Absolute Diversification Rates in Angiosperm Clades Susana Magallon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Epacris Study Group
ASSOCIATION OF SOCIETIES FOR GROWING AUSTRALIAN PLANTS Inc. EPACRIS STUDY GROUP Group Leader: Gwen Elliot, P.O. Box 655 Heathmont Vic. 3135 NEWSLETTER No. XS (ISSN 103 8-6017) Qctaber zaQ4 Greetings as once again we begin to enjoy the longer days of spring-summer and the encouragement this provides for many of our flowering plants. Despite the generally dry conditions many Epacris species are putting on outstanding floral displays. How are you going with your recording of the flowering times of Epacris impressa in your garden, as well as in nearby bushland or in other areas as you travel within Australia? It really is quite an exciting project because together we, as Study Group members, can make a real contribution to the overall understanding of this species, adding to the knowledge and research of botanists who look in detail at the features of the plant under the microscope and in its natural habitat. It iis a species which occurs both atsea-level and at higher altitudes. How are the flowering times affected when highland plants are cultivated at lower altitudes? Are flowering times different when plants fiom New South Wales for example are gvown much further south in soulhern Victoria or Tasmania ? Epacris impressu seems like an excellent species for us to research in this way. If our project is successful we may perhaps be able to continue with looking at the flowering times of other Epacris which are relatively common in cultivation. In case you have misplaced the recording sheet from our October 2003 Newsletter, another is included in this issue. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
RHS Recommended Gardens
Recommended Gardens Selected by the RHS for 2010 www.rhs.org.uk A GUIDE TO FREE ACCESS FOR RHS MEMBERS The RHS, the UK’s leading gardening charity Contents Frequently RHS Gardens Asked Questions www.rhs.org.uk/gardens 3 Frequently Asked Questions As well as the four RHS – ❋ ❋ owned gardens (Wisley, RHS Garden Harlow Carr RHS Garden Hyde Hall Crag Lane, Harrogate, North Yorkshire Buckhatch Lane, Rettendon, Chelmsford, Hyde Hall, Harlow Carr and 3 RHS Gardens HG3 1QB Tel: 01423 565418 Essex CM3 8AT Tel: 01245 400256 Rosemoor), the RHS has 4 Recommended Gardens for 2010 teamed up with 147 Joint Member 1 gardens around the UK and 6 Scotland Membership No 12345678 23 overseas independently © RHS 12 North West owned gardens which are Mr A Joint generously offering free 15 North East access to RHS Members Expires End Jul-10 © RHS / Jerry Harpur (one member per policy), 20 East Anglia either throughout their * opening season or at Completely in tune with its Yorkshire RHS Garden Hyde Hall provides an oasis 23 South East selected periods. setting, Harlow Carr embodies the of peace and tranquillity with sweeping 31 South West For a full list tick ‘free access for RHS Members’ rugged honesty of its host region panoramas, big open skies and far on www.rhs.org.uk/rhsgardenfinder/gardenfinder.asp whilst championing environmental reaching views. The 360-acre estate 39 Central awareness and sustainability. integrates fluidly into the surrounding Dominated by water, stone and farmland, meadows and woodland, 46 Wales How are the gardens chosen? woodland, its innovative design and providing a gateway to the countryside Who can gain free entry? Whether formal landscape, late creative planting provide a beautiful where you can watch the changing ✔ RHS members with an asterisk 50 Northern Ireland season borders or woodland, all and tranquil place for meeting friends, seasons and get closer to nature. -
Erysiphe Aucubae Sp. Nov., a New Powdery Mildew Species on Aucuba Japonica from Japan
mycoscience 57 (2016) 251e254 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/myc Short communication Erysiphe aucubae sp. nov., a new powdery mildew species on Aucuba japonica from Japan Siska A.S. Siahaan, Susumu Takamatsu* Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, 514-8507, Japan article info abstract Article history: Aucuba japonica (Japanese aucuba), native to Japan, is an evergreen shrub distributed in the Received 3 February 2016 Japanese Archipelago and cultivated worldwide as an ornamental plant. A powdery mildew Received in revised form with Pseudoidium-type asexual morph commonly occurs on this species. Because of the 4 March 2016 absence of sexual morph (chasmothecia), the taxonomic identity of this fungus has been Accepted 6 March 2016 unclear for a long time. The new species Erysiphe aucubae is proposed for this fungus based Available online 4 April 2016 on molecular phylogenetic analyses and a detailed morphological description of the asexual morph. Keywords: © 2016 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved. Erysiphaceae Garryaceae Molecular phylogeny Morphology Pseudoidium The genus Aucuba (Garryaceae) consists of species that are asexual morph and host plant, and thus should be re- evergreen shrubs distributed in the Himalayas, southern China examined. Molecular phylogenetic analysis and morpholog- and Japan. Aucuba japonica Thunb. (Japanese aucuba), native to ical observations revealed that this fungus is an undescribed Japan, is distributed at Miyagi prefecture and westward in the species belonging to the genus Erysiphe. Erysiphe aucubae S. main island, Shikoku, Kyushu, and Ryukyu islands of the Jap- Takam. -
Eucryphiaeucryphia December 2017 1
EucryphiaEucryphia December 2017 1 Volume 22 No.8 December 2017 Journal of the Australian Plants Society Tasmania Gaultheria hispida ISSN 1324-3888 2 Eucryphia December 2017 EUCRYPHIA Contents ISSN 1324-3888 Published quarterly in Membership subs. & renewals 3 March, June, September and December by Membership 4 Australian Plants Society Tasmania Inc Editorial 4 ABN 64 482 394 473 President’s Plot 5 Patron: Her Excellency, Professor the Honourable Kate Warner, AC, Council Notes 6 Governor of Tasmania Study Group Highlights 7 Society postal address: PO Box 3035, Ulverstone MDC Tas 7315 Invitation 8 Editor: Mary Slattery ‘Grass Roots to Mountain Tops’ 9 [email protected] Contributions and letters to the editor Strategic Planning for our Future 10 are welcome. If possible they should be forwarded by email to the editor at: Blooming Tasmania 11 [email protected] or typed using one side of the paper only. Recent Name Changes 13 If handwritten, please print botanical names and the names of people. Calendar for 2018 16 Original text may be reprinted, unless otherwise indicated, provided an Annual General Meeting agenda 17 acknowledgment of the source is given. Permission to reprint non-original material New Membership Application 20 and all drawings and photos must be obtained from the copyright holder. Ants in Your Plants part B 24 Views and opinions expressed in articles are those of the authors and are not Kingston Stormwater Wetlands 30 necessarily the views and/or opinions of the Society. Why Is It So? 33 Next issue in March -
Garrya Dougl. Ex Lindl.: Silktassel
Garryaceae—Silktassel family G Garrya Dougl. ex Lindl. silktassel Wayne D. Shepperd Dr. Shepperd is a research silviculturist at the USDA Forest Service’s Rocky Mountain Research Station, Fort Collins, Colorado Growth habit and occurrence. The genus Garrya— Flowering and fruiting. Flowers are dioecious. Both silktassel—consists of 14 New World species ranging from appear in axillary or terminal catkinlike racemes in the the Pacific Northwest to Panama (Dahling 1978). Only those spring (Reynolds and Alexander 1974); however male flow- in the United States and Mexico are considered here. Garrya ers are minute (Dahling 1978). Silktassels are well adapted is a highland genus occurring in chaparral and coniferous for wind pollination. Several species hybridize, most notably forests above lowland deserts, in semiarid regions, or in bearbrush with ashy silktassel and eggleaf silktassel with coastal or near-coastal conditions. Species may vary in size laurel-leaf silktassel (Dahling 1978; Mulligan and Nelson from low shrubs to trees (table 1). First discovered by David 1980). Douglas in the Pacific Northwest in 1826, Garrya was Silktassel fruits are persistent, 2-sided berries that named in honor of Nicholas Garry, the first secretary of the appear green and fleshy when young but become dry and Hudson Bay Company (Dahling 1978). Alternatively classi- brittle at maturity (Dahling 1978) (figures 1–3). The fruit is fied in Garryaceae and Cornaceae by various taxonomists, globose to ovoid and relatively uniform among the species the genus will be classified as Garryaceae in this manual, included here, averaging 7.2 mm long by 6.2 mm wide and after Dahling (1978) and Kartesz (1994). -
An Encomium for Eucryphia
An Encomium for Eucryphia Dear NHS members and friends, On many a frosty morn or murky midwinter afternoon of late, I find my mind drifting half a world away, gliding southeasterly thousands of miles along the Pacific Coast before coming to rest in a land luxuriating in full-blown summer —the Valdivian temperate rain forest of southcentral Chile. This verdant, volcano-studded realm of natural wonders is the source of a plethora of plants that have become essential elements in our PNW gardens, from ferns to fuchsias and azaras to alstroemerias. Looking up from the forest floor, I see a host of evergreen sentinels familiar to discerning tree lovers, including Araucaria, Drimys, Embothrium, Nothofagus and Podocarpus. Perhaps the most alluring arboreal attraction is the fragrant, snow-white floral wall produced in midsummer by Eucryphia cordifolia and its close kin, E. glutinosa. This genus is the subject of today’s reflection. Of the seven Eucryphia 1 species, only three are common in cultivation: the two Chileans mentioned above and E. lucida, a native of Tasmania. However, it is hybrids of this trio that are of greatest interest to gardeners due to their fabulous flowers (nectar rich as well as beautiful, they are magnetic to pollinators), and their elegant evergreen foliage. Of the half dozen Eucryphia taxa I grow in my Seward Park garden in southeast Seattle, my favorites are E. x intermedia ‘Rostrevor’, E. x nymansensis ‘Nymansay’ and E. x nymansensis ‘Mount Usher’ 2. As each member of this trio is columnar in nature, even a small garden can accommodate one as a stunning specimen or accent plant. -
Records of Tasmanian Botanists
RECORDS OF TASMANIAN BOTANISTS. By J. H. Maiden, F.L.S. Government Botanist and Director of the Botanic Gardens, S^'dne}'. ' Corresponding Alemiber. (Read May 3rd, 1909.) I have used the term " botanists " in a somewhat wide sense, having included collectors of note, whether they described their finds or not, notable horticul- turists, and, in my general list (5), botanists who have described Australian plants whether they visited this land or not. I have included no living man, so far as I am aware. Some notes on South Australian botanists will be found in (4), of New South Wales ones in (5), and I am taking steps to publish my notes on the botanists of other Australian States in their respective States. It-jWill be seen how imperfect is the record of some who have worked amongst us, and who have not been removed by the hand of death very long". Records of departed botanists form a branch of Aus- tralian history of practical value to working botanists. They afford a guide to their published works, and indi- cate where their observations were made. The lists of species named after the various botanists and collectors are valuable (so I have often found) for tracing particulars of botanical journeys, biographical notes, and other useful information. SELECT BIBLIOGRAPHY. Bailey, F.M.—" A Concise History of Australian Botany,'' " Proc. Rov. Soc, Queensland, viii. Quoted as (I) " lO RECORDS OF TASMANIAN BOTANISTS. — Hooker, J. D. " Introductory Essay to the Flora of Tasmania," cxii.-cxxviii. ("Outlines of the progress of" Botanical discovery in Australia"). Quoted as (2). -
Distribution Models and a Dated Phylogeny for Chilean Oxalis Species Reveal Occupation of New Habitats by Different Lineages, Not Rapid Adaptive Radiation
Syst. Biol. 61(5):823–834, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys034 Advance Access publication on February 22, 2012 Distribution Models and a Dated Phylogeny for Chilean Oxalis Species Reveal Occupation of New Habitats by Different Lineages, not Rapid Adaptive Radiation CHRISTOPH HEIBL AND SUSANNE S. RENNER∗ Systematic Botany and Mycology, University of Munich, Menzinger Straße 67, 80638 Munich, Germany; ∗Correspondence to be sent to: Institute of Systematic Botany and Mycology, Menzinger Straße 67, 80638 Munich, Germany; E-mail: [email protected]. Received 1 August 2011; reviews returned 18 October 2011; accepted 17 January 2012 Associate Editor: Thomas Buckley Downloaded from Abstract.—Among the World’s most challenging environments for plant life is the Atacama Desert, an arid zone extending over 1300 km and from sea level to 2000/3000 m altitude along the southwestern Andean foothills. Plants there and in the adjacent Mediterranean zone exhibit striking adaptations, and we here address the question whether in a species- rich clade such adaptations arose in parallel, at different times, or simultaneously. Answering this type of question has been a major concern of evolutionary biology over the past few years, with a growing consensus that lineages tend to be conservative in their vegetative traits and niche requirements. Combined nuclear and chloroplast DNA sequences for 112 species of Oxalidales (4900 aligned nucleotides) were used for a fossil-calibrated phylogeny that includes 43 of the 54 http://sysbio.oxfordjournals.org/ species of Chilean Oxalis, and species distribution models (SDMs) incorporating precipitation, temperature, and fog, and the phylogeny were used to reconstruct ancestral habitat preferences, relying on likelihood and Bayesian techniques. -
Eucryphia Moorei
Plants of South Eastern New South Wales Branches with young seed cases. Photographer Jackie Miles Flowers and leaves. Photographer Don Wood, Monga National Park south east of Baridwood Branches with open seed cases. Photographer Jackie Miles Bases of trees. Australian Plant Image Index, photographer Murray Fagg, Monga National Park south east of Baridwood Trees. Australian Plant Image Index, photographer Murray Fagg, Monga National Park south east of Baridwood Common name Eastern Leatherwood, Pinkwood, Plumwood, Stinkwood Family Cunoniaceae Where found Rainforest and gullies. Coast and ranges. Notes Tree or shrub to 30 m high. Bark greyish brown, with longitudinal fissures and cracks, becoming more or less scaly. Branchlets brown- to white-hairy, sometimes becoming hairless. Leaves opposite each other, 5-17 cm long, compound, with 2– 13 leaflets, or some leaves simple. Leaflets and simple leaves 1–7 cm long, 5–20 mm wide, leathery, dark green and glossy, or blotched whitish from dried resin, hairless or nearly hairless above, dull and white-hairy below, tips pointed to notched with a short mucro. Flowers with 4 white petals each 8–15 mm long. Sepals joined together and falling as a cap. Flowers in 1–5 flowered clusters. Flowers Jan.–Apr. Family was Eucryphiaceae. Vulnerable Vic. PlantNET description: http://plantnet.rbgsyd.nsw.gov.au/cgi-bin/NSWfl.pl?page=nswfl&lvl=sp&name=Eucryphia~moorei (accessed 22 January, 2021) Author: Betty Wood. This identification key and fact sheets are available as a free mobile application: Android edition iOS edition Creative Commons Attribution 3.0 Australia (CC BY).