Belongs to the TNF Family a New Class of Reverse Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critical Contribution of OX40 Ligand to T Helper Cell Type 2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Brief Definitive Report Critical Contribution of OX40 Ligand to T Helper Cell Type 2 Differentiation in Experimental Leishmaniasis By Hisaya Akiba,*§ Yasushi Miyahira,‡ Machiko Atsuta,*§ Kazuyoshi Takeda,*§ Chiyoko Nohara,* Toshiro Futagawa,* Hironori Matsuda,* Takashi Aoki,‡ Hideo Yagita,*§ and Ko Okumura*§ From the *Department of Immunology and the ‡Department of Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and §CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo 101-0062, Japan Abstract Infection of inbred mouse strains with Leishmania major is a well characterized model for analy- sis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of co- stimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb ex- hibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD41 T cells and OX40L was expressed on CD11c1 dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimu- lation of these CD41 T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
RANKL As a Novel EMT Marker 858 Cell Research (2008) 18:858-870
npg RANKL as a novel EMT marker 858 Cell Research (2008) 18:858-870. npg © 2008 IBCB, SIBS, CAS All rights reserved 1001-0602/08 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells Valerie A Odero-Marah1, Ruoxiang Wang1, Gina Chu1, Majd Zayzafoon2, Jianchun Xu1, Chunmeng Shi1, Fray F Marshall1, Haiyen E Zhau1, Leland WK Chung1 1Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365B Clifton Road, NE, Atlanta, GA 30322, USA; 2Department of Pathology, University of Alabamn, Birmingham, AL 35294, USA Epithelial-mesenchymal transition (EMT) in cancer describes the phenotypic and behavioral changes of cancer cells from indolent to virulent forms with increased migratory, invasive and metastatic potential. EMT can be induced by soluble proteins like transforming growth factor β1 (TGFβ1) and transcription factors including Snail and Slug. We uti- lized the ARCaPE/ARCaPM prostate cancer progression model and LNCaP clones stably overexpressing Snail to identify novel markers associated with EMT. Compared to ARCaPE cells, the highly tumorigenic mesenchymal ARCaPM and ARCaPM1 variant cells displayed a higher incidence of bone metastasis after intracardiac administration in SCID mice. ARCaPM and ARCaPM1 expressed mesenchymal stromal markers of vimentin and N-cadherin in addition to elevated levels of Receptor Activator of NF-κB Ligand (RANKL). We observed that both epidermal growth factor (EGF) plus TGFβ1 treatment and Snail overexpression induced EMT in ARCaPE and LNCaP cells, and EMT was associated with increased expression of RANKL protein. -
RANK Interaction and Signaling − RANKL Structural and Functional
Structural and Functional Insights of RANKL −RANK Interaction and Signaling Changzhen Liu, Thomas S. Walter, Peng Huang, Shiqian Zhang, Xuekai Zhu, Ying Wu, Lucy R. Wedderburn, Peifu This information is current as Tang, Raymond J. Owens, David I. Stuart, Jingshan Ren and of October 1, 2021. Bin Gao J Immunol published online 14 May 2010 http://www.jimmunol.org/content/early/2010/05/14/jimmun ol.0904033 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 1, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2010, doi:10.4049/jimmunol.0904033 The Journal of Immunology Structural and Functional Insights of RANKL–RANK Interaction and Signaling Changzhen Liu,*,†,1 Thomas S. Walter,‡,1 Peng Huang,x Shiqian Zhang,{ Xuekai Zhu,*,† Ying Wu,*,† Lucy R. Wedderburn,‖ Peifu Tang,x Raymond J. Owens,‡ David I. Stuart,‡ Jingshan Ren,‡ and Bin Gao*,†,‖ Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kB ligand (RANKL)/receptor activator of the NF-kB (RANK)/osteoprotegerin molecular triad. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) Balancing effector lymphocyte formation via CD27-CD70 interactions Arens, R. Publication date 2003 Link to publication Citation for published version (APA): Arens, R. (2003). Balancing effector lymphocyte formation via CD27-CD70 interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens*, Kiki Tesselaar*, Paul A. Baars, Gijs M.W. van Schijndel, Jenny Hendriks, Steven T. Pals, Paul Krimpenfort, Jannie Borst, Marinus H.J. van Oers, and René A.W. van Lier 'These authors contributed equally to this work Immunity 15, 801-812 (2001) Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens123#, Kiki Tesselaar23", Paul A. -
TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. -
The Roadmap of RANKL/RANK Pathway in Cancer
cells Review The Roadmap of RANKL/RANK Pathway in Cancer Sandra Casimiro 1,* , Guilherme Vilhais 2, Inês Gomes 1 and Luis Costa 1,3,* 1 Luis Costa Laboratory, Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] 2 Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] 3 Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal * Correspondence: [email protected] (S.C.); [email protected] (L.C.) Abstract: The receptor activator of the nuclear factor-κB ligand (RANKL)/RANK signaling pathway was identified in the late 1990s and is the key mediator of bone remodeling. Targeting RANKL with the antibody denosumab is part of the standard of care for bone loss diseases, including bone metastases (BM). Over the last decade, evidence has implicated RANKL/RANK pathway in hormone and HER2-driven breast carcinogenesis and in the acquisition of molecular and phenotypic traits associated with breast cancer (BCa) aggressiveness and poor prognosis. This marked a new era in the research of the therapeutic use of RANKL inhibition in BCa. RANKL/RANK pathway is also an important immune mediator, with anti-RANKL therapy recently linked to improved response to immunotherapy in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). This review summarizes and discusses the pre-clinical and clinical evidence of the relevance of the RANKL/RANK pathway in cancer biology and therapeutics, focusing on bone metastatic disease, BCa onset and progression, and immune modulation. -
The Role of the Immune Checkpoint Modulator OX40 and Its Ligand in NK Cell Immunosurveillance and Acute Myeloid Leukemia
1 The role of the immune checkpoint modulator OX40 and its ligand in NK cell 2 immunosurveillance and acute myeloid leukemia 3 Running title: OX40-OX40L in NK cell immunosurveillance 4 Keywords: OX40, AML, NK cells, immunotherapy, checkpoint 5 Tina Nuebling*1, Carla Emilia Schumacher*1,2, Martin Hofmann3, Ilona Hagelstein1, Benjamin Joachim 6 Schmiedel1, Stefanie Maurer1, Birgit, Federmann4, Kathrin Rothfelder1, Malte Roerden2, Daniela Dörfel1,2, 7 Pascal Schneider5, Gundram Jung3, Helmut Rainer Salih1,2 8 1 9 Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German 10 Cancer Research Center (DKFZ), Heidelberg, Germany 2 11 Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany 3 12 Department of Immunology, Eberhard Karls University, Tuebingen, Germany 13 4 Department of Pathology, Eberhard Karls University, Tuebingen, Germany 14 5 Department of Biochemistry, Epalinges, Switzerland 15 16 *these authors contributed equally to this work 17 18 Corresponding Author: 19 Helmut R. Salih, M.D. 20 Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German 21 Cancer Research Center (DKFZ) 22 Department of Hematology and Oncology, Eberhard Karls University 23 Otfried-Mueller Str. 10, 72076 Tuebingen, Germany 24 Phone: +49-7071-2983275; Fax: +49-7071-293671; Email: [email protected] 25 26 Funding: Supported by grants from the Deutsche Forschungsgemeinschaft (NU341/1-1, SA1360/7-3, 27 SFB685, project A07), Deutsche Krebshilfe (projects 111828 and 111134). PS is supported by grants from 28 the Swiss National Science Foundation. 29 Conflict-of-interest disclosure: The authors declare no potential conflicts of interest. 30 31 32 Text word count: 4347; Abstract word count: 238 33 5 figures, 2 tables, 4 supplementary figures 34 References: 50 1 35 Abstract 36 The TNF receptor family member OX40 promotes activation and proliferation of T cells, which 37 fuels present attempts to modulate this immune checkpoint to reinforce anti-tumor immunity. -
Dendritic Cell Expression of CD70 in Vivo Potent Cellular Immunity By
Combined TLR/CD40 Stimulation Mediates Potent Cellular Immunity by Regulating Dendritic Cell Expression of CD70 In Vivo This information is current as Phillip J. Sanchez, Jennifer A. McWilliams, Catherine of September 25, 2021. Haluszczak, Hideo Yagita and Ross M. Kedl J Immunol 2007; 178:1564-1572; ; doi: 10.4049/jimmunol.178.3.1564 http://www.jimmunol.org/content/178/3/1564 Downloaded from References This article cites 57 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/178/3/1564.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Combined TLR/CD40 Stimulation Mediates Potent Cellular Immunity by Regulating Dendritic Cell Expression of CD70 In Vivo1 Phillip J. Sanchez,* Jennifer A. McWilliams,* Catherine Haluszczak,* Hideo Yagita,† and Ross M. Kedl2* We previously showed that immunization with a combination of TLR and CD40 agonists (combined TLR/CD40 agonist immu- nization) resulted in an expansion of Ag-specific CD8 T cells exponentially greater than the expansion observed to immunization with either agonist alone. -
(Blys) on Diabetes-Related Periodontitis
ORIGINAL RESEARCH Immunology Preliminary findings on the possible role of B-lymphocyte stimulator (BLyS) on diabetes-related periodontitis Marx Haddley Ferreira Abstract: The possible role of B-cell growth and differentiation- DRUMOND(a) related cytokines on the pathogenesis of diabetes-related periodontitis Luciano Eduardo PUHL(a) has not been addressed so far. The aim of this study was to evaluate Poliana Mendes DUARTE(b) the effects of diabetes mellitus (DM) on the gene expression of Tamires Szeremeske de proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator MIRANDA(c) (BLyS), two major cytokines associated to survival, differentiation Juliana Trindade and maturation of B cells in biopsies from gingival tissue with CLEMENTE-NAPIMOGA(a) periodontitis. Gingival biopsies were obtained from subjects with Daiane Cristina PERUZZO(a) periodontitis (n = 17), with periodontitis and DM (n = 19) as well as Elizabeth Ferreira MARTINEZ(a) from periodontally and systemically healthy controls (n = 10). Gene Marcelo Henrique NAPIMOGA(a) expressions for APRIL, BLyS, RANKL, OPG, TRAP and DC-STAMP were evaluated using qPCR. The expressions APRIL, BLyS, RANKL, (a) Faculdade São Leopoldo Mandic, Instituto OPG, TRAP and DC-STAMP were all higher in both periodontitis de Pesquisas São Leopoldo Mandic, groups when compared to the control group (p < 0.05). Furthermore, Campinas, SP, Brazil. the expressions of BLyS, TRAP and RANKL were significantly higher (b) University of Florida, College of Dentistry, in the subjects with periodontitis and DM when compared to those Department of Periodontology, Gainesville, FL, USA. with periodontitis alone (p < 0.05). The mRNA levels of BLyS correlated positively with RANKL in the subjects with periodontitis and DM (c) Guarulhos University, Dental Research Division, Department of Periodontology, São (p < 0.05). -
Gene Symbol Category ACAN ECM ADAM10 ECM Remodeling-Related ADAM11 ECM Remodeling-Related ADAM12 ECM Remodeling-Related ADAM15 E
Supplementary Material (ESI) for Integrative Biology This journal is (c) The Royal Society of Chemistry 2010 Gene symbol Category ACAN ECM ADAM10 ECM remodeling-related ADAM11 ECM remodeling-related ADAM12 ECM remodeling-related ADAM15 ECM remodeling-related ADAM17 ECM remodeling-related ADAM18 ECM remodeling-related ADAM19 ECM remodeling-related ADAM2 ECM remodeling-related ADAM20 ECM remodeling-related ADAM21 ECM remodeling-related ADAM22 ECM remodeling-related ADAM23 ECM remodeling-related ADAM28 ECM remodeling-related ADAM29 ECM remodeling-related ADAM3 ECM remodeling-related ADAM30 ECM remodeling-related ADAM5 ECM remodeling-related ADAM7 ECM remodeling-related ADAM8 ECM remodeling-related ADAM9 ECM remodeling-related ADAMTS1 ECM remodeling-related ADAMTS10 ECM remodeling-related ADAMTS12 ECM remodeling-related ADAMTS13 ECM remodeling-related ADAMTS14 ECM remodeling-related ADAMTS15 ECM remodeling-related ADAMTS16 ECM remodeling-related ADAMTS17 ECM remodeling-related ADAMTS18 ECM remodeling-related ADAMTS19 ECM remodeling-related ADAMTS2 ECM remodeling-related ADAMTS20 ECM remodeling-related ADAMTS3 ECM remodeling-related ADAMTS4 ECM remodeling-related ADAMTS5 ECM remodeling-related ADAMTS6 ECM remodeling-related ADAMTS7 ECM remodeling-related ADAMTS8 ECM remodeling-related ADAMTS9 ECM remodeling-related ADAMTSL1 ECM remodeling-related ADAMTSL2 ECM remodeling-related ADAMTSL3 ECM remodeling-related ADAMTSL4 ECM remodeling-related ADAMTSL5 ECM remodeling-related AGRIN ECM ALCAM Cell-cell adhesion ANGPT1 Soluble factors and receptors -
Multimeric Forms of 4-1BBL As Stimulators of T Cells for Adoptive Immunotherapy
Kornbluth et al. Journal for ImmunoTherapy of Cancer 2014, 2(Suppl 3):P246 http://www.immunotherapyofcancer.org/content/2/S3/P246 POSTERPRESENTATION Open Access Multimeric forms of 4-1BBL as stimulators of T cells for adoptive immunotherapy Richard S Kornbluth1*, Victoria Snarsky1, Geoffrey W Stone2 From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014 Members of the TNF SuperFamily of ligands (TNFSFs) Authors’ details 1Multimeric Biotherapeutics, Inc., La Jolla, CA, USA. 2University of Miami, have significant potential as immuno-oncology therapeu- Miller School of Medicine, Miami, FL, USA. tic agents. The TNFSFs are trimeric membrane proteins that can be cleaved into soluble single trimers. While Published: 6 November 2014 the soluble single trimers can be easily prepared and studied, they have little or no activity in vivo. This defi- ciency is caused by the need to cluster their cognate doi:10.1186/2051-1426-2-S3-P246 Cite this article as: Kornbluth et al.: Multimeric forms of 4-1BBL as receptors in the plane of the membrane in order to stimulators of T cells for adoptive immunotherapy. Journal for induce a supramolecular signaling complex on the cyto- ImmunoTherapy of Cancer 2014 2(Suppl 3):P246. plasmic side of the plasma membrane. For the TNFSF ligands, this requires that they be used as many-trimer multimers that mimic the natural expression of many trimers on the surface of stimulating cells. To meet this need, we prepared fusion proteins comprised of the extracellular domains of TNFSF ligands joined to a nat- ural protein that provides a multimerization scaffold.