistent data on regional water circulation parameters. -
Fur Seals Do, but Sea Lions Don't – Cross Taxa Insights Into Exhalation
Phil. Trans. R. Soc. B. article template Phil. Trans. R. Soc. B. doi:10.1098/not yet assigned Fur seals do, but sea lions don’t – cross taxa insights into exhalation during ascent from dives Sascha K. Hooker1*, Russel D. Andrews2, John P. Y. Arnould3, Marthán N. Bester4, Randall W. Davis5, Stephen J. Insley6,7, Nick J. Gales8, Simon D. Goldsworthy9,10, J. Chris McKnight1. 1Sea Mammal Research Unit, University of St Andrews, Fife, KY16 8LB, UK 2Marine Ecology and Telemetry Research, Seabeck, WA 98380, USA 3School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125Australia 4Mammal Research Inst., University of Pretoria, Hatfield, 0028 Gauteng, South Africa 5Dept. Marine Biology, Texax A&M University, Galveston, TX 77553, USA 6Dept. Biology, University of Victoria, Victoria, BC, Canada, V8P 5C2 7Wildlife Conservation Society Canada, Whitehorse, YT, Canada, Y1A 0E9 8Australian Antarctic Division, Tasmania 7050, Australia 9South Australian Research and Development Institute, West Beach, SA 5024, Australia 10School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia SKH, 0000-0002-7518-3548; RDA, 0000-0002-4545-137X; JPYA, 0000-0003-1124-9330; MNB, 0000-0002-2265-764X; SJI, 0000-0003-3402-8418; SDG, 0000-0003-4988-9085; JCM, 0000-0002-3872-4886 Keywords: Otariid, Shallow-water blackout, Diving physiology, Gas management Summary Management of gases during diving is not well understood across marine mammal species. Prior to diving, phocid (true) seals generally exhale, a behaviour thought to assist with prevention of decompression sickness. Otariid seals (fur seals and sea lions) have a greater reliance on their lung oxygen stores, and inhale prior to diving. -
A Vagrant Subantarctic Fur Seal Arctocephalus Tropicalis Found In
S. Afr. 1. Zoo!. 1993,28(1) 61 SA VAGE, R.M. 1963. A speculation on the pallid tadpoles of coast of Africa. It was transported from there. still alive, to Xen.()pus laevis. BfiJ.. J. Help. 3: 74-76. the capital, Mutsamudu, where it was put on display. Local SIMMONS, M.P. 1985.lnteracLions between XeMplI.S species in people had apparentJy never seen a seal before and crowds the south· western Cape Province. South AtTica. S. Afr· J. Sci. gathered to view the 'monster'. Later the same day the 81: 200. animal was killed and was preserved in a domestic freezer. ST AMANT. J.A. & HOOVER. F.G. 1969. Addition of owing LO lack of other facilities. Some photographs of the Misgurnus anguiJIicau<ialus (Cantor) to the California fauna. animal were taken after death. From the buff-coloured Cali! Fish Gome 55: 330-331. muzzle, chesL and throat shown in the photograph (Figure ST AMANT.l.A .. HOOVER. F .. & STEWART. G. 1973. I). it seems clear that the seal was a Subantarctic fur seal African clawed frog Xenopus laevis (Daudin). esUlbJished in ArclOcephaJus IropicaJis. Its sex is unknown but it is more California. Calif. Fish Gam£ 59: 151-153. likely to have been male, since Shaughnessy & Ross (1980) VlDELER, lJ. & lORNA. 1.T. 1985. Functions of the sliding found that 16 out of 22 (73%). A. lropicalis strandings in pelvis in Xenopus. Copeia 1985: 251-254. southern Africa were males. From the estimate of body ZlEUNSKI. W.J. & BARTHALMUS. G.T. 1989. African weight made after death (24 kg), the animal was likely to be clawed frog slc.in compounds: antiprc<iaLOry effects on African a juvenile. -
Alternate Foraging Strategies and Population Structure of Adult Female
ALTERNATE FORAGING STRATEGIES AND POPULATION STRUCTURE OF ADULT FEMALE AUSTRALIAN SEA LIONS Andrew D. Lowther BSc (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Adelaide Faculty of Science School of Earth and Environmental Sciences University of Adelaide February 2012 TABLE OF CONTENTS LIST OF TABLES......................................................................................... VI LIST OF FIGURES.......................................................................................VIII DECLARATION OF ORIGINALITY.............................................................. X STATEMENT OF CONTRIBUTION…………………………………………...XI DEDICATION.............................................................................................. XII ACKNOWLEDGEMENTS........................................................................... XIII ABSTRACT................................................................................................. XVI CHAPTER 1. GENERAL INTRODUCTION...............................................................1 IMPORTANCE OF ECOLOGY AND GENETICS IN DEFINING POPULATIONS………………………………………….....................................2 INDIVIDUAL SPECIALISATION IN FORAGING BEHAVIOUR AND POPULATION STRUCTURE..........................................................................4 THE OTARIIDAE…………………………….....................................................6 AUSTRALIAN SEA LIONS…………………….................................................7 NEED FOR RESEARCH………………………………………………………….8 -
Development of Aggressive Vocalizations in Male Southern Elephant Seals (Mirounga Leonina): Maturation Or Learning?
Development of aggressive vocalizations in male southern elephant seals (Mirounga leonina): maturation or learning? Simona Sanvito1,2,3), Filippo Galimberti2) & Edward H. Miller1) (1 Department of Biology, Memorial University of Newfoundland, St. John’s NL A1B 3X9, Canada; 2 Elephant Seal Research Group, Sea Lion Island, Falkland Islands) (Accepted: 28 September 2007) Summary Vocalizations are an important component of male elephant seal agonistic behaviour. Acous- tic and behavioural components of vocalizations emitted during agonistic contests show gross differences between young and old males, but the variation with age depends on the specific feature. Vocalizations become more frequent and effective at later ages. Acoustic features that are constrained by structural phenotype, which changes with age, also should change with age, while acoustic features that are independent from structural phenotype should show no relationship with age. We demonstrate that, in southern elephant seals, formant frequencies, which are constrained by the vocal tract length and, therefore, by body size, show a clear decrease with age, whereas temporal and structural features of sounds, which potentially are unconstrained, show no correlation with age. Formants ontogeny seems, therefore, to be mostly the result of body maturation, and hence formants may be reliable signals of age. In contrast, acoustic features such as temporal features and syllable structure, are free to change, and hence may serve as the raw material for vocal learning and individual recognition. -
A Strong Positive Correlation Between Canine Size and Heterozygosity in Antarctic Fur Seals Arctocephalus Gazella Downloaded from JOSEPH I
Journal of Heredity 2010:101(5):527–538 Ó The American Genetic Association. 2010. All rights reserved. doi:10.1093/jhered/esq045 For permissions, please email: [email protected]. Advance Access publication May 9, 2010 Getting Long in the Tooth: A Strong Positive Correlation between Canine Size and Heterozygosity in Antarctic Fur Seals Arctocephalus gazella Downloaded from JOSEPH I. HOFFMAN,NORA HANSON,JAUME FORCADA,PHIL N. TRATHAN, AND WILLIAM AMOS From the Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK (Hoffman and Amos); the Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife, UK (Hanson); the Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, UK (Hanson); and the British Antarctic Survey, Natural Environment Research Council, Cambridge, UK (Forcada and Trathan). http://jhered.oxfordjournals.org Address correspondence to Joseph I. Hoffman at the address above, or e-mail: [email protected]. Abstract Most studies of heterozygosity–fitness correlations (HFCs) in natural populations relate to fitness traits expressed early in life, whereas traits that are often more difficult to measure such as longevity and adult body size remain elusive. Teeth provide a window on an individual’s life history, allowing the reliable estimation of both age and body size. Consequently, we collected paired upper canine teeth and tissue samples from 84 adult male Antarctic fur seals Arctocephalus gazella that died of natural causes at Bird Island, South Georgia. Tooth size is a good predictor of skull and body size both within and across taxa, and we similarly find a strong relationship with skull size in our species. -
Fur Seals and Sea Lions (Otariidae): Identification of Species and Taxonomic Review
Systematics and Biodiversity 1 (3): 339–439 Issued 16 February 2004 DOI: 10.1017/S147720000300121X Printed in the United Kingdom C The Natural History Museum Fur seals and sea lions (Otariidae): identification of species and taxonomic review Sylvia Brunner Australian Marine Mammal Research Centre, University of Sydney, NSW 2006, Australia CSIRO Sustainable Ecosystems, GPO Box 284, Canberra City, ACT 2601, Australia ∗ University of Alaska Museum, 907 Yukon Drive, Fairbanks AK 99775, United States submitted December 2002 accepted May 2003 Contents Abstract 340 Introduction 340 Materials and methods 343 Results 344 Description of species: sea lions Steller sea lion – Eumetopias jubatus 345 Southern sea lion – Otaria byronia 352 Australian sea lion – Neophoca cinerea 354 Hooker’s sea lion – Phocarctos hookeri 354 California sea lion – Zalophus californianus californianus 357 Galapagos sea lion – Zalophus californianus wollebaeki 357 Japanese sea lion – Zalophus californianus japonicus 360 Description of species: fur seals Northern fur seal – Callorhinus ursinus 360 Antarctic fur seal – Arctocephalus gazella 363 Subantarctic fur seal – Arctocephalus tropicalis 363 New Zealand fur seal – Arctocephalus forsteri 366 South African fur seal – Arctocephalus pusillus pusillus 366 Australian fur seal – Arctocephalus pusillus doriferus 368 Guadalupe fur seal – Arctocephalus townsendi 370 Galapagos fur seal – Arctocephalus galapagoensis 370 South American fur seal – Arctocephalus australis 371 Juan Fernandez fur seal – Arctocephalus philippii 374 A comparison of subspecies Arctocephalus pusillus 374 Zalophus californianus 374 Arctocephalus australis 375 The Otariidae 377 Discussion 378 References 384 Appendices I Summary details of specimens 386 II Univariate statistics for male and female otariids 405 ∗Correspondence address 339 340 Sylvia Brunner Abstract The standard anatomical descriptions given to identify species of the family Otariidae (fur seals and sea lions), particularly those for the genus Arctocephalus, have been largely inconclusive. -
Hall of North American Mammals Educator's Guide
Educator’s Guide THE JILL AND LEWIS BERNARD FAMILY HALL OF NORTH AMERICAN MAMMALS Featuring Carnivorans INSIDE: • Suggestions to Help You Come Prepared • Essential Questions for Student Inquiry • Strategies for Teaching in the Exhibition • Map of the Exhibition • Online Resources for the Classroom • Correlation to Standards • Glossary amnh.org/namammals Essential QUESTIONS More than 25 Museum expeditions across this continent produced the specimens displayed in this hall’s magnificent dioramas. Many belong to the order of mammals called Carnivora (carnivorans), one of the most diverse orders within the mammal group. Use the Essential Questions below to connect the dioramas to your curriculum. What is a mammal? How have traits of the Carnivora helped You might have grown up thinking that all mammals share the order survive and diversify? certain traits, like fur and giving birth to live young, and As environments change over time, living things must most living mammals do. But what defines this diverse respond by migrating, adapting, or sometimes going group of animals is that they all are descended from a com- extinct. Different traits are favored in different habitats mon ancestor shared with no other living animals. Because and are passed on to future generations. For example, of this common ancestor (and unlike other vertebrates), carnivorans take care of their young until they are old all mammals have three middle ear bones. The group is enough to hunt, which helps them live to adulthood. divided into over 20 orders, which include Primates (e.g. Also, the diversity of their teeth has helped carnivorans humans), Rodentia (e.g.