<<

______

MONTSERRAT ENERGY POLICY, 2008 – 2027 ______FOR: DEPARTMENT OF PUBLIC WORKS MINISTRY OF COMMUNICATIONS AND WORKS MONTSERRAT

By: GEM/TKI Sept. 2008 OVERVIEW/EXECUTIVE SUMMARY:

MONTSERRAT ENERGY POLICY, 2008 – 2027

OVERVIEW: Aswe, The People and Government of Montserrat ,worktorebuildandredevelopinthe wakeofthevolcaniccrisis,ithasbecomemoreandmoreclearthatourenergysourcesandenergy basedserviceshavetobechangedtowardsmoresustainablealternatives.

Thisisreadilyapparentinlightofourdependenceonfossilfuelswhicharesubjecttosudden, large,disruptivejumpsinprice.AsthosepricesbegintotrendtowardsUS$200/barrelforcrudeoil, theyareplainlypotentiallyruinousforMontserrat.Inshort,wefacea“survival”challenge.Also, thereareincreasingglobal,regionalandlocalconcernsthatheavyfossilfueluseislinkedto potentiallydangerousanddestructiveclimatetrends.Thus,globalinitiativessuchastheKyoto Protocolhaveprovidedopportunitiesforustomoveawayfromexcessivedependenceonsuch fuels.

Throughtheseopportunities,Montserrathastheabilitytodevelopitsenergysourcesand technologiesawayfromfossilfuelsandmovetoamoresustainableenergypaththatemphasises(1) renewable energy (e.g.geothermal,wind,solarenergy,biofuels)and(2) enhanced efficiency ofenergyuse. Also,sincetheydominateourenergyusepatterns,the electricity and transportation sectors willbethemain focalpointsforoureffortstomovetowardssuchalternativeenergytechnologies.

Tosuccessfullyexplore,developandexploitgreenenergyopportunities,wewillneedtobuildup ourownnationalcapacitiesthroughtransparent,crediblepartnerships.Stepsmustbetakentosee thatsuchpartnershipswillbetransparent,sothattheywillnotcompromiseourdemocraticrightto controlthekeystrategicnationalassetsthatarethefoundationofourhopesforlongterm development.Wealsoseektobecomearegionalcentreofexcellenceforsustainableenergy, throughwhichwecandemonstratebyourexample,developtrainingprogrammesin,andconsult withothersabout,practicalwaysinwhichourregionandthewiderworldmaybeabletofinda moresustainableenergypath.

TheMontserratenergypolicy,asenvisioned,declaredandexplainedbelow,thereforeprovidesa credible,broadlysupportedandfeasiblestrategicapproachtomakethemostoftheseopportunities, overtheperiod2008to2027,startingwithplansfortheimplementationofaninitialprogrammeof actionovertheperiod20082012.

ii SCHEDULE1:

A framework of Goals for Renewable/ Sustainable Energy, 2008 – 2027

Goals for Lines of Action Waves of Advance & Themes LOA 1: Renewable LOA 2: Energy LOA 3: Fossil Fuels & LOA 4: Transportation LOA 5: Capacity Energy Efficiency Alternatives Sector transformation Development WI:2008–2012: • Geothermal [3 – 5 MW • Energy audits: MUL and/or • Exploratory use of ethanol, • Use of ethanol as an • Creation of an Energy plant], if feasible ESCOs butanol and bio-diesel, etc. additive for vehicle fuel Office, with Board, and Geothermal, Wind • Wind electricity, 300 kW+ ; • Provision of affordable, as fuels in their own right, • Initial, demonstration use of technical Advisory Panel and core capacity associated generating plant, efficient replacement including the possible use of butanol and biodiesel as fuel • BOAT partnerships for power distribution grid and lighting systems, appliances, alcohol(s) in fuel cells additives geothermal grid control upgrades office equipment and PCs, • Exploration of hydrogen • Demonstration of hybrid, • Technical training and • Systematic, daily and etc. through an audits-linked generation, storage and use fuel cell and/or plug-in capacity building [Comm ongoing monitoring of wind financing mechanism as an energy carrier recharge vehicles, esp. Coll, UWI, etc.], and insolation resources • ESCO inputs into major • Possible recovery of one or flexible-fuel plug-in hybrids • Data, statistics and analysis • Affordable solar water new building projects, more of the Plymouth- • Pilot, green energy capacity upgrade towards harvesting based diesel generation sets heaters through a financing demonstrator bus-based • ESCO capacity mechanism efficiency gains and (and of associated plant etc). public transport: e.g. bio- integration of renewables • Legislation & regulations • Research and pilot projects • Monitoring of global fuels, flexible fuels, hybrids, on RE air conditioning • Associated promotion of developments on other electric vehicles, fuel cells, • Utilities Commission systems and other novel high efficiency, renewables- alternative energy, e.g. hydrogen • If geothermal, industries to technologies compatible building designs PBMR reactors (S. Africa, use “extra” electricity through upgraded building China) • TiO 2, other solar pv, & fuel regulations cells tech. capacity building WII:2013–2017, • If feasible, expansion of • Introduction of LED, solid • Initial distribution network • Butanol and biodiesel initial • If large geothermal Geothermal energy and state lighting as the next for bio-fuels “compatible” production and distribution, resources, export of Transportation export to Guadeloupe, etc. generation on lighting with current generation M’rat and wider region electricity to Guadeloupe, efficiency vehicles: e.g. biodiesel, etc. Sector • Pilot projects for TiO 2 and • Fleet-scale demonstration transformation other novel solar PV techs • Beginning of global biobutanol use of fuel cell vehicles • Initial offers of training and • Pilot projects for fuel cells replacement of incandescent • Local fleet-level (alcohol and/or hydrogen) external consultancies as lighting demonstration of hydrogen • Deployment of “affordable” energy transformation (and/or alcohols) as an hybrids etc experts energy carrier WIII:2018–2022: • Solar-hydrogen economy • Global phasing out of • Gradual phasing out of • Bio-fuels for conventional • Modularisation of energy demonstration, if the incandescent lighting gasoline and fossil fuel vehicles, delivery using solar, fuel Future Energy technology is available and • Initial use of small, efficient derived diesel • Fuel cells for new cells cost effective fuel cells to replace generation vehicles and for • Full-scale training and chemical primary batteries remote sites or mobile consultancy capacity equipment WIV:2023–2027: • Transition to Solar energy • Transition to a high- • Transition to hydrogen and • Gradual phasing out of • Green economy and bio-fuels for the long efficiency energy equipment bio-fuels, and to fuel cell fossil fuel based, internal consolidation Green Energy term, and introduction of economy vehicles combustion engine powered • Initial capacity development Economy hydrogen • Monitoring of global vehicles towards fusion developments on fusion • Transition: fuel cell vehicles

iii TABLE P.F 1 Chart of initial Five-year Implementation Plan, 2008 – 2013

Therelevanttimelinesandmilestonesformajorinitiativesundertheenergyimplementationplan 20082012maybeshownthrougha Gantt chart :

Ref. Initiatives Actors Timelines Current Status 2008 2009 2010 2011 2012 1 EnergyPolicy& GOM,UNECLAC, This:workinprogress. implementationplan [Q1,08] GEM/TKI

2 EnergyOffice[EO]initiation GOM,DFID (operational) Pendingpolicy [Q2,08] approval

3 WindEnergy&utilityviability GOM,MUL,DFID, (operational) Proposalandinitial enhancement [Q208–Q209] UNECLAC consultations 4 Geothermal,precommercial GOM,DFID,UN Phase1:scopingstudy, exploration [Q108–Q409] inprogress 5 Geothermaldevelopment GOM,Tenders (operational) TendersBoardbid [pendingsuccessofexploration] Board,EO, process,pending [Q109–Q210] Developers successfulexploration 6 AffordableEnergyEfficiency& GOM,EO,MUL, (operational) Opportunity DSMinitiation [Q308–Q409] DFID,ESCOs* identificationin progress 7 InitialsettingupofaPublic GOM,MCW,EO Pendingcompletionof UtilitiesCommission) [Q3–4 Lawandassociated 08] policy 8 Establishongoingwind,solar GOM,EO,Met Earlystepstaken monitoring [Q2–408] Office 9 Improvingstatisticscollection GOM,EO,Stats Opportunity/need andanalysisonenergy [Q3–4 Dept,Customs identified 08] 10 Developingworkshops& GOM,EO,DFID, Opportunity/need coursesonsustainableenergy M'ratCommColl, identified [Q308–Q210] UWI,Caricom 11 Small,capacitybuilding, GOM,EO,Aid Opportunity/need communitybasedenergy Agencies, identified projectsgrantsscheme [Q109– communitybased Q412] partners 12 Advancedenergytechnologies GOM,EO,MUL, Opportunitiestobe exploratoryprojects [Q309–Q2 DFID,partners identified 12] 13 PublicGOMforumson GOM,EO,NETF/ * * * * * * * * * * PendingEOsetup sustainableenergy [July,Dec,in EnergyAdvisory years08–12] Board,Tech&Sci AdvisoryPanel, [TSAP],PUC* 14 Evaluation,revision,policy GOM,EO,NETF/ Pendingpolicy rolloverandnewplan [Q109, EnergyAdvisory approval Q1–412] Board,TSAP,Dev't Unit:SDP*,DFID

*NB: ESCO: EnergyServicesCompany, SDP: SustainableDevelopmentPlan; PUC: PublicUtilitiesCommission Table PF.1: Suggested timeline for major initiatives under the implementation plan 2008 - 2012

iv MONTSERRAT ENERGY POLICY, 2008 – 2027: TABLE OF CONTENTS:

PART A: Policy Vision and Declaration/Statement

SECTION I: VISION VisionStatement viii

SECTION II: POLICY DECLARATION

I. PolicyVision Towards a Sustainable Energy Future 1

II. PolicyOverview– Rising To Meet The Challenge Of Sustainable Energy 1

III. DeclarationofPolicyIntent 2

IV. IndicativePolicyTargets:Five,Ten,Fifteen&TwentyYears 2

V. MainPolicyInstruments 6

VI. FiveYearInitialProgrammeofImplementation 8

VII. Organisation,Resourcing,Oversight,Review 8

VIII. OnwardLinesofAction 9

PART B: First Five-year Energy Policy Implementation Plan

SECTION III: ACTION PLAN, 2008 - 2012

Introduction 19

A]BackgroundandRationale 19

B]CriticalActionPointsandKeySuccessFactors 22

C]UncertaintyandRiskManagement 24

D]ProgrammeGoals,ObjectivesandLinesofAction 25

E]Strategy,FinancingandLogistics 27

v F]ProgrammeLevelMilestonesandDeliverables 28

G]PriorityProjectsandInitiatives 30

H]Credible,Transparent,CapacityAugmentingPartnerships 30

I]ProjectTeams&ResourceAllocation 31

J]OutlineLevelProjectedProgrammeTimelines 31

K]OverallOrganisation,OversightandGovernance 31

Summary&Recommendations 31

PART C: Policy Rationale, General Appendices and Endnotes

Integral Attachments & Appendices 43

SECTION IV: RATIONALE Introduction 44

A]GeneralBackgroundandOverallRationale 45

B]Energy,EconomiesandSustainableDevelopment 56

C]StrategicEnergySourcesandTechnologiesforMontserrat 66 C.1 Geothermal 66 C.2 Wind 72 C.3 Efficiency&DSM 77 C.4 Solar 80 C.5 Biofuelsandother“fuels”alternatives 86

D]The“PolicyRollover”Approach 89

E]MontserratEnergyPolicyElements 90

Summary&Recommendations 91

GeneralAppendices 92

ENDNOTES 111

vi PART A:

Policy Vision and Declaration/Statement

vii MONTSERRAT ENERGY POLICY, 2008 – 2027, I:

THE MONTSERRAT SUSTAINABLE ENERGY VISION

Ourgenerationhasamissiontorebuildournation.

Whiledoingthat,wehavemoreandmorecometoseethatourpresentover dependenceonfossilfuelsiseconomicallyandenvironmentallyunsound. Atthesametime,Montserrat’sexistingandpotential renewable energy resources (e.g.geothermalenergy,wind,solarenergyandbiofuels)andprospects for enhanced energy efficiency giveusanopportunityforustomoveto moresustainableenergysourcesandtechnologies.

Therefore,wecommitourselvesasanation,toinvestigateand–whereitis technologically,financiallyandeconomicallysound–adoptsuch greenenergyalternatives.Insodoing,wewillneedtobuildupourownnational capacitiesthroughtransparent,crediblepartnerships.

Asapartofthatcapacitybuilding,wewillalsoworktobecomearegionalcentreof excellenceforsustainableenergy.Thus,wecandemonstratebyexampleand propagatebytrainingandconsultancies,practicalwaysinwhichourregionandthe widerworldmaybeabletofindamoresustainableenergypath.

viii MONTSERRAT ENERGY POLICY, 2008 – 2027, II: POLICY DECLARATION

I. POLICY VISION -- TOWARDS A SUSTAINABLE ENERGY FUTURE :

Ourgenerationhasamissiontorebuildournation.Whiledoingthat,wehavemoreandmorecome toseethatourpresentoverdependenceonfossilfuelsiseconomicallyandenvironmentally unsound.Atthesametime,Montserrat’sexistingandpotential renewable energy resources (e.g. geothermalenergy,wind,solarenergyandbiofuels)andprospectsfor enhanced energy efficiency giveus anopportunityforustomovetomoresustainableenergysourcesandtechnologies.Therefore,we commitourselvesasanation,toinvestigateand–whereitistechnologically,financiallyand economicallysound–adoptsuchgreenenergyalternatives.Insodoing,wewillneedtobuildupour ownnationalcapacitiesthroughtransparent,crediblepartnerships.Asapartofthatcapacity building,wewillalsoworktobecomearegionalcentreofexcellenceforsustainableenergy.Thus, wecandemonstratebyexampleandpropagatebytrainingandconsultancies,practicalwaysinwhich ourregionandthewiderworldmaybeabletofindamoresustainableenergypath.

II. POLICY OVERVIEW – RISING TO MEET THE CHALLENGE OF SUSTAINABLE ENERGY :

Aswe, The People and Government of Montserrat ,worktorebuildandredevelopinthewakeofthe volcaniccrisis,ithasbecomemoreandmoreclearthatourenergysourcesandenergybasedservices havetobechangedtowardsmoresustainablealternatives.

Thisisreadilyapparentinlightofourdependenceonfossilfuelswhicharesubjecttosudden, large,disruptivejumpsinprice.AsthosepricesbegintotrendtowardsUS$200/barrelforcrudeoil, theyareplainlypotentiallyruinousforMontserrat.Inshort,wefacea“survival”challenge.Also, thereareincreasingglobal,regionalandlocalconcernsthatheavyfossilfueluseislinkedto potentiallydangerousanddestructiveclimatetrends.Thus,globalinitiativessuchastheKyoto Protocolhaveprovidedopportunitiesforustomoveawayfromexcessivedependenceonsuch fuels.

Throughtheseopportunities,Montserrathastheabilitytodevelopitsenergysourcesand technologiesawayfromfossilfuelsandmovetoamoresustainableenergypaththatemphasises(1) renewable energy (e.g.geothermal,wind,solarenergy,biofuels)and(2) enhanced efficiency ofenergyuse. Also,sincetheydominateourenergyusepatterns,the electricity and transportation sectors willbethemain focalpointsforoureffortstomovetowardssuchalternativeenergytechnologies.

Tosuccessfullyexplore,developandexploitgreenenergyopportunities,wewillneedtobuildup ourownnationalcapacitiesthroughtransparent,crediblepartnerships.Stepsmustbetakentosee thatsuchpartnershipswillbetransparent,sothattheywillnotcompromiseourdemocraticrightto controlthekeystrategicnationalassetsthatarethefoundationofourhopesforlongterm development.Wealsoseektobecomearegionalcentreofexcellenceforsustainableenergy,

1 throughwhichwecandemonstratebyourexample,developtrainingprogrammesin,andconsult withothersabout,practicalwaysinwhichourregionandthewiderworldmaybeabletofinda moresustainableenergypath.

TheMontserratenergypolicy,asenvisioned,declaredandexplainedbelow,thereforeprovidesa credible,broadlysupportedandfeasiblestrategicapproachtomakethemostoftheseopportunities, overtheperiod2008to2027,startingwithplansfortheimplementationofaninitialprogrammeof actionovertheperiod20082012.

III. DECLARATION OF POLICY INTENT:

The Montserrat 2008 – 2027 Sustainable Energy Policy,isbasedon the intent that: across time, and in light of identified opportunities, challenges, strengths and weaknesses we shall more adequately and more fairly meet our energy needs in our own generation, but at the same time we commit ourselves to not compromise the ability of future Montserratians to meet their own energy needs.

Insodeclaringthatthepolicyisbasedontheconceptof sustainability ,wemeanbythat,thatoverthe nexttwentyyears,ThePeopleandGovernmentofMontserratthereforewilladopt priority strategic initiatives thatjointlyandcumulativelyundertake... a course of action for our community in Montserrat, that will help our nation to identify and fulfill a desirable and achievable vision : (1) of how we will obtain energy from technically and economically feasible, environmentally sound sources; and (2) of how we will then use it effectively and efficiently to contribute to an ever more wholesome, prosperous and earth-friendly lifestyle.

Wewilldosobasedonour commitment tocertainvitalandvaluedunderlyingGodfearingethical principles(suchas The Golden Rule i)andassociatedsustainabledevelopmentgoals(asadoptedfrom timetotime).

Thus,wedefineour principal policy goal as... the reliable, cost-effective, affordable, economically, socially and environmentally sustainable provision of adequate energy services matched to Montserrat's needs across time; based on robust, diverse energy sources and distribution systems, using appropriate technologies, and equitably provided to all sectors of the society.

Thisoverarchinggoalwillbeachievedthroughthefulfillmentofthefollowingtargetted objectives :

IV. INDICATIVE POLICY TARGETS: FIVE, TEN, FIFTEEN & TWENTY YEARS:

Theenergypolicy’stargetsfallalongfivemutuallysupportive lines of action ,infour waves of advance :

2 WAVE 1: 2008 - 2012: geothermal, wind, efficiency and core capacity

W1.1Inthe first five-year sustainable energy policy implementation plan ,themainlineofadvance willbetoexploitavailableopportunitiesforrelativelymaturerenewableenergy technologies,especiallygeothermalenergyandwind,whileimprovingefficiencyof energyuseandbuildingbasiccapacity. W1.2 Energyefficiencywillbeenhancedthroughenergyauditsandrelatedchangesin equipmentandenergyusepatterns.Thiswillbebackedupbyaffordability enhancing demand side management [DSM]initiativesbytheelectricityutilityand partnersinefficiency,multipliedbypubliceducationandmoralsuasion.Thefirst suchinitiativewillbeatGovernmentHeadquarters,asastrategicdemonstration project.Asadvanced,costeffectiverenewableorefficienttechnologies(e.g.,low costsolarphotovoltaicsystems,solidstateLEDlighting)emergeinglobalmarkets, theywillbeintroducedhereaswell. W1.3Monlec/theenergydivisionofMULwillcontinuetobethedesignatedsole electricitygridholderandmanagerofthemainspowersupply,intheinterestsofthe peopleofMontserrat.Asappropriate,electricitygenerationshallbeinhouseorona powerpurchasecontractualbasiswithlicensedindependentpowerproviders; especiallyifgeothermalenergyand/orwindaretobebroughtintothegeneration mix.Electricitytariffs,fuelsurcharges,gridconnexionfeesandterms,gridextension andthelikeshallberegulatedandmanagedundertherelevantelectricityandutilities legislation,withassociatedscrutinybythedesignatedregulatoryauthority.Pricing shallasfarasreasonablypossibletargetaffordability.This,withintheconstraintof meetingcostsandreturnstoinvestmenttofinance,provideandmanagethemains electricityserviceandrelatedsupportacrosstime;whilereckoningwiththe implicationsofthesmallscaleofMontserrat.Giventhestrategicimportanceofa stable,adequateelectricitygridandgenerationcapacityfornationaldevelopment,if requiredinvestmentsarenotfeasibleonacommercialbasis,aidagencysupportwill besought.(Suchsupportwillespeciallybesoughtasoptionsareexploredtoshiftas largeafractionasfeasibleofgenerationawayfromevermoreexpensiveand environmentallyunfriendlyfossilfuels,andtowardsrenewableenergy.)Also,asthe mainconcentrationofrelevanttechnicalexpertise,thedivisionwillberequiredto undertakeandsupportaportfolioofdemandsidemanagement[DSM]initiativesand associatedrenewableenergy,energyefficiencyandalternativeenergyprojects.In supportofthis,appropriatestafftrainingandstaffdevelopmentprojectswillalsobe undertakenincollaborationwithsuitableregionalandlocalpartners. W1.4Sincebiofuel,hydrogenandhybridelectricvehicletechnologiesarenotcurrentlyas technologicallymatureand/orcostcompetitiveasthoseprioritisedforthefirstfive yearplan,itisinthe second five year plan thattheemphasisshiftstothesecondmajor areaofenergyuse,transportation.However,inthisperiod,initialexplorationsof fuelandtransportationalternativesshouldbeundertaken,towardsidentifyingbest greenenergyoptions.Forinstance,fuelcellpoweredbusesforpublictransportation, hybridvehicles,alcoholfuels,biodieselandelectricvehiclesshouldallbe investigatedandwherepracticable,exploredonatleastademonstrationbasis.

3 WAVE 2: 2013 - 2017: Transportation sector transformation W2.1Inthissecondperiod,costeffectivebiofuelscompatiblewithcurrentengine technologiessuchasethanol,butanol[averyclosesubstituteforgasoline],bio dieseland/orotheremergingsustainablefuelswillbeintroducedonawidespread commercialbasis,asadditivestoexistingfuelsand/orasfuelsintheirownright. Similarly,hydrogen,fuelcellsandpluginhybridelectricvehicles,etc.,willalso continuetobeexploredandwherefeasibleinitiallyintroduced. WAVE 3: 2018 - 2022: Future Energy W3.1For the third five-year plan ,biofuelswillbeincreasinglybroughtintogeneralusefor currentgenerationtypeinternalcombustionengineandflexiblefuelvehicles,fuel cellandhybridvehiclesandsupportiveinfrastructureshouldbefullymainstreamed astheycomeintocommercialavailability. W3.2WewillalsorebrandMontserratasanislandwhere the global green energy future is happening;thuspositioningourselvesintheeducationandconsultancymarketsto offerenergytransformationtrainingandassociatedtechnicalandstrategic consultancyservicestotheregionandworld.

WAVE 4: 2023 - 2027: Green Energy Economy W4.1Theobjectivehereisconsolidationandpositioningforfurtheradvancesinenergy technology.The fourth five year plan willcompletethegreenenergytransformation, andwillopenthegatewayfortheprobableultimate“futureenergy”technologies: hydrogen,fuelcells,highefficiencylowcostphotovoltaicsystemsandfusion.

Ineachofthesewaves,evenwithshiftingemphases,initiativesandactivitieswillbeclusteredalong fivebalanced,parallel,mutuallysupportivelinesofaction[LOA]:

LOA 1: Renewable Energy A1.1Montserrat'smajoropportunitiesforsustainableenergylieinmodernrenewable sources,augmentedbyefficiencymeasures.Projectswillthereforebeundertakento identify,evaluate,prioritiseandimplementenvironmentallysound,technicallyand economicallyfeasibleinitiativesongeothermal,wind,solarenergy,biofuelsand suchotherprospectsasmayemergefromtimetotime. A1.2 Inundertakingsuchprojects,advantageoususewillbemadeofglobal,regionaland localtechnicalandfinancialfacilitationmechanismsaccessibletoMontserratand Montserratians.Thisincludes:carbontrading,cleandevelopmentmechanisms, pioneeringindustrytaxholidays,importdutyrelief,incometaxcredits,softgreen energyloanfunds,technicalassistancemechanisms,marketpenetrationbarrier overcomingprojects[e.g.CREDP]andthelike. LOA 2: Energy Efficiency A2.1Throughthecollaborationwiththeelectricityutilityandpartneragenciesandlocal/ regional/international energy services companies [ESCOs],aprogrammeofenergy auditsandcreditassistedtransitioningoffirmsandhouseholdstoenergyefficient appliances,processesandpatternsofenergyuse,willbeundertaken.

4 LOA 3: Fossil Fuels and alternatives A3.1Tofacilitatetransitioningawayfromunsustainablelevelsofdependenceonfossil fuels,potentialbiofuelswillbeidentified,evaluated,andwheresoundandfeasible, introducedasadditivesthenasreplacementsforsuchfossilfuels. A3.2Novelenergyharvestingtechnologiessuchasfuelcellsandassociatedenergycarriers suchashydrogengaswillbesimilarlyevaluatedandimplementedwhere/when feasible.Ifandasnuclearfusiontechnologybeginstoemerge–probablytowards themiddleofthetwentyfirstcentury,ittoowillbeevaluated. LOA 4: Transportation sector transformation A4.1Biofuelsthataremoreorlesscompatiblewithcurrentinternalcombustionengines areanimportantbridgingtechnologyformotorvehicles.Thus,prospectsforthe introductionanduseofethanol,biobutanol,biodiesel,andotherbiofuelswillbe evaluated,towardslocal/regionalproductionanddistributiontoaugmentthen replacefossilfuels.ThiswillbedoneinpartnershipwithCARICOM,OECSand otherrelevantregionalorinternationalinstitutionsandmovements. A4.2Onward,theprobableemergenceofflexiblefuel,hybrid,fuelcellbased,hydrogen [orethanolorthelike]poweredvehicleswillrequireafurtherevaluationand introduction. LOA 5: Capacity Development A5.1Montserratwillseektodevelopacadreof capable people tomanageandimplementthe energytransformationprocess,whichimpliesbothaneedfortraining(locally, regionallyandoverseas)andfororganisingandequippinginstitutions–publicand privatesectorforthemtoworkin. A5.2Such institutions mayrequireappropriateapplicationand/oramendingofexisting lawsandregulations[e.g.TendersBoardprocess,industrialinvestmentincentives, environmentallaw,utilityregulationmechanisms],and/orifnecessarycreationof newones–whichshouldbecompatiblewithrelatedCARICOMandOECS initiativesinsofaraspossible.Itwillalsorequireassociated,stakeholderbased oversightbodies[e.g.PublicUtilitiesCommission,EnergyBoardbasedonthe National Energy Task Force (NETF),etc]toensuretransparent,efficientmanagement intheinterestsofthepeopleofMontserrat. A5.3Theseinstitutionswillneedtobeabletosoworktogetherthatthewholewillbe greaterthanthesumoftheindividualparts,sothatour community willhavecapacity totransitionsmoothlytothenewsustainableenergyera.Thisimpliesaneedfora broadlyparticipative,transparent,cooperative,consensusbuildingprocessfor developingtheenergypolicyandcarryingforwarditsimplementation.

Specificoperationalobjectivesderivedfromthesetargetsarethereforeidentifiedandtabulatedin Schedule1tothispolicydeclaration.Schedules2and3specifyrequisitesspecifictotheprospective developmentofgeothermalenergy,theprincipalidentifiedrenewableenergyopportunityfor Montserrat.

5 Toeffectthelinesofactionacrossthefourenvisionedwavesofadvance,thefollowing policy instruments areadopted:

V. MAIN POLICY INSTRUMENTS: I 1: Energy Office TheGovernmentofMontserrat,actingthroughtheExecutiveCouncil,undertakesthecreationof an Energy Office (EO)attachedto[anappropriateministry]andworkingwithrelevantGovernment Departments,theprivatesector,communitygroupsandprojectteamstacklingpriorityprojects underthepolicy'sintegratedimplementationplan.ThisOfficeisintendedtocarryforward,facilitate andcoordinateprioritystrategicinitiativesundertheenergypolicy:

Fig. 1: Energy Office

TheEnergyOffice,whileprincipallyaccountableto[itsMinistry],shallalsousebroadergovernance andtransparencystructuressuchasastakeholderbased Advisory Energy Board ,a Technical and Scientific Advisory Panel ,andsemiannual Public Forums ;topromotemaximumparticipationbythecommunity intheimplementationandonwarddevelopmentofenergypolicy.

Tomobiliseandbestcoordinateavailableresources,itshalluseacrossfunctionalprojectteam organisationalstructuretosupportandoverseethecarryingoutofpriorityprojects,through applicationof“best[oratleast effective ]practice”forprojectcyclemanagement.Programmeand projectgovernanceshallthereforebedonejointlywithdesignatedprojectteamleadersand representativesofresourceprovidingGovernmentagencies,privatesectorgroupsandcommunity basedorganisations,aswellasaidagencies.Insuchorganisations,thereshallbedesignatedpriority projectfacilitationofficersreportingtotheseniormanagersoftherelevantbodies. TheofficeshallalsocooperatewiththeStatisticsDepartmentandotherrelevantofficeson coordinatingthecollecting,monitoring,analysingandreportingonenergyandemissionsstatistics andinformationgenerallythatarerelevantto Carbon Trading ,andtocompliancewithregionaland internationalagreements.

I2: The First Five-year Energy Transformation Implementation Plan Integraltothepolicyshallbeaseriesoffiveyearimplementationplans,thefirstofwhichshallbeas describedinoutlineinDeclarationVIofthispolicy,below.TheEnergyOffice'sprincipaltasksand

6 scopeofaction,inthefirstinstance,shallbedefinedandmanagedthroughthisinitialplan.Onward, itsfurthertasksandscopeofactionshallbefurtherdefinedthroughsuccessorplansandrevisions tothepolicyframeworkasmadefromtimetotime.

I3: Regional and International Mechanisms relevant to energy policy RegionalandinternationalmechanismsandagreementsthatMontserratas[a]aUnitedKingdom OverseasTerritory,[b]amemberoftheCaricom,and[c]amemberoftheOrganisationofEastern CaribbeanStatesisapartyto(and/or is implicitly involved in, as an overseas territory of the UK) ,are herebydeemedtobeanintegralpartoftheMontserratenergypolicy.This,withintheconstraints imposedbynationalcapabilitiesandlimitationsthatleadtosuchderogationsasarenecessaryfora smallislanddevelopingstateinlongtermrecoveryfromamajornaturaldisaster. TheEnergyOfficeisthedesignated Focal Point forcoordinatingmonitoring,complianceand applicationofsuchinstrumentalities,includingidentifying,developingandcoordinatingprojectsto makeadvantageoususeofopportunitiesopenedtousthroughsuchmechanisms. Sincethereisarecognisedcapacitychallengeonassociatedstatisticscollectionandanalysis,inthe firstyearoftheOffice'sexistence,itshallundertakeasurveyoftheneedsanddeveloponeormore projectstoimprovethiscriticalcapacityrequiredforsuccessfulcarbontradingandfor environmentalreportinggenerally.

I4: Local Law, Regulations and Capacity Theenergypolicyanditsimplementingarm,theEnergyOffice,willasfaraspossibleseektobe compliantwithandmakeadvantageoususeof existing relevantlocallaws,policies,andregulations andshallseektocollaboratewithothergovernmentagencies,withtheprivatesectorandcommunity basedorganisations.Thisshallinparticularapplytothecurrent Sustainable Development Plan [SDP] andthe National Environmental Management Strategy [NEMS].(Wherenecessary,derogationsshall apply,asperwarrantfromtherelevantministryonapplicationbytheEnergyOffice.) Asacapacitybuildingprojectunderthefirstfiveyearimplementationplan,theEnergyOfficeshall initsfirstyearofexistence,undertakeareviewofrelevantlaws,regulationsandcapacity.Basedon itsfindings,itshallthenrecommendtotheGovernmentofMontserrataprioritisedagendaofsuch adjustmentsandupgradingasisreasonablyachievablewithinthescopeofavailableresourcesand priorities. Inpromotingstrategicenergyinitiatives,suchasgeothermaldevelopment,advantageoususeshallbe madeoftheupgraded Tenders Board process,andtheentrenchedlegalprinciplethatreservesmineral, treasureandwaterrightsaspublicgoods[i.e.as“Crown”].Asrelevant, tax holidays ii forpioneeringor vitalindustries, duties exemption schemes andthelikeshouldalsoapply;bearinginmindthewellknown doubletaxationeffectsandfinancial/economicimplicationsof(a)taxingafirm’sprofitsandthen also(b)taxingequityholdersontheirdividendsandcapitalgains. Royalties shallbepremisedonthe valueofpublicresourcesused(inclusiveofnotonlymineralwealthbutalsothoseforinspections andadministration,etc.)andshouldbeassessedatregionallycompetitiverates. iii Theseandother similarinstrumentalitiesshouldbeappliedinaccordwithinternationalandregionalbest–oratleast effective–practice;withdueconsiderationforthebalancebetweeninvestmentincentives,cost savingsandincomeeffectsfortheStateandmembersofthecommunity

7 I5: Public Utilities Commission AsaPublicUtilitiesCommissionlawisindraft,whichwillsupportenhancedandgovernanceof publicutilities,thiscommissionwillinteraliaserveasameansofenhancedtransparencyof managementofenergyrelatedutilities.Thus,itisapolicyinstrumentforthenationalenergy strategy.

I6: Environmental Impact Analysis [EIA] and Environmental Management Systems [EMS] ThroughtherelevantclausesoftheNEMS,andinaccordancewithinternationalbest(oratleast acceptablyeffective)practices,EIAandEMSshallbeintegratedintoprojectsandotherinitiatives undertakenundertheenergypolicy.Thisshallbeakeycomponentofthesustainabilityaspectofthe energypolicy.ThroughEIAandEMS,energyrelatedprojectsshallwithoutimposingexcessive bureaucraticdelayand/orentanglingrulesandregulationsseektominimisedamagingstresson thebiophysical,socioculturalandeconomicenvironmentaldomains,asisconsistentwiththelong terminterestsandwelfareofthecurrentgenerationandourposterity. Sincecertainkeyenergyrelatedtechnologiesare“dirty,”withinthefirsttwoyearsoftheenergy policycomingintoeffect,theEnergyOfficewillundertakeaninitialsurveyofwastemanagement relatingtoenergysourcesandtechnologiesinMontserrat,andshalldevelopandundertakerelevant projects,e.g.,ondisposal/recyclingoffluorescentlighting[Mercuryhazard]andLeadAcid Batteries[Leadhazard]. Similarly,incoordinationwiththeDisasterManagementCoordinationAgency[DMCA],theFire Departmentandotherrelevantpartners,theOfficewillundertakeprojectstoenhancecapacityto preventormanageenergyrelateddisasterssuchasoilspillsortankfarmfires.

VI. FIVE-YEAR INITIAL PROGRAMME OF IMPLEMENTATION:

Toachievetheaforementionedtargetsthroughjudiciousapplicationoftheaboveinstruments,a seriesof five-year programmes of action andassociated implementation plans shallbedevelopedand executed,throughtheEnergyOfficeandcollaboratingpartners.Atsemiannualintervalsduringthe plans,undertheauspicesofthe[appropriateministry]regularpublicforumsshallbeheldbythe AdvisoryEnergyBoard,theTechnicalandScientificAdvisoryPanelandtheEnergyOffice,to publiclyreportonprogressandchallenges,andtotakeinputsfromthepublicatlarge.Ifconvenient, theseforumsshallbetimedtocoincidewiththeannualChristmasandCalabashfestivals.

Thefirstsuchplan,inindicativeoutlineform,isattachedasSectionIIofthisenergypolicy,andits targetsarethoseidentifiedasthoseforthefirstwaveofadvanceacrossthefivelinesofaction discussedunderDeclarationIVabove,andinSchedule1asattachedbelow.Themainareasof effortpursuedthroughthisinitialplanare: geothermal, wind, efficiency and capacity-building.

VII. ORGANISATION, RESOURCING, OVERSIGHT, REVIEW:

Inordertoeffectivelyandtransparentlyimplementthepolicy,asisdiscussedinDeclarationV above,theprincipalpracticalinstrumentundertheenergypolicyisthecreationofanEnergyOffice integratedintoaparticipativegovernancemechanismandwithaprojectteambasedimplementation structureforpriorityinitiatives.

8 Suchaframeworkcreatesinstitutionalcapacityandenhancescommunitycapacitytoundertake energytransformation.However,suchmeasureswillhavelittleornoeffectwithoutcapablepeople andsupportivefinancialandmaterialresources.Accordingly,activetraining,recruitingand retentionstrategiesforenergycapacitywillbeintegratedintotheonwardworkofGovernmentlevel managementofMontserrat'shumanresources.Asopportunitiesarise,energyrelatedtraining programmeswillbeintroducedintolocallybasededucationinstitutions,attechnicalandmanagerial levels,withaneyetowardseventualofferingofsuchcoursesandprogrammesacrosstheregionand beyond.

Further,since,energytransformationisnowaglobaltheme,many financing mechanisms haveemerged andarecontinuingtoemergeatregionalandinternationallevels;clusteredonthethemeCarbon Trading.TheEnergyOfficewillbetaskedtomonitorandmakeadvantageoususeofsuch opportunitiesinthenationalinterests.And,throughcostsavingsonenergyefficiencyandmoving tocosteffectivealternativetechnologies,anagreedproportionofreleasedorsourcedfunds(thislast throughasmallbutrealisticcoordinationfeeasappropriate)onaperprojectbasiswillbeinvested inthesupportofcurrentandonwardenergyinitiatives.

VIII. ONWARD LINES OF ACTION:

Giventhedynamicnatureoftheenergysectorandtheinitialimperativeofriskyexplorationof geothermal,windandsolarenergyprospects,therewillbeamajorreviewattheendofthefirstyear toyearandahalfofimplementationunderthispolicy.

Then,atthefifthyear,therewillbeafurthermajorreview,leadingtoapolicyrolloverintimefor WaveofAdvance2.(Asimilarreviewandrolloverwilloccuratsucceedingfiveyearintervals.)

9 SCHEDULE1:

A framework of Goals for Renewable/ Sustainable Energy, 2008 – 2027

Goals for Lines of Action Waves of Advance & Themes LOA 1: Renewable LOA 2: Energy LOA 3: Fossil Fuels & LOA 4: Transportation LOA 5: Capacity Energy Efficiency Alternatives Sector transformation Development WI:2008–2012: • Geothermal [3 – 5 MW • Energy audits: MUL and/or • Exploratory use of ethanol, • Use of ethanol as an • Creation of an Energy plant], if feasible ESCOs butanol and bio-diesel, etc. additive for vehicle fuel Office, with Board, and Geothermal, Wind • Wind electricity, 300 kW+ ; • Provision of affordable, as fuels in their own right, • Initial, demonstration use of technical Advisory Panel and core capacity associated generating plant, efficient replacement including the possible use of butanol and biodiesel as fuel • BOAT partnerships for power distribution grid and lighting systems, appliances, alcohol(s) in fuel cells additives geothermal grid control upgrades office equipment and PCs, • Exploration of hydrogen • Demonstration of hybrid, • Technical training and • Systematic, daily and etc. through an audits-linked generation, storage and use fuel cell and/or plug-in capacity building [Comm ongoing monitoring of wind financing mechanism as an energy carrier recharge vehicles, esp. Coll, UWI, etc.], and insolation resources • ESCO inputs into major • Possible recovery of one or flexible-fuel plug-in hybrids • Data, statistics and analysis • Affordable solar water new building projects, more of the Plymouth- • Pilot, green energy capacity upgrade towards harvesting based diesel generation sets heaters through a financing demonstrator bus-based • ESCO capacity mechanism efficiency gains and (and of associated plant etc). public transport: e.g. bio- integration of renewables • Legislation & regulations • Research and pilot projects • Monitoring of global fuels, flexible fuels, hybrids, on RE air conditioning • Associated promotion of developments on other electric vehicles, fuel cells, • Utilities Commission systems and other novel high efficiency, renewables- alternative energy, e.g. hydrogen • If geothermal, industries to technologies compatible building designs PBMR reactors (S. Africa, use “extra” electricity through upgraded building China) • TiO 2, other solar pv, & fuel regulations cells tech. capacity building WII:2013–2017, • If feasible, expansion of • Introduction of LED, solid • Initial distribution network • Butanol and biodiesel initial • If large geothermal Geothermal energy and state lighting as the next for bio-fuels “compatible” production and distribution, resources, export of Transportation export to Guadeloupe, etc. generation on lighting with current generation M’rat and wider region electricity to Guadeloupe, efficiency vehicles: e.g. biodiesel, etc. Sector • Pilot projects for TiO 2 and • Fleet-scale demonstration transformation other novel solar PV techs • Beginning of global biobutanol use of fuel cell vehicles • Initial offers of training and • Pilot projects for fuel cells replacement of incandescent • Local fleet-level (alcohol and/or hydrogen) external consultancies as lighting demonstration of hydrogen • Deployment of “affordable” energy transformation (and/or alcohols) as an hybrids etc experts energy carrier WIII:2018–2022: • Solar-hydrogen economy • Global phasing out of • Gradual phasing out of • Bio-fuels for conventional • Modularisation of energy demonstration, if the incandescent lighting gasoline and fossil fuel vehicles, delivery using solar, fuel Future Energy technology is available and • Initial use of small, efficient derived diesel • Fuel cells for new cells cost effective fuel cells to replace generation vehicles and for • Full-scale training and chemical primary batteries remote sites or mobile consultancy capacity equipment WIV:2023–2027: • Transition to Solar energy • Transition to a high- • Transition to hydrogen and • Gradual phasing out of • Green economy and bio-fuels for the long efficiency energy equipment bio-fuels, and to fuel cell fossil fuel based, internal consolidation Green Energy term, and introduction of economy vehicles combustion engine powered • Initial capacity development Economy hydrogen • Monitoring of global vehicles towards fusion developments on fusion • Transition: fuel cell vehicles

10 SCHEDULE 2: A suggested, candidate “best practice,” BOAT Geothermal energy development model Adj 08:02:14 per suggestions UNECLAC, 03:14 per those of OAS, 09:10 per Energy Steering Group

PREAMBLE: Geothermal resources development, per regional and international experience, requires initial scientific investigation and exploration, then development and finally operations, in a capital-intensive, significantly (but not necessarily exceptionally) risky and complex business environment. Further to this, Montserrat is looking to provision of electrical energy from such sources for local use and possibly for export. This requires careful consideration of legal and regulatory policy factors, and also some examination of “yardstick” options for best or at least effective practice. What follows in this schedule to the policy declaration, proper, is therefore indicative, and incorporates associated “yardstick” suggestions on best or at least effective practice that – while based on well known praxis and relevant considerations -- are not intended to be seen as exhausting our policy options. ______

Geothermalresourcescanbeidentifiedasinthefirstinstancebeingduetocertainthermal characteristicsofwatersandrocksbeneaththeearththatgiverisetoeconomicallyvaluablefeatures, andalsosecondarilyduetoentrainmentofdissolvedmineralsinsuchwaters.Theseresources, inter alia include iv : a) resourcesrelatedtodeepcirculationofmeteoricwateralongfaultsandfractures; b) resourcesinhighporosityrocksathydrostaticpressure; c) resourcesinhighporosityrocksatpressuresgreatlyinexcessofhydrostaticpressure (i.e.,"geopressured"); d) resourcesinhotbutrelativelydry(lowporosity)rockformations;and e)resourcesrelatedtotheupwardflowofheatedwatertowardsthesurfacealongfractures andwherethereispermeability.

Accordingly,forthepurposesofthispolicy,theseresourcesmaybeviewedasbeingduetominerals andwaterswithanadditionalvaluablethermalproperty.Thus,theyimmediatelyfallunderthe generallegalprinciplethatsuchresourcesarepublic[“Crown”],tobeidentified,developedand managedthroughtransparentprocessesestablishedundertheLawsofMontserratandunderthe regulatoryoversightofaccountablepublicauthorities;intheinterestsofthepeopleofMontserrat.

However,duetotheirpeculiarthermalaspectsanduses[suchasthemakingofelectricityorthe directuseofthermalenergy],fromtimetotime,itwillbeappropriatetofurtherspecifyhow geothermalresourcesaretobemanaged.ThiscouldbedonethroughamendingexistingLawand associatedregulations,and/orthroughcreatingnewLawandregulations;inconsultationwith relevantstakeholdersandpartners.(AsDeclarationVabove,Instrumentno.4,indicates,duringthe firstyearoftheenergypolicy,areviewprocesswillbeinitiatedtowardssuchupgradingor introductionofLawsandregulationsasmayseemadvisable.)

Consequently,underexistingandfutureLawsandregulationsasappropriate, vtherelevant authoritiesmay(inlightofscientificevidence)designatecertainareasaspotentialorknown

11 geothermalresourcezones. vi Theymaythereafter(uponduediligenceregardingthetechnical capacityofpotentialsuppliersofsuchexploratoryservices)issuepermitsforthesafe, environmentallyresponsibleexplorationandidentificationofthermalandmineralresources associatedwithsuchgeothermalzones.Theseauthoritiesmayalsosimilarlyissuelicencesfor developmentandexploitationofprovedresources,andareresponsibletopromote,oversee,and regulatetheuseofsuchresources;towardsthesustainabledevelopmentofMontserrat.

So,providingMontserrat’sgeothermalpotentialisconfirmedthroughsuchinitialinvestigationsas arenowinprospect,itmaybefeasibleanddesirabletodevelopageothermalpowerplantatthefirst level,tosupplyMontserratwithuptoperhaps35MW.(Thisisatypicalsizeforaninitial developmentofageothermalfield.)

SuchascaleofplantwouldbebigenoughtoprovideforMontserrat’sneeds(withroomfor moderategrowth),wouldprovideanopportunitytodevelopcapacityandwouldfurtherprovethe resourceforpossibleonwarddevelopments.

Onsuchascenario,thedevelopmentofaplant,itsoperationandthebuildingupoflocalcapacityto manageageothermalelectricalprocessandfieldwouldthenbepriorityissues.Thisbringstothe foreapossiblevariationonthenowalmosttraditional BOOT and BOT “best”oratleastknown effectivemodelsforenergyandsimilarhighcapitalcostdevelopmentsofbasicinfrastructure facilitiesthatdirectlyservethepublicinterest.

The BOOT model– Build, Operate, Own, Transfer–isbasedontheconceptofcreatinga franchiseforacontractedprivateentitytofinance,design,implementandoperateafacilityforaset period,thenownershipistransferredtotheinitiatoroftheprocess.Duringtheoperatingperiod,the operatorharvestsfees,tolls,rentalsandotherreasonablechargesasstipulatedinthecontract, coveringinvestmentandoperationsandmaintenanceandprovidingareasonableprofitmatchedto therelevantriskofthesortofoperationundertaken.

AsMr.AlbertDaleyoftheDevelopmentUnithasobserved,arelatedalternativeisthe BOT model – Build, Operate, Transfer.Thatis,toretainownershipoftheplantinthenameofthepeopleand GovernmentofMontserrat(and,weadd:ifcommercialdevelopmentisnotattractive,perhapsto fundtheplantthrough“futurebuilding”developmentinvestmentsthroughaidagenciesactingin concertwithqualifieddevelopers)– Build, Operate [withoutownership]and Transfer : (a)Theprivateconsortiumdesigns,financesandconstructstheplant/facilityand thenoperatesandmaintainsitoverthecontractualperiodonbehalfofthe governmentuntilinvestmentsarerecoupedalongwithanacceptablereturnforthe risktaken. (b)Thegovernmentretainsownership&responsibilityfortheplant/facility (c)Thegovernmentisnormallyboththecustomerandregulatorofthe service/product. (d)TheGovernmentusuallyagreestopurchaseaminimumlevelofoutput(e.g. throughMUL),toensurethattheprivateconsortiumorjointventurepartnership hassomeguaranteeofrecoupingtheirinvestment,operatingandmaintenancecosts overtime.

12 (e)Thegovernmentensuresthattheprivateoperator/consortiumoperatestheplant accordingtoperformancestandardsagreed. Itshouldbenotedthatatthetimeoftransfertheplantwouldstillbelongtothegovernment, whomaychoosetosellthemajorityofthesharestothelocalcompanyintheconsortiumthat operatedtheplant/facilityandretainminorityshareholding;itmaychoosetosellmajorityofthe sharestothelocalpartnerintheconsortium,someoftheownershiptotheforeigncompany andretainminorityshareholdingintheplant/facility;oritmaychosetodivestorprivatizethe plant/facilitybysellingittothelocalpartnerintheconsortiumwhosecapacitywouldhavebeen developedasagreedinthecontractfortheoperationoftheplant/facility.Itshouldbenoted howeverthattheremaybesomebenefitinsellingtheforeignbasedcompany(withaccessto fundingandtechnology)aminorityshareholdingintheplant/facilityaftertheinitialinvestors haverecoupedtheirinvestment.

TheobviousadvantageofthisapproachisthatownershipisvestedintheGOMthroughoutthe periodoftheinvestment,andinthecasethatcommercialdevelopmentisunattractive,thiswouldfit withadevelopmentfundedapproach.However,wherecommercialfundingissought,itispossible thatbyhavingownershipinhandsotherthanthefinancingpartner,financingcosts–duetoa higherrisktothebankermaybesignificantlyhigher.Also,retainingtheplantonthefinancing partner’sbooks,withtransferbyineffectaballoonpaymentattheendoftheperiodwhenthe GOMisbetterabletoaffordit,maybeacountervailingadvantage. Some flexibility on the matter of ownership of plant and land is therefore advisable.Especiallysince,ineithercase,perrelevantlaw,the controlofmineral,waterandtreasurerightsisnotopentotransfer.

Eithermodelallowsforaduespreadingoutoffinancialrisksforbothparties.For,theinitiating entityisnotforcedtoenterintoanewfieldofoperationsthatitmaylackexpertisein,andthe operatorcanleveragehisexpertiseandspreadhisrisksacrossseveralsimilarprojectsindiverse situations.TheBOOT/BOTprocessalsoprovidesopportunityfor technology transfer and capacity building. Thatopportunityleadstoavariantofthebasicmodelwhichemphasisesthetransfer component: a BOAT development and capacity-building oriented variant for the Montserrat case: B – BUILD: Thecontractoperatorundertakesspecificrelevanttechnicalpre engineeringstudies,financing,fulltechnicaldesign,construction andcommissioningoftheplantandrelatedinfrastructure. O – OPERATE: Theoperatormanagestheplantandharvestsappropriatereturns forthiseffort.( Ownership ofassetsislefttothetermsofthe particularagreemententeredintowithlocaland/orregional and/orinternationalpartnersinlightofwherefinancing advantagesetc.maylie.) A – AND: Simultaneouswiththedevelopmentandoperationoftheplant,a capacitybuildingandtechnologytransferprocessiscarried throughasapartofMontserrat’songoingrebuildingand redevelopment. T - TRANSFER: Thecapacitybuildingandtechnologytransferleaduptoa scheduledtransferofmanagement(and,whererelevant, ownership)ofrelevantassetsatthecloseofthefranchiseperiod. Inthefinalfiveyearsofthecontract,managementoftheplant

13 wouldbeprogressivelyhandedovertoasuccessorMontserratian entity,inagreedstages.Attheendofthisperiod,anyrelevant assetsownedbytheinternationalpartneraresoldtotheemerging Montserratianentityatapricenegotiatedbasedontheiraudited residualvalue.

Thisvariantwouldallowthespreadingoutofrisksandtechnologytransfer,alsolayingabasefor furthercooperativedevelopments.(Suchfurtherdevelopmentswouldbeacredibleprospectifthe fieldissuitableforexpansionandespeciallyifthereisacredibleopportunityforpowertransferto otherislandsthroughunderseacables.)

14 SCHEDULE 3:

On Pre-Qualification for Geothermal Energy Development Adj. 08:02:14 per suggestions UNECLAC, 09:10 per Energy Steering Group

PREAMBLE: Geothermal Energy development for utility electricity generation is a “yardstick” exemplar of modern renewable energy development; with implications for other similar developments such as wind, OTEC, solar thermal or large-scale solar PV. Further to this, as Schedule 2 supra discusses, there are not only various candidate best practice pathways to such energy developments, but also there are several regulatory/legislative effective/best practices that bear on such developments, one of which is the use of a transparent bid process. In that context, a main candidate for best practice, given the highly technical, capital-intensive and significantly risky nature of geothermal development, is that a pre-qualified sealed bid process be undertaken. The following therefore outlines a suggested “yardstick” pathway for that to be initiated for Montserrat. (As “yardstick” implies, such a pathway is not intended to exhaust the list of possible options, but to lay out a comparison standard based on known effective practice.) ______

TheBOATenergydevelopmentprocess,asoutlinedinSchedule2above,emphasisestheneedfor capacitydevelopmentandtechnologytransfertoequipaMontserratianpartnertotakeover managementandtechnicalfunctionsoftheenvisionedgeothermalpowerplant,acrosstime.This wouldbecarriedoutthroughastructureddevelopment,operationandhandoverprocessthatalso properlyreflectsthehighlytechnicalandspecialisednatureofgeothermalenergydevelopment.The processshouldalsoreflecttheassociatedneedstocoverfinancingcosts,riskpremiums,design, construction,commissioning,operatingandmanaging,reasonableprofitmakingbythesuccessful firmorpartnershipthatactuallydevelopsthepowerplant,etc.

Thehighlyspecialised,highlytechnical,highrisk,capitalintensivenatureofgeothermalenergy developmentfurtherleadstotheneedfor pre-qualification sothatGOMmayconfidentlyenter intopartnershipwithafirmorjointventurethatcrediblyhastherequisitefinancialandtechnical capacityaswellaslocalinvolvementimpliedinthejustabove,asanintegralpartoftheTendering process.Also, since the underlying energy resource is a public resource under applicable Montserrat Law on mineral, water and treasure rights, it is appropriate that the bidding process for commercial geothermal development should go through the designated Tenders Board .(Itisanticipatedthattheinitial,relativelyriskyexplorationphases willbeinlargepartundertakenthroughadevelopmentaidprocessfundedthroughdevelopmentaid partners;thatis,followingthesuccessfulaidassistedgeothermaldevelopmentmodelexemplifiedby theplantsatBouillante,Guadeloupe.Thus,anticipatedbiddingforcommercialdevelopmentand operationwouldberelativetoareasonablydemonstratedresource.)

Furthertothis,itissuggestedbythelogicoftheenergydevelopmentprocess,thattherearethree core criteria for pre-qualification vii ofbidderstodevelopgeothermalenergyinMontserrat: I. Financial capacity toundertakeaventurethat(oncrediblepreliminarytechnical reports)maycostupto~US$12.5–15millionsattheinitial3–5MWlevel,and wouldrequireperhapsuptothreeormoreyearsofinitialinvestmentinexploration anddevelopmentbeforecommissioningofaplantandassociatedincome generation. viii

15 II. Proven technical capacity tocrediblyundertakegeothermaldevelopmentinanewand hithertolargelyunexploredgeothermalfield. III. Involvement of a Montserratian entity in any proposed partnership involvingexternal components,inacontextofcapacitybuildingthroughtechnology,management [andifapplicable,ownership]transferunderthemodifiedBOOTorBOT developmentmodelidentifiedinSchedule2asBOAT.

(Implicitinallofthis,isthepremisethat since property rights in general in Montserrat do not normally enfold mineral and treasure rights, such minerals and treasures as may be discovered are to be considered a patrimony of the people of Montserrat as a whole, to be transparently managed by elected Governments and their agents across time, in the people's interest. Asanincentive,dueconsiderationshouldbemadetotheeffortoffindersofsaid mineralsandtreasures,andtothereasonableexpectationsoftheownersofthelandwherethey werefound.For, “one should not muzzle the ox that treads the grain.” )

Inthislight,firmsand/orpartnershipsbiddingon commercial development shoulddemonstrate:

1]Therequisite financial capacity .Thiswillbeidentifiedbysubstantiationthrougha combinationofauditedfinancialstatements,supportingdocuments,possibleinterviewsand thelikeevidence,thatthefirmorpartnershipinquestionhasadequateinternalcapitalto sustainthecombinationofequity,debtandpossibledevelopmentassistanceand/or “environment”fundingthatwouldbeusedtodevelopandoperatetheplantundertheterms oftheversionofaBOATagreementtheypropose.

2]Therequisite technical capacity. Thesuccessfulbiddershould: (a)havesuccessfullydevelopedatleastoneGeothermalfield; (b)havethusbuiltandoperatedatleasta3–5MWplantforsomethinglikefive years; (c)haveproducedelectricityatreasonablycompetitivecostrelativetoalternativesin theirlocalmarket; (d)havedonesoataproductioncostsreasonablycomparabletotheglobal “benchmark”ofabout4¢[US]perkWhofelectricityatlevellisedcost;also, (e)inthecaseofconsortia,orpartnerships ,orotherformsofjointventures at least one member should meet points (a) through (d) of this criterion.

Onepossibleframeworkforidentifyingtherelevantlevellisedelectricitycostswouldbethroughthe followingexpression[Adapted: AmpereCommission,Belgium ,c.2000]:

Cost in ¢/kWh = Fuel cost in ¢/BTU multiplied by the plant’s heat rate in BTU/kWh + Other variable costs (e.g. operations and maintenance), in ¢/kWh + Capital costs and other fixed costs expressed as an annuity in ¢/kW of capacity, divided by the expected maximum operating hours per year, in ¢/kWh [+ External costs, in ¢/kWh (if significant and relevant) ] . . . Eqn. S3.1

Finally,theprospectivejointventuredevelopmentisina small island developing state [SIDS],witha relevanthistoryofcolonialoppressionandexploitation,andtheintendedplantwouldexploita

16 naturalresourceinacontextthatisatoncehighscience,hightechnology,highriskandhighly capitalintensive.Thus,fromthetenderingstage,biddersshouldshowtheTendersBoardthattheir corporatedecisionmakingandgovernancestructures,mechanismsandinstrumentsarebalanced, robustandreflectiveoftheunderlyingsensitivities.Inparticular,themembersoftheexecutive structureandtheBoardshouldbalanceinterestsreflectingthethreecorecriteriaandshouldinclude individualsrepresentingtherequiredcapacities.

17 PARTB:

First Five-year Energy Policy Implementation Plan

18 MONTSERRAT ENERGY POLICY, 2008 – 2027, III: OUTLIEIDICATIVEPLAOFACTIO,20082012

INTRODUCTION: The Montserrat Sustainable Energy Policy 2008 – 2027 ,asdeclared,andexplained above,isbasedontransformationfromacurrentunsustainableoverdependenceonfossilfuels,toa sustainableenergyeconomyonethatwillincreasinglyrelyonefficientuseofenergy,andon renewablesourcesandtechnologies.

Suchatransformationwillnotsucceedbychanceoraccident.

Therefore,itmustbecarefullyplannedandeffectivelycarriedoutunderaframeworksetbyalong termenergypolicyaccompaniedbyfeasibleandadequatelyresourcedimplementationplans,with associatedprioritystrategicprojectsandwithinstitutionalcapacitytocarryforwardimplementation. Thefollowingindicativeplanofaction2008–2012isintendedtoserveasthefirstofthese, correspondingtothefirstwaveofadvanceinthepolicy.

A] BACKGROUND AND RATIONALE:

Asstatedin Declaration IV above,thefirstwaveofadvance(2008–2012)fortheMontserrat SustainableEnergyPolicy2008–2027,principallytargets:

. . . geothermal, wind, efficiency and core capacity

W1.1Inthe first five-year sustainable energy policy implementation plan ,themainlineofadvance willbetoexploitavailableopportunitiesforrelativelymaturerenewableenergy technologies,especiallygeothermalenergyandwind,whileimprovingefficiencyof energyuseandbuildingbasiccapacity. W1.2 Energyefficiencywillbeenhancedthroughenergyauditsandrelatedchangesin equipmentandenergyusepatterns.Thiswillbebackedupbyaffordability enhancing demand side management [DSM]initiativesbytheelectricityutilityand partnersinefficiency,multipliedbypubliceducationandmoralsuasion.Thefirst suchinitiativewillbeatGovernmentHeadquarters,asastrategicdemonstration project.Asadvanced,costeffectiverenewableorefficienttechnologies(e.g.,low costsolarphotovoltaicsystems,solidstateLEDlighting)emergeinglobalmarkets, theywillbeintroducedhereaswell. W1.3Monlec/theenergydivisionofMULwillcontinuetobethedesignatedsole electricitygridholderandmanagerofthemainspowersupply,intheinterestsofthe peopleofMontserrat.Asappropriate,electricitygenerationshallbeinhouseorona powerpurchasecontractualbasiswithlicensedindependentpowerproviders; especiallyifgeothermalenergyand/orwindaretobebroughtintothegeneration mix.Electricitytariffs,fuelsurcharges,gridconnexionfeesandterms,gridextension andthelikeshallberegulatedandmanagedundertherelevantelectricityandutilities legislation,withassociatedscrutinybythedesignatedregulatoryauthority.Pricing

19 shallasfarasreasonablypossibletargetaffordability.This,withintheconstraintof meetingcostsandreturnstoinvestmenttofinance,provideandmanagethemains electricityserviceandrelatedsupportacrosstime;whilereckoningwiththe implicationsofthesmallscaleofMontserrat.Giventhestrategicimportanceofa stable,adequateelectricitygridandgenerationcapacityfornationaldevelopment,if requiredinvestmentsarenotfeasibleonacommercialbasis,aidagencysupportwill besought.(Suchsupportwillespeciallybesoughtasoptionsareexploredtoshiftas largeafractionasfeasibleofgenerationawayfromevermoreexpensiveand environmentallyunfriendlyfossilfuels,andtowardsrenewableenergy.)Also,asthe mainconcentrationofrelevanttechnicalexpertise,thedivisionwillberequiredto undertakeandsupportaportfolioofdemandsidemanagement[DSM]initiativesand associatedrenewableenergy,energyefficiencyandalternativeenergyprojects.In supportofthis,appropriatestafftrainingandstaffdevelopmentprojectswillalsobe undertakenincollaborationwithsuitableregionalandlocalpartners. W1.4Sincebiofuel,hydrogenandhybridelectricvehicletechnologiesarenotcurrentlyas technologicallymatureand/orcostcompetitiveasthoseprioritisedforthefirstfive yearplan,itisinthe second five year plan thattheemphasisshiftstothesecondmajor areaofenergyuse,transportation.However,inthisperiod,initialexplorationsof fuelandtransportationalternativesshouldbeundertaken,towardsidentifyingbest greenenergyoptions.Forinstance,fuelcellpoweredbusesforpublictransportation, hybridvehicles,alcoholfuels,biodieselandelectricvehiclesshouldallbe investigatedandwherepracticable,exploredonatleastademonstrationbasis. Actioninitiativesunderthiswaveofadvancewillthereforeneedtotargetthefiveidentifiedlinesof action:(1)renewableenergy,(2)energyefficiency,(3)alternativefuels,(4)transportationsector transformationand(5)capacitybuilding–includingespeciallythatoftheelectricityutility.Ofthese, renewableenergy,efficiencyandcapacitybuildingareprioritisedfortheinitiativescarriedout throughthisfirstwave,basedonopportunitiesandneeds.

Furthertoallthis,inhis Nicomachean Ethics ,2,300yearsago,Aristotleaptlypointedoutthat strategy is the art of opportunity. Tomakethebestuseofsuchopportunity,oneneedstohavedeployedin strength totherightplaceattherighttime,sothatonemaycapitaliseon opportunities ,counter threats , surmount challenges and barriers ,andcompensatefororcorrect weaknesses .

Indeed,thisisthecontextforthenowincreasinglypopularPESTSWOTstrategicplanningprocess:

PEST environment scanning acrosspolitical,economic,socioculturalandtechnological (andscientific ix )factors,leadingto

SWOT alignment of strategy acrossstrengths,weaknessesopportunitiesandthreats

Followingupfromthis,implementationrequiresaddressingtheADCCfactors:

ADCC actionplans(andsteps),deliverables,contingencies,controls

Inthislight,wemayobservethat:

20 a) Montserrat'scurrent90+%dependencyonfossilfuelsiseconomicallyandenvironmentally unsustainable. b) Atglobal,regionalandlocallevels,asufficientlystrongconsensusonchangetoamore sustainablestrategyisbuildingupforactiveplanningandimplementationtocommence. c) Tosupportadesirablelifestyleinourcommunityacrossthenextgeneration,sucha transformationwillbenecessary,andtheearlierwebegin,theeasieritwillbetoeffect. d) Thetechnicalandscientificbaseforsuchatransformationhasbeguntocoalesce,and resourcestoundertakethechangearealsobeginningtoflowin. e) Themainopportunitiesforchangetarget(i)renewableenergy[especiallygeothermal,wind, solarandbiofuels]and(ii)energyefficiency. f) Onemajorchallengeintheprocessisthattheelectricityutilityfacesrisingcosts,ahighlevel ofoverheadsduetotheconjunctionofsmallscaleandthetechnicalrequirementsofautility, andconsumersfacinghighbills[especiallyduetofuelsurcharges]thatnowvergeonbeing outrightunaffordable.Thisiscompoundedbyrevenuereducingimplicationsof,e.g.end useradoptionofrenewabletechnologiessuchasPV,andevenofenergyefficiency[save wherethesemighthelppostponeneedtoinvestingridandgenerationexpansion]. g) Montserrat'smainstrengthtoundertakethetransformationiswhatwouldotherwisebea weakness: we are a small island developing state in recovery and redevelopment in the aftermath of a major natural disaster. Thus,weneedtostartoverandhavetheopportunitytodosobasedonthe proverbial“cleanslate.” h) Inthateffortwehavemanycrediblepartners,andtherelativelysmallscaleofMontserrat meansthattheincrementalefforttoundertakea sustainable rebuildingprocesswouldnotbe outrageouslyexpensiverelativetowhatwealreadyhavetodo. i) Indeed,thisenablesustomarketourselves,acrosstime,astheCaribbeanIslandwherethe sustainable,greenenergyfutureisalreadyhappening. j) ThroughthecreationofanEnergyOfficeasafocalpointforactiononsustainableenergy, projectopportunitiesmaybeidentified,plansmaybedevelopedandfundingsourced [especiallythrough“greenfuture”fundingmechanisms],capacitybuiltup,and implementationmonitoredandmanagedinthefaceofcontingenciesandchallenges. k) Then,basedoncapacitybuiltup,lessonslearnedandsuccessesachieved,successivewaves ofadvancemaybeundertaken.

21 B] CRITICAL ACTION POINTS AND KEY SUCCESS FACTORS:

Thefirst strategically critical action point fortheimplementationplan2008–2012isthecreationofan EnergyOffice[EO]:

Fig PB.1: The Energy Office [SOURCE:TKI]

Thecreation,adequatestaffingandresourcingofsuchanofficethenallowsforaddressingother critical action points :

a) Throughthecreationofanenergypolicyandassociatedimplementationplanwithalistof priorityobjectivesandassociated major initiatives [whetherinitiatedbyGOM,oraidagencies, ortheprivatesectororNGO’sorinthewidercommunity],anagreedframeworkforaction throughacoordinatedprogrammewillhavebeencreated,tobechannelledthroughthe EnergyOffice.Thisframeworkalsoformsabasisforbudgeting,sourcingofmajor developmentfunding,grantmakingforsmallerprojects,Carbontradingandsimilar initiativestoraiserequiredfinancialresources.

b) Afurtherenvisionedfunctionofsuchanofficeistoworkasineffectafacilitatingagency withgrantchannellingcapacityfor small but valuable projects thatmayemergeacrosstime.Such afunctionthenallowsforcapacitybuildingthroughtrainingandmentoringoftheleadership insuchsmallscaleprojects,throughtheuseofateamofprojectcoordinators.

c) Throughanetworkofpartnersacrossthesociety,intheregion,intheUKandglobally, variousspecificresources[especiallyinkindprovisionsand/orkeyskillsandeffort committedtoprojectsforshorttermtasks]canalsobemadeavailabletokeyprojects.

d) ThroughtheuseofaTechnicalandScientificAdvisoryPanel,highlevelreviewoftechnical issuescanbeundertaken,andassociatedstrategicleveladvicecanbeobtainedonaregular basis.

e) TheuseofaStakeholderbasedAdvisoryEnergyBoardandofsemiannualforumsonthe stateofsustainableenergyinMontserrat,participativeengagementofthecommunitycanbe institutionalised,andtransparencyencouraged.

22 f) TheprincipalgovernmentalaccountabilityfortheEnergyOfficewouldbethroughthe ministryinwhichisbased.Inthiscontext,theEOwillneedtoalegislativeagenda anddraftassociatedregulations,startingwithareviewandrecommendationsmadeduringits firstyear. g) Similarly,initsfirstyear,theOfficewillneedtodevelopandcarryoutaprojecttoimprove collection,compilationanduseoflocalenergyrelatedstatistics,especiallythoserelevantto emissionsmonitoringandCarbonTrading. h) Relatedtothat,permanent,aroundtheclock,allyearmonitoringofbasicscientificenergy informationwillneedtobeimproved,especiallywindandsolarenergydata,andperhapsas wellwaveandtidedata.AcollaborativeprojectwiththeMeteorologicalOffice,MULand otherpartnerswouldbeausefulwaytoapproachthis. i) Similarly,theEnergyOfficewouldbeausefulbasisforworkingwithongoingprojectsto exploreandidentifyourgeothermalpotential. j) TheofficewouldalsobeafocalpointforGovernmentsupportof the ongoing wind and geothermal energy initiatives ,especiallywhentheymovetothestageofbeingactualcommercial developmentprojects.Inthiscontext,theOfficecouldalsohelpsupporttendering processesasrequestedbytheMinistryofFinance,e.g.throughadvicerequeststothe TechnicalandScientificAdvisoryPanel. k) Onward,theofficecouldhelpmonitorandsupporttechnology,management[and,if relevant,ownership]transferunderthetermsoftherelevantcontractsforGeothermaland Windenergydevelopmentandoperation. l) Initsfirstfiveyears,theOfficewillneedtofacilitateseveralprioritynationalrenewable energyinitiatives,asdescribedintheDeclarationandRationale:especially,geothermal,wind, solar,biofuels.ResearchanddemonstrationlevelprojectsonsolarPV,biofuels,renewable energyairconditioningandsimilarpioneeringinitiativeswillalsorequiresupport,resourcing andcoordination. m) Suchinitiativeswillhavetobebalancedbyappropriateinitiativesandmeasuresdesignedto sustaintheviabilityofthenationalelectricityutilityasavitalstrategicasset.So,in partnershipwithMUL,theOfficeshouldexaminethebestbalanceongenerationplantmix, gridupgradeandmaintenancerequirements,costs,revenues,DSMopportunities, commercial/aidfundedinvestmentsinkeygreenenergyupgradesandreasonable adjustmentstotariffstructuresandrates.Appropriateprojectsshouldbejointlyundertaken undertheseheads. n) Similarly,itwillneedtosupportpriorityenergyefficiencyinitiatives.Perhaps,thesecanbe clusteredthroughacollaborativeeffortofMUL,associated(perhapsnewlycreated)ESCO's, keylocalfinancialinstitutionsandcollaboratingmerchantsandthelocalconstruction industry.Suchaclustermayconvenientlybecoalescedthroughaprojectthatcreatesan “affordableefficiency”greenenergyprogramme.(Awastemanagementeffortforenergy relatedhazardouswastesinvolvinge.g.mercuryandlead,shouldbeintegrated.)

23 o) TheOfficeshouldalsoprovidesupportfortheenvisionedPublicUtilities Commission[PUC].

p) TheOfficeshouldservetomonitorglobaldevelopmentsintheenergyindustry,e.g.solar energyandthepebblebedmodularreactorprogrammesofSouthAfricaandChina.

q) ThroughcollaborationwiththeCommunityCollege,UWI,andotherlocal,regionaland internationalpartners,theOfficeshouldsupporttheemergenceoftrainingandcapacity buildingprogrammesforsustainableenergy.

Key success factors fortheseactionpointsincludeanagreedpolicyandactionplan,adequatestaffing, organisation,financingandgeneralresourcingoftheoffice,aswellasthebuildingupofacritical massofsupportinthecommunity,governmentandkeyaidagencies.

C] UNCERTAINTY AND RISK MANAGEMENT:

Energyisnowahighlydynamicsector,andfossilfuelsareperhapsthemostvolatilekeystrategic commodityinthemodernworld.Similarly,themajorenvisionedrenewableenergyresource, geothermal,hasarelativelyhighriskexploratorycomponent.

Factorssuchastheseindicatethatthereissignificantriskinvolvedinenergyrelatedinitiatives,and insomecasesweareunabletosufficientlyquantifyassociatedprobabilitiestomovebeyond uncertaintyto–howeverroughly– calculable risk.

Thisindicatesthatmuchoftheriskanduncertaintymanagementhastobebasedonenvisioning PESTSWOTanalysisscenariosonthe[1]“businessasusual”[BAU]and[2]“sustainable alternative”[ALT]policytracks,leadingtocontingencyplanningrelativeto[a]“optimistic,”[b] “moderate”/“likely”and[c]“reasonablypessimistic”projectedfutureworlds.

Thus,arobustpolicyframeworkmaybebuiltup:

Fig. PC.1: Policy options and possible futures [SOURCE:TKI,also,cf.BarilocheFoundation.]

24 Thegeneralresultofsuchananalysisisalreadyknown:themostrobustpolicytrackforMontserrat involvesmovingawayfromfossilfuelstocosteffectiverenewables,andtoenergyefficiency.This escapestheincreasinglyhighcostsandinstabilityofthefossilfuelsmarketswhichnowprovideover 90%ofMontserrat'scommercialenergy.Itsignificantlyreducesenvironmentaldamage.Also,by insistingoncosteffectiveness,acrosstimewemovetowardssuchrenewabletechnologiesand efficiencymeasuresasareeconomicallywarranted.

Thesestrategies,acrosstime,wouldputusintoanendstatewherewearemuchlessvulnerableto theoilmarkets,useresourcesthatarenotlikelytorunoutfortheforeseeablefuture,andarecost competitiveforadequateperformance.However,theytendtobemorecapitalintensivethanfossil fuelalternatives,andoftenfaceresourceintermittencychallenges.(Indeed,thatisresponsiblefor muchoftheextracapitalcosttoprovideanadequatelyreliableenergysupplyavailablewhenwe wantit,inthequantitieswedesire,andinformswefindmostuseful.)Also,therewillbeneedto adaptorcreatenewinfrastructureandequipmentthatisbetterfittedtotheemerginggreenenergy framework.

Thisraisesaneedforsupportingthetransitionperiodthroughcapitalinjectionsandthusimplies associatedfinancialrisks.Theserisksobtainforconsumers,fortheelectricityutility,forsmall businesses,andthefinancialinstitutions,allofwhichcurrentlyarechallengedtoprovidethebreadth anddepthofexpertiserequiredtoaddresstherequiredrenewableenergyandenergyefficiency investments.(Therearebalancingriskstoremainingwithbusinessasusual,forwhichthesame actorsareequallychallengedtoassesstherelevantrisks.)

Theserisks,uncertaintiesandchallengesarebestaddressedthroughtraining,generalcapacity buildingandtechnicalcooperationpartnerships.Forthese,theservicesofoneormoreestablished ESCOswithexperienceintheCaribbeanwouldbeveryhelpful,andcouldfindfocusedexpression inthecreationofalocalESCO,oranESCODSMarmofMUL.

D] PROGRAMME GOALS, OBJECTIVES & LINES OF ACTION:

Inlightoftheabovefactors,theMontserratenergypolicyimplementationprogrammefor2008– 2012shouldseektoachievethefollowinggoals:

I. Toexploitavailableopportunitiesformigratingfromfossilfueltechnologiestowards relativelymature renewable energy technologies ,especiallygeothermalenergyandwind,while preservingtheviabilityoftheelectricityutility(asourstrategicallyvitalgridholder); II. Improving efficiency of energy use throughaprogrammeofenergyauditsandrelatedchangesin equipmentandenergyusepatternsthroughanaffordableenergyefficiencyinitiative; III. Buildingbasic capacity forfullgreenenergytransformation. Correspondingtotheseoverarchinggoals,thefollowingmorespecificandmeasurableobjectives [fromwhichassociatedprojects,activitiesandinputswillbedeveloped]maybeidentified:

1. ThecreationofanEnergyOfficetocoordinateimplementationundertheenergypolicy, initiallywithinthreemonthsfromtheadoptionofthepolicy,andonamorepermanent

25 basiswithinafurthersixmonths.Inparallel,theinitialcreationandconsolidationofthe StakeholderbasedAdvisoryEnergyBoardandTechnicalandScientificAdvisoryPanel. 2. Initialforumonenergy,CalabashFestival2008,andsecondforumonenergy,Christmas Festival2008.Thereafteranenergyforumeveryfollowingfestivalseason. 3. Throughtheoffice,supporting the continued aid-funded exploration of geothermal potential in Montserrat ,andthenifaresourceisprovedsupportingonward Tenders Board bid process and development of geothermal energy on a commercial basis throughtheBOATmodel,asis specifiedunderthetermsintheDeclaration. 4. Similarly,throughtheOffice,supportingexplorationof wind potentialanddevelopmentof awindcomponentofMontserrat'selectricitygenerationassetsofupto~900kWrated capacity(orabout300–400kWeffectiveinlightofcapacityfactorconstraints);aswellas associatedgridcapacityimprovementsrequiredtohostsuchalargeproportionof intermittentgenerationplant.Also,utilitylongtermviabilityenhancement. 5. Developmentofanenergyaudit,affordabilityenhancing demand side management [DSM]and associatedenergyservicesinitiative,workingwiththeelectricityutility,thebuilding industryandotherpartnersinefficiency,augmentedbypubliceducationandmoral suasionprojects.(Thisinitiativeshouldthenleadonto efficiency-enhancing building code reform ; whichshouldalsoincorporaterelevant waste management [e.g.fluorescentlamps(mercury) andstoragebatteries(lead)]and environmental management initiatives[cf.ISO14000].) 6. Creationofaninitialmonitoringcapacityforsolar,windandothersimilarformsofenergy throughcollaborationwiththeMeteorologicalOfficeandotherrelevantpartners. 7. Consolidatingthatcapacityandputtingitonapermanentbasis. 8. Enhancingcapacityforcollectinganalysingandreportingonfossilfuelimportandcarbon emissionsstatistics. 9. Initialprogrammereviewandadjustmentstotheenergypolicyandimplementationplan. 10. Creationofaninitialprogrammeofshortcoursesandworkshopsonenergy transformationfortechnical,managerial,business,communityleadersandotherinterested participants,throughcollaborationwiththeCommunityCollege,UWI,andotherpartners. 11. Onward,developmentofformaleducationalprogrammesinenergyrelatedareas. 12. Initialexploratoryresearchanddemonstrationleveltechnicalcapacitybuildingexercises inmoreadvancedrenewableenergyandenergyefficienttechnologiessuchasemerging solarphotovoltaicsystems,biofuels,solidstateLEDlighting,etc. 13. Pilottestinganddemonstrationexercisesforadoptionofthemorepromisingadvanced technologies. 14. Evaluation,policyrolloveranddraftingofthesecondimplementationplan. 15. Transitioningtothesecondsustainableenergyimplementationplan. Insum,andrelativetothefivemajorlinesofactionidentifiedinthepolicyDeclaration,inthisinitial fiveyearwaveofadvancetowardsagreenenergyfuture,Montserratwillemphasiseinitialtransition tomaturerenewables,shiftingtoaffordablehighefficiencytechnologiesandapproaches,capacity buildingandinitialexplorationoffuelsandtransportationsectortransformation.

26 E] STRATEGY, FINANCING AND LOGISTICS

A strategy canbedescribedas a planned (or emergent) pattern of resource deployments and associated activities towards a goal, in a given situation .Thus,arobuststrategywillidentifyenvironmentalfactorsandtrends, especiallyopportunitiesandchallengesorthreats,andalsorelevantinternalfactors:strengthsand weaknesses.ItwillthenalignactionstosituationsbyusingtheSWOTfactors: using our strengths to exploit opportunities, counter threats and compensate for or correct weaknesses .

Inthecaseinview,theprospectiveEnergyOfficeistheprimarymeansofmobilisationand deploymentofresourcestosupportinitiativesandactivitiestowardsthegoalsofthesustainable energyplan,andsoitsbasicresourcingiscriticaltosuccessoftheplan.Thus,onceaGOM budgetaryfundingbaseisestablishedtocoveritsbasicoperations[perhaps~US$100,000peryear], andasasimilarbaseisestablishedtoseedpriorityprojects[setrelativetotheirbudgetaryrequisites andouravailable/allocatedfinancialorinkindresources], matching grant,softloan,carbontrading andotherfundingforstrategicprojectsmaythenbesoughtonacasebycasebasis.Also,through partnershipswithlocal,communitybasedorganisationsandothergroups,additionalfunds,facilities, equipmentandpersonnelcanbesourcedonaprojectbyprojectbasis,andmaybeidentifiedas in- kind community contributions .Someincomegenerationmaybecreatedthroughmodestbutrealisticfees forprojectsupportservices,especiallyforthelargerprojects.Further,ifareasonablesizedinitial smallgrantsfund[perhaps,aboutUS$250,000]canbeplacedinthecareoftheOffice,itcanthen beusedtosetupaprojecttomobiliseawaveofsmallcommunitylevel,capacitybuilding, exploratoryand/ordemonstrationorientedsustainableenergyprojectsacrossMontserrat.

Theresourcedeploymentsandprogressorgapsrelativeto project milestones and deliverable results can thenbemonitoredandmanagedthroughtheenvisionedprojectteamstructure[cf.Fig.PB.1above], usinganoperationalformoftheclassical log frame [logical(or,perhapsmoreaptly,“logistical”) framework]:

Fig. PE.1: Implementation-oriented Project Log Frame

Inthisimplementationorientedversionofthelogframe:

a) The project narrative outlines(inpointsform)theprojectbasedonstatingthesustainability goalspursued[here,energysustainabilityforMontserrat],thenidentifying(i)deliverable

27 resultsoroutputsthatcontributetoachievingthosegoals,(ii)theactivitiesthatgeneratethe outputs,and(iii)theinputresourcesrequiredtoundertaketheactivities.

b) The critical success factors [CSF’s]arethatclusterof“thosefewkeythings”thatmustbedone ormustbeprovidediftherelevantaspectsofaprojectaretosucceed. If progress grinds to a halt, one therefore looks for an unmet CSF. (Fundingandpermitsaretwotypicalexamples.)

c) The indicators aremeansofobservingandverifyingthattheCSF’sareinplace,and/orto whatextent,thus,forkeepingtheprojectontrack.(E.g.“typical”indicatorsmaybe documentsthatverifythatpermitsaregrantedorfundingisavailabletotheproject.)

d) Assumptions areenvironmentalorsituationalconditions(e.g.supportbykeypermission grantingdecisionmakers,andoffundingagencies,etc.)thatneedtobeinplaceiftheCSF’s aretobeachieved.Theymaybelow,moderateorhighrisk,andasaruleiftheyfail,oneor moreCSF’swillnotbemet.So,projectsshouldbedesignedtominimisethedegreeofrisk ontheirassumptions,orifthatisnotpossible,theymusthavecontingencyplans.

e) Contingencies aretheworkaroundplansandassociatedresourcesforwhathappensifan assumptionfails.

Thisformofthelogframeisthereforeusefulforintegratinglogistical,financing,strategicand managementconsiderationsthroughouttheprojectcycle.Itmaybeappliedacrossthatcycle,from (1)identificationofaprojectopportunity,to(2)developingawellstructuredproject,to(3)sourcing fundsandotherresources,to(4)implementing,monitoringandoversight,to(5)completionand formalevaluation.Indeed,alogframe[inaspecifiedformat]isofteninsisteduponbyGrant Agencies,forjustthisreason;andwhereitisnotarequisiteofgrantapplications,oneisoften generatedinhousebytheAgencies;soitistoouradvantagetoprovidealogframeourselves.Last butnotleast,itisapowerfultoolfortraininginthelogicoftheprojectcycleandinmonitoringand coordinatingassociatedactivitiesandresourceflows.

Accordingly,thelogframeisa“bestpractice”toolofchoiceformanagingtheintegrationof strategy,financingandlogistics,andisadoptedasthekeyinstrumentforthisaspectofthe implementationplan.[Cf.AppendixG.1.]

F] PROGRAMME-LEVEL MILESTONES AND DELIVERABLES:

Aglanceattheidentifiedgoalsandobjectivesshowsthatthefirstwaveofadvanceundertheenergy policynaturallyfallsintothreepartlyoverlappingphases:[I]initiationandinitialoperations,0–15 months,[II]consolidationandmajoroperations,12–48months;[III]reviewandpreparationfor onwardwavesofadvance,49–60months.

Thesephaseboundariesmarkmajor programme-level milestones ,andmajorinitiatives(suchas geothermaldevelopment)mayhavetheirownmilestonesthatareworthattendingtoata programmelevel.Similarly,theprogrammeofsemiannualpublicforumsonenergyimposesa patternofregularpubliceventmilestones.Asweapproacheachofthesemilestones,apauseneeds tobetakentoassessprogress,gapsrelativetointendedachievements,andmajorcontingenciesas necessary.Thismaybecapturedinareportingprocessonprogress/gaps,challengesand

28 contingencies,whichthenbecomekeyprogrammelevel deliverable results [ “deliverables,” forshort] thatallowfornational,strategicleveldecisionmakingandguidance.

Therelevanttimelinesandmilestonesformajorinitiativesundertheenergyimplementationplan 20082012maybeshownthrougha Gantt chart :

Ref. Initiatives Actors Timelines Current Status 2008 2009 2010 2011 2012 1 EnergyPolicy& GOM,UNECLAC, This:workinprogress. implementationplan [Q1,08] GEM/TKI

2 EnergyOffice[EO]initiation GOM,DFID (operational) Pendingpolicy [Q2,08] approval

3 WindEnergy&utilityviability GOM,MUL,DFID, (operational) Proposalandinitial enhancement [Q208–Q209] UNECLAC consultations 4 Geothermal,precommercial GOM,DFID,UN Phase1:scopingstudy, exploration [Q108–Q409] inprogress 5 Geothermaldevelopment GOM,Tenders (operational) TendersBoardbid [pendingsuccessofexploration] Board,EO, process,pending [Q109–Q210] Developers successfulexploration 6 AffordableEnergyEfficiency& GOM,EO,MUL, (operational) Opportunity DSMinitiation [Q308–Q409] DFID,ESCOs* identificationin progress 7 InitialsettingupofaPublic GOM,MCW,EO Pendingcompletionof UtilitiesCommission) [Q3–4 Lawandassociated 08] policy 8 Establishongoingwind,solar GOM,EO,Met Earlystepstaken monitoring [Q2–408] Office 9 Improvingstatisticscollection GOM,EO,Stats Opportunity/need andanalysisonenergy [Q3–4 Dept,Customs identified 08] 10 Developingworkshops& GOM,EO,DFID, Opportunity/need coursesonsustainableenergy M'ratCommColl, identified [Q308–Q210] UWI,Caricom 11 Small,capacitybuilding, GOM,EO,Aid Opportunity/need communitybasedenergy Agencies, identified projectsgrantsscheme [Q109– communitybased Q412] partners 12 Advancedenergytechnologies GOM,EO,MUL, Opportunitiestobe exploratoryprojects [Q309–Q2 DFID,partners identified 12] 13 PublicGOMforumson GOM,EO,NETF/ * * * * * * * * * * PendingEOsetup sustainableenergy [July,Dec,in EnergyAdvisory years08–12] Board,Tech&Sci AdvisoryPanel, [TSAP],PUC* 14 Evaluation,revision,policy GOM,EO,NETF/ Pendingpolicy rolloverandnewplan [Q109, EnergyAdvisory approval Q1–412] Board,TSAP,Dev't Unit:SDP*,DFID

*NB: ESCO: EnergyServicesCompany, SDP: SustainableDevelopmentPlan; PUC: PublicUtilitiesCommission Table PF.1: Suggested timeline for major initiatives under the implementation plan 2008 - 2012

29 G] PRIORITY PROJECTS AND INITIATIVES:

Theabovegoals,objectivesandtimelineshighlightaclusterofpriorityprojectsandinitiatives:

1. Geothermal xexplorationanddevelopment

2. EnergyAudits,DemandSideManagementandAffordableEfficiency,startingwithaproject atGovernmentHeadquartersthatusesitasademonstrationproject.(Thisshouldintegrate wastemanagementaspects.)

3. Wind xi development&associatedgridandplantenhancements

4. Solarthermalandsolarphotovoltaicdevelopment

5. Associatedsupporttotherestructuringandreorientationoftheelectricityutilitytosustain itsviabilityasakeystrategicasset,thenationalgridholder.

6. Datagatheringandanalysistoidentifymorepreciselytechnicalandeconomicprospectsfor wind,solarandsimilarformsofrenewableenergy,leadingtoadevelopmentand implementationprocess.

7. Upgradingofnationalcapacitytocollectandanalyseenergyrelatedstatistics.

8. Capacitybuilding,includingtrainingworkshopsandcourses.

9. Asmallgrantsenergyprojectsscheme,connectedtothecapacitybuildinginitiative.

10. Morestructured,researchlevelinvestigation,explorationandcapacitybuildingtohandle otheremergingtechnologiesfocusedontheelectricityandtransportationsectors.This

includesbiofuels,thinfilmsolarcells,dyesensitisedGratzeltypeTiO 2solarcells,vertical axiswindturbinesandotherrelevanttechnologies

H] CREDIBLE, TRANSPARENT, CAPACITY-AUGMENTING PARTNERSHIPS:

Severaloftheabovepriorityprojectswillrequireaugmentingofourexistingnationalcapacity.

Inthecaseofgeothermalandwindenergydevelopment,thismaybebestcarriedthroughby applyingtheTendersBoardprocess,inacontextofaidagencyfundedinitialexplorationand feasibilityinvestigations.Theseinitialinvestigations,themselves,willlogicallyrequireUKand/or internationaltechnicalassistance.(Indeed,asofthiswriting,suchisalreadyintrainforbothcases.)

Oncethescopeoftheresourcehasbeencrediblyidentified,quantifiedandreportedinreportsthat makerecommendationsregardingfeasibility,theTendersBoardprocesswillapply.Thusalso,abid processrelativetotheBOATenergydevelopmentmodelasdiscussedinSchedules2and3tothe PolicyDeclarationabove,willapply.Thisshouldresultincredible,capacityaugmentingpartnerships onenergydevelopment.

30 Oneducationandcapacitydevelopment,andonprojectstofacilitatesmallinitiativesandresearch levelinvestigation,partnershipsshouldbemadewithsuchexistingregional,UKbasedand internationalinstitutionsaswouldbehelpful.Whereitisadvisable,stepstopromotetransparency wouldbeappropriate,thoughthisshouldbetemperedwithanappreciationthatsuchcapacity buildingforexcellentreasonsrelatingtothedifficultiesofassessingthequalityofnovelpartners forsuchservicesfrequentlysimplyusesexistingnetworksofrelationshipswithwellknown, credible,preferredsuppliersofexpertise.

I] PROJECT-TEAMS & RESOURCE ALLOCATION:

TheEnergyOfficeisenvisionedasthehubofaprojectteambasedimplementationstructure,i.e. Onethatappliesmatrixstyleorganisationprinciplestocoupleresourcesandsupportfromvarious partnerstovariousselectedprojectstargettingthegoalsoftheenergypolicy.

Thisallowsmakingadvantageoususeofexistingandprospectivepartnershipsacrossandbeyond thegovernmentandintothecommunityandevenprivatesectors,withroomforregionaland internationalpartnersaswell.

J] OUTLINE-LEVEL PROJECTED PROGRAMME TIMELINES

ThishasbeenpresentedatFabove.

K] OVERALL ORGANISATION, OVERSIGHT AND GOVERNANCE:

ThishasbeenpresentedindiagrammaticforminFigPB.1above.

Principaloversightofandpublicaccountabilityfortheenergypolicyimplementationprocessis vestedinthehostMinistryfortheEnergyOffice.

Intheinterestsofparticipativedemocraticgovernanceandtransparency,theOfficeisalsofirst connectedtoaStakeholderbasedAdvisoryEnergyBoard,andanassociatedTechnicaland ScientificAdvisoryPanel.Resourceprovidingpartnerssitonacoordinatingcommitteeforthe projectteams,forwhichtheHeadoftheEnergyOfficewouldbethedesignatedExecutive Secretary.

Projectteamleadersarethenenfoldedinthegovernance,coordinationandoversightprocessby forminganenergyprojectstaskforcethatincorporatesthecoordinatingcommitteeandtheproject leaders.

SUMMARY & RECOMMENDATIONS: Theoutlineinitialenergypolicyimplementationplan, 2008–2012,above,showshowtheproposedEnergyOfficeandotherassociatedinstrumentsmay crediblybeharnessedtobeginthegreenenergytransformationofMontserrat'seconomy.This transformationwouldshiftoursocietytoamoresustainableenergybase.

31 APPENDIX PA.1: An outline proposed operating budget, Energy Office

Inadditiontoprojectfundingandpossibilitiesformodestincomegenerationthroughfeesfor services,theEnergyOfficewillrequireabasicoperatingbudget.Thisispreliminarilyestimatedas follows:

DRAFT Estimated Annual Operating Budget

Montserrat Energy Office

Ref Description US$ US$ ICOME: I1 GOM/DFID 135,000 TOTAL: 135,000 EXPEDITURES: Staff: S1 Senior Technical Officer and Head 30,000 S2 Technical Officer 20,000 S3 Administrative Officer 20,000 70,000 General Facilities & Equipment: FS1 Startup provisioning of office (1 st year) 20,000 FS2 Startup provisioning, basic technical equipment (1 st yr) 20,000 G1 General Office expenses 12,000 52,000 Technical Operations: T1 Expendable technical supplies 1,500 T2 Technical Literature 1,500 T3 Travel & Conferences 5,000 8,000 Other: C1 Contingencies 5,000 TOTAL: 135,000

32 APPENDIX PA.2:

Legislative and Regulatory Agenda:

WhileingeneraltheEnergyPolicyhasagoodfittoexistinglegislationandregulations,suchthatthe majortaskistoclarify,applyandthenmakeoptimaluseofexistinglawandregulatorypraxis,there areseveralpointswheresomeadjustmentor,possibly,novellawsorregulationsmayproveuseful:

1] Regulatory effect of Declaration of Energy Policy:

Thepolicydeclarationabove,oncepassedbytherelevantCouncil,hasaregulatoryeffect,as it first and foremost clarifies and gives procedures for the application of current and prospective law, regulations and relevant aspects of regional or international agreements to the particular context of energy policy.

2] Establishment of an Energy Office:

Byvirtueofitsremitastheimplementingarmoftheenergypolicy, the Energy Office will be a regulatory agency, applying the vested regulatory powers of its covering Ministry on areas within its mandate.

Insoacting,itisenvisionedthatitwillcloselycoordinateitsworkwiththeEnvironment DepartmentandtheDevelopmentUnit,giventherelevanceofenergytoenvironmentaland sustainabilityofdevelopmentmatters.Itisthereforeproposedthatmemorandaofunderstanding betweentherelevantMinistriesandDepartmentsbejointlydevelopedtoclarifythetermsand conditionsofsuchcoordination.

Inaddition,theOfficewillserveasapointofreferenceandcounselontechnicalregulatorymatters, e.g.oncertificationofthequalityandutilityofenergyefficientequipmentandoftheacceptabilityof thecredentialsofenergyservicecompanies.

3] Establishment of An Advisory Energy Board, and Technical and Scientific Advisory Panel:

TheseadjunctstotheEnergyOfficewillcarryoutfunctionsbearingontransparencyand consultationthatwillfunctionasapartoftheregulatoryprocess.Thesimilarlyestablishedregular publicforumsonthestateofenergywillalsohavearegulatoryeffect,byestablishingregular, public, policyreviewmilestones.

ToconstitutetheBoard,areasonablyshortlistof representative stakeholdergroups[perhapsupto10 –12]shouldbepreparedthroughtheEnergyOfficeinconsultationwiththeexistingNETF.On approvalofthelistofgroupsbytheMinistry,nomineesandtwoalternateswouldbesubmittedby thechosenrepresentativegroups.TheMinistrywouldthenforwardthelisttotheExecutive Council.

OnapprovalofonemembereachperstakeholdergroupbytheExecutiveCouncil[hereholding vetopoweroverprospectivemembersandalternates],theBoardwouldbeempanelled.Itshould meetnotlessfrequentlythanquarterly;tohearreportsbytheEnergyOffice,otherMinistryofficials asrelevant,andtheresponsibleMinisteronthestateofandoutlookforenergyandtomake

33 stakeholderrepresentativerecommendationsrelativetothatstateandoutlook.Attheimmediately followingBoardmeeting,theEnergyOfficewillberequiredtoreportonthestatusoffollowup actionsontheserecommendations.Itshouldalsojointlyplanandpresentthesemiannualpublic forumsonenergywiththeEnergyOffice.

Similarly,atthesefora,theOffice,BoardandMinisterwillmakeareportonthestateofandoutlook forenergy,takingpublicrecommendations.Atthenextpublicforumfollowing,theenergyoffice willberequiredtoreportonthestatusoffollowupactionsonrecommendationsbythegeneral public.

Memberswouldservethreeyearterms,witharotationof1/3ofthemembersineachyear;no memberbeingpermittedtoservetwotermsinsuccession.Subjecttothis,anypersonmayservean unlimitednumberoftimes.(Inthefirstinstance,memberstoserveshort1or2yeartermswouldbe selectedbypersonalchoice,andifthatisinadequate,byarandomprocess.)

TheHeadoftheEnergyOffice, ex officio ,willserveasSecretarytotheBoard,andtheEnergyOffice willbeitsSecretariat.

MembersoftheempanelledBoardandalsotheMinistrywouldjointlynominatelocal,regional,UK andinternationalcandidatestositontheTSAP.Thesenomineesshouldbewellqualifiedand experiencedprofessionalsrepresentingrelevanttechnicalexpertiseinkeyscientificandengineering energyfields,transportation,finance,lawandregulation,sustainabledevelopmentandanyother technicalfielddeemedrelevant.Providingageothermalinitiativeisunderactiveexplorationand/or iscommerciallydeveloped,theChiefScientist,MVO,wouldsitonthispanel, ex officio .(TheTSAP wouldmostlyservethroughcorrespondence,butasappropriatewithinbudgetaryandavailability constraints,semiannualmeetingsandspecialmeetingsshouldbeconvened.)

OnExecutiveCouncilapprovalofthelistofproposedinvitees,TSAPcandidateswouldbe approached,andmembershipdeterminedbasedonagreementtoserve.ThePanelwouldthenbe established,withasimilarthreeyeartermtotheBoard.However,giventhechallengesofobtaining suchhighlyqualifiedtechnicalsupport,therewillbenorestrictiononamembersittingtwicein succession.Overlappingofmembershipswouldbelefttonaturalattrition,forthesamereason.

Again,theHeadoftheEnergyOffice, ex officio ,willserveasSecretaryandthatOfficewillbethe Secretariat.

4] Electricity Generation and the Grid as natural monopoly:

The current law for electricity generation in Montserrat no longer stipulates that Monlec/MUL shall be the sole provider of Electricity, especially in respect of small renewable energy sources or the use of so-called standby generators. However,theestablishedutilityhasthepowertodetermineconditionsunderwhichgridconnection maybeinstituted,i.e.itisimpliedincurrentlawthatitcontrolsthetruenaturalmonopoly,thegrid.

Thisshouldbepreserved,andifnecessaryenshrinedinanupdatedformofthelaw;perhaps stipulatinganappealsandarbitrationprocessincaseofdispute.

34 5] Net metering and similar grid connexion:

Inaddressingtheprospectiveriseoflowcostsolarphotovoltaicsystemse.g.thepossibilitythat NanosolarofCaliforniahasthroughshiftingtoaprintingtechnology[withanemergingprotective patents“wall”ofsome180filingstodate],currentlyloweredthecapitalcostofsolarPVtolessthan US$1,000/kWnominalcapacitytheissueofgridconnexionandnetmeteringcomesup.

Ineffect,ifhouseholds,businessesandfirmsbegintoadoptsuchPVtechnologiesonalargescale and/orsimilartechnologies,theymaywishforthesetobegridconnectedandtohaveatwoway electricitybillingprocess,asfromtimetotimetheymaybenetsourcesratherthanusersof electricity.Existingmeteringandgridconnexiontechnologypermitssuchtwowaybillingand integrationintothegrid.

However,thistechnologyisnormallyappliedinlargescalejurisdictionswithlargegridsandpower stations,sothattheeffectofsuchintermittentsmallgeneratorsisrelativelysmall.InMontserrat, withtheprospectoftheintroductionofrelativelylargewindcapacity,andtherelativelysmallscale ofthenationalgridandpeakload[currentlyabout2MW],itwouldbewisetogoslowlyonthis, usingpilottestcasesasaguidetowhatcouldhappentothegridasawholeifsubstantialnumbers ofsmallintermittentgeneratorsareaddedoversaythenext5–10years.

Thus,itiswisetoretaintheprinciplethat the national utility holds the national grid as a natural monopoly and is authorised to grant or withhold permits on reasonable grounds ,pendingaprocessofgradualtestingand capacitybuildingtomanageagridwithahighdegreeofpenetrationbyintermittentpowersources atvariousscalesofoperation.

6] Geothermal Generation Law and the OECS:

Currently,theOECS,throughtheGeoCaraibesproject,hasdevelopedastandardformgenericlaw onthecontrolofgeothermalelectricalgeneration.

ThatlawispremisedontheprincipleusedinthePolicyDeclarationabove,thatmineral,treasure andwaterrightsperlongstandingCommonwealthlegalprinciplearepubliclyowned[i.e. “Crown”].Itmaybeusefultopassanappropriatelymodifiedformofthislegislationhere,bearingin mindtheusefulnessofhavingcompatiblelegislationacrosstheOECSsubregion.

7] Public ownership of geothermal resources and the Tenders Board bid process:

Thesameprincipleofpublicownershipoftheunderlyinggoods,evenwithoutexplicitregulationor lawonthematter,hasafurthereffect.

For,thereisanexisting,wellgroundedpowertoregulatethetermsunderwhichexploration, commercialisation,development,andoperationofgeothermalpowerplantsarecarriedout.In particular, as the geothermal resource in question, if proved, would be worth well beyond EC$ 100,000, the standard Tenders Board bid process, per relevant law, applies. [Thisprocessalsoincludesreferencetoadvisory committees,whichwouldberelevanttotheuseoftheEnergyOffice'sTechnicalandScientific AdvisoryPanelassuchanadvisorybody.]

35 Thus,also,theSchedules2and3tothePolicyDeclarationaboveinstantiateandfulfillaclassic purposeofregulation:toclarifyandgiveproceduralforcetoexistinglaw.Insodoing,theyfirst establishtheprinciplethatamodifiedBOOT/BOTframework, BOAT, isamaincandidatetobe appliedonabestpracticesbasistogeothermalgenerationinMontserrat:

B – BUILD: Thecontractoperatorundertakesspecificrelevanttechnicalpre engineeringstudies,financing,fulltechnicaldesign,construction andcommissioningoftheplantandrelatedinfrastructure.

O – OPERATE: Theoperatormanagestheplantandharvestsappropriatereturns forthiseffort.( Ownership ofassetsislefttothetermsofthe particularagreemententeredintowithlocaland/orregional and/orinternationalpartnersinlightofwherefinancing advantagesetc.maylie.)

A – AND: Simultaneouswiththedevelopmentandoperationoftheplant,a capacitybuildingandtechnologytransferprocessiscarried throughasapartofMontserrat’songoingrebuildingand redevelopment.

T - TRANSFER: Thecapacitybuildingandtechnologytransferleaduptoa scheduledtransferofmanagement(and,whererelevant, ownership)ofrelevantassetsatthecloseofthefranchiseperiod. Inthefinalfiveyearsofthecontract,managementoftheplant wouldbeprogressivelyhandedovertoasuccessorMontserratian entity,inagreedstages.Attheendofthisperiod,anyrelevant assetsownedbytheinternationalpartneraresoldtotheemerging Montserratianentityatapricenegotiatedbasedontheiraudited residualvalue.

Secondly,theyestablishthatthereshould,perbest/effectiveandtransparentpractices,bea prequalificationforacceptinganybidbyaprospectivegeothermaldevelopmentpartnership,joint ventureorcorporatebody,onthefollowingterms:

...therearethree core criteria for pre-qualification ofbidderstodevelopgeothermalenergyin Montserrat: • Financial capacity toundertakeaventurethat(oncrediblepreliminarytechnical reports)maycostupto~US$12.5–15millionsattheinitial3–5MW level,andwouldrequireperhapsuptothreeormoreyearsofinitial investmentinexplorationanddevelopmentbeforecommissioningofaplant andassociatedincomegeneration. xii

• Proven technical capacity tocrediblyundertakegeothermaldevelopmentinanew andhithertolargelyunexploredgeothermalfield.

• Involvement of a Montserratian entity in any proposed partnership involvingexternal components,inacontextofcapacitybuildingthroughtechnology,

36 management[andifapplicable,ownership]transferunderthemodified BOOTorBOTdevelopmentmodelidentifiedinSchedule2[above]as BOAT.

Therecommendedrequisitetechnicalcapacityisfurtherstipulatedasfollows:

Thesuccessfulbiddershould: (a)havesuccessfullydevelopedatleastoneGeothermalfield; (b)havethusbuiltandoperatedatleasta3–5MWplantforsomethinglikefive years; (c)haveproducedelectricityatreasonablycompetitivecostrelativetoalternativesin theirlocalmarket; (d)havedonesoataproductioncostsreasonablycomparabletotheglobal “benchmark”ofabout4¢[US]perkWhofelectricityatlevellisedcost;also, (e)inthecaseofconsortia,orpartnerships ,orotherformsofjointventures at least one member should meet points (a) through (d) of this criterion.

8] Tax Holidays, Financial Incentives, Royalties and Carbon Trading:

Akeyprovisionofthepolicyasdeclaredabove,isthatthevariousfinancialincentivesforinvestors anddevelopersofpioneeringindustriesapply.[NB:Referencemaybemadetothedraftgeothermal developmentlawpreparedundertheGeoCaraibesproject,foruseasanexemplarandtoillustrate competitivepricingtargets.]Theremayalsobeaccesstosoftloanfundsundertheclean developmentmechanismorsimilarinternationalinstruments,arrangementsandemerging“green economy”markets.

However,italsonotesthat certain resources used for renewable energy generation are based on what are by virtue of the law on minerals, treasure and water rights, publicly owned resources. Thus,permitsforexploration, licencesfordevelopmentandproduction,andthereafterroyaltiesrestonpermissiongrantedto identify,developanduseapublicresourcewithintenttoprovidebenefitstosaidpublic.Royalties shouldthereforebeappliedonthebaseprinciplethatthevalueoftherelevantrenewableresource usedistheeffectiveopportunitybenefitofshiftingfromamoretraditional,comparablefossilfuel sourcetotherenewablesource,onalevellisedunitcostbasis.

Onthatbasis,theanticipatedlevellisedcostsavingsshouldalsobesharedonanequitable, negotiatedbasis,overtheworkinglifeoftherelevantfacility,across: (a) royaltiestothepublicpurse[partlycompensatingforfuelimportrevenuesforegone], (b) reasonableprofitstotheinnovator/investor[bearinginmindthedegreeofrisk], (c) revenuestocoverincrementalaccess,operatingandmaintenancecostsof(and associatedreasonableprofitsfor)theholderofthenationalgridthattransmitsthe resultingelectricalenergy,and (d) reducedcoststotheconsumer.

37 Itisalsoreasonablethattheprojectedcosts,savingsandspreadingofbenefitsbereviewed(andif necessaryadjusted)fromtimetotime,peranagreedschedule.Giventhevolatilityoftheunderlying fuelsandfinancialmarkets,thisscheduleshouldhavecontingencyprovisionsforunanticipated developments.

Whilegeothermalenergyisprincipallyinview,theprinciplesalsoapplytowind,solarthermaland photovoltaicenergyandotherprospectiverenewableenergysourcesthatuseunderlyingpublicly ownedorincommongoods.Thus,itwillbewisetomakeaformaldecisiontoincludesuch renewablesourcesintheambitoflawandregulation,buttoalsorecognisethatduetothe pioneeringandfornowrelativelycostly(and,often,risky)natureofmanyrelevanttechnologiesand investments,aswellasthemajorpublicgoodprovidedbyshiftingtorenewableenergyitmaybe appropriatetostressincentivesratherthanrevenuesthroughroyalties.

Itwillalsobeimportanttoaccuratelyassesstheresultingcarbonemissionssavings,asinvestmentin renewableenergy may beabletoattractsubstantialcarbontradingfundsintheemergingmarkets, withparticularreferencetocapitalinvestmentsinplantthatenhancesgridparityofsuchrenewables.

9] Zoning, planning and reservation of renewable assets:

Itisobservedabove,thatonwinddevelopment,thefourareasidentifiedascrediblepotentialsites forwinddevelopmentwereinlargeparttakenupbyotherinitiativessuchashousingdevelopment oranairport.

TosomeextentthiswasinevitablegiventheexigenciesofthesurvivalthreateningcrisisMontserrat hasfacedinrecentyears.However,thereisneedforplanningandzoningofdevelopmentinways thatprotectpotentiallyvitalnationalassetssuchaswindfarmsites.

Asappropriate,theexistingregulationsandlawshouldbereexaminedandamendedasappropriate toavertunnecessarypreemptionofsuchkeysites.

10] Energy Services Companies [ESCO's]:

Inconnexionwithenergyauditsandenergyefficiencyimprovement,manyESCO'shavearisen globallyandregionally.Tofacilitatethedevelopmentofsuchcapacityhere,itisproposedthat ESCO'swithqualificationsandexperienceacceptabletoothermemberstatesoftheCaricomregion, and/orotherrelevantjurisdictionssuchastheUK,shouldbedeemedcredibletopracticein Montserrat.

Thisshouldfacilitatethecreationof demand side management [DSM]and affordable efficiency initiatives.

11] Bio-fuels and transportation sector transformation:

Asapartoftheglobalprocessofshiftingawayfromfossilfuels,thereisatrendtointroducebio fuels,especiallyethanolandbiodiesel;first,asadditives,theneventuallyasfuelsintheirownright.

Thisimmediatelyraisesissuesonthecompatibilityofsuchfuelswiththeexistingandprospective stockofvehicles.Thus,therewillbeaneedtorecogniseinregulationsonfuelqualitythat(especially forethanolblends,astheproportionofethanolrisesbeyondabout10%[E10]),theremayemerge

38 compatibilityissues.Thismayrequireareservationthatsomeprovisionoflowethanolblends shouldbemadeonascheduledphaseoutbasisacrossthenextdecade.

Transesterifiedbiodieselfuelsarecompatiblewithdieselenginesmanufacturedsincetheearlyto mid1990's,andthechangesforolderenginesareminor.Thus,nosimilarprovisionshouldbe necessaryforsuchvehicles.Gasificationandsynthesisbasedbiodieselfuelsareverysimilarto existinghydrocarbondieselfuelsandshouldsimilarlyrequirenomajoradjustments.However,some monitoringcapacitytoassessandcertifyfactorssuchaslubricityshouldbedevelopedonalocalor regionalbasis.

Twootherprospectivefuels,mixedalcoholfuelssuchasdevelopedbyHoltzappleandnbutanol, shouldalsobeassessedandifnecessaryregulated.Othersimilarprospectivebiofuelsmayalsoexist. TheEnergyOffice,workingincollaborationwithlocalandregionalagencies,wouldbeasuitable meansforthis.

Financialincentivesandothersupportforpioneerbiofuelgrowersandrefinerswillbehelpful,also.

12] Fuel Cells, hydrogen and hydrogen carriers:

Asfuelcellsandtheuseofhydrogengasand/orhydrogencarrierssuchasalcoholsastherequisite fuelbegintoemergeoverthenextdecade,therewillbeneedtorecognise,buildcapacityfor handlingandtoregulatetheemergingcommercialprocesses.

Inparticular,hydrogengas,ineithercompressedorliquefiedforms,isanoveltechnologyanditis onethathassignificantsafetychallenges.(NB:Thesechallengesshouldnotbeexaggerated:thevery familiargasolineisaconsiderableexplosive;e.g.,oneUSgallonofthissubstanceistypically comparedinexplosivepotentialtoeightsticksofdynamite.)

Accordingly,ifandasvehiclesusingsuchfuelsandfuelcellsemerge,therewillneedtobean establishedcapacitytobeabletohandlethemsafelyandeffectively.Theprovisionsabovefor exploratorydevelopmentofpioneeringrenewableenergytechnologiesandfortrainingandcapacity buildingwillberelevanttopreparingMontserratforsuchanonward,longtermtransformationof itstransportationsector.

Inaddition,themodularityofsolarPV,wind,fuelcellsandthelikeleadstoapotential transformationoftheenergysideofbuildingindustryandassociateddevelopmentsinthe agricultureand/orcommercial/industrialdistrictsector.Forinstance,suchdistrictsmaywishto undertakecombinedlocalelectricalgenerationandheatuseorairconditioningtogaintheenergy savingsassociatedwiththehigh[upto70+%]efficiencyofcogeneration.

Similarly,especiallyif/assolarPVsystemsand/orfuelcellsachieveproducerendgridparity,such buildings,installationsordistrictsmaywishtocreateminiaturegridsthatmutuallysupporttheir electricaland/orthermalenergyneedsand/ormaywishtoengagethenationalgridonanet meteringbasis.Intheinterestsofgreenenergytransformation,thisshouldbeaccommodated throughtheuseofthesinglepurchaser,gridasnaturalmonopolymodelasavehicletofacilitate exploratoryandthenstrategicdemonstrationprojectsthatonprovingtheirrobustness,canbe integratedintothegridonamorewidespreadbasis.ESCOs[and/orpossiblyresearchagenciesin theearlyphases]couldproviderelevanttechnicalsupportfortheprocess.

39 APPENDIX PA.3

Carbon Emissions Trading and similar opportunities

Accordingtocurrentlyavailablestatistics,Montserratemitsabout40,000tonnesofCO 2/year,or about8–10tonnesperresident,andabout1.6lbs/EC$ofGDP.Thebasisforthisisthatover 90%ofourcommercialenergyderivesfromfossilfuels,whereburningonegallonofgasolineor dieselfuelemitsabout20lbsofCO 2.

Thishasseveralconsequences:wearevulnerabletothesudden,sharp,upwardfluctuationsand trendsthathavecharacterisedtheglobaloilmarketinrecentyears,whileatthesametimeourlevels ofconsumptionareonaglobalscalerathersmall,thoughpercapitaweareaboutmidranking. Therefore,wemayfindcarbontradingfeasibleonlyonaprojectbyprojectlifetimebasis;suchas theemissionsavertedbydevelopingandoperatingawindfarm.Forsuchacase,usingwindpower asasuitableexemplar,asamplecalculationwasprovidedinSectionAofthePolicytheRationale above:

...ourentireemissionsmaybeabout40,000tonnesofCO 2/annum,evenatahardtoget US$30/tonne,thatwouldnotbealotonanannualbasis.Inshort,weneedtotradeonthe basisofpowerplantlifetimeavoidedemissions,notyeartoyear,tonnebytonnereductions. So,wenotethatacrossa30yearlifetime,300kWof available windcapacityfromathree turbine900kWfarmwouldgenerate30times2,629,800kWh,orabout78.9millionkWh. Montserrat'scurrent~36%efficienthighspeeddieselplantusesabout0.064galofdiesel

fuelperkWhgenerated,andsoemitsabout1.43lbsCO 2/kWh.Thus,asaroughguide, installingthewindturbineswouldreduceouremissionsbyabout51,200tonnes;worth aboutUS$1,536,000atthe“best”currentlyavailableprice,fromtheavailablerange,US$4

30/tonneofavoidedCO 2emissions.

Thatisareasonablytradeablenumber,onethatcouldpotentiallyreducethecapitalcostsof theenvisionedwindplantsignificantly.

Now,Carbonemissionstradingisanemergingmarket,andoneinwhichtherewerehiccupscaused byasituationwheretherewasaninitialglutofemissionspermits[probablyinsignificantpartcaused byperhapsoverlygenerousestimatesofexistingemissionslevelsoffossilfuelpowerplants],leading toasharpdipinpricesoverthepastyearorso.

AsDeanWilliamH.SchlesingeroftheDukeUniversityNicholasSchooloftheEnvironmentand EarthSciencesobservesaswell,inarecenteditorialintheJournal,Science:

In1990,theU.S.EnvironmentalProtectionAgencysetalimitonSO 2emissionsfrom obviouspointsourcesandallowedthosewhoemitlessthantheirquotatotradeexcess allowances.Asaresult,regionalaciddepositionwasdramaticallyreduced.Cantheworlddo

thesameforCO 2?

FundamentaldifferencesinthebiogeochemistryofSO 2andCO 2suggestthatestablishinga comprehensive,marketbasedcapandtradesystemforCO 2willbedifficult.ForSO 2,

40 anthropogenicpointsources(largelycoalfiredpowerplants),whicharerelativelyeasyto control,dominateemissionstotheatmosphere.Naturalsources,suchasvolcanic emanations,arecomparativelysmall,soreductionsoftheanthropogeniccomponentcan

potentiallyhaveagreatimpact,andchemicalreactionsensureashortlifetimeofSO 2inthe atmosphere.CO 2,incontrast,comesfrommanydistributedsources,somesensitiveto climate,otherssensitivetohumandisturbancesuchascuttingforests.Itisthusimpossible tocontrolallofthepotentialsources.[Science24November2006:Vol.314.no.5803,p. 1217.]

Inshort,giventhedifferentdynamicsatwork,itwouldbewisenottoputovermuchrelianceon thesuccessofsulphurdioxidetradinginthe1990'sasanexemplar.

DeanSchlesingerthengoesontonotethatthefossilfuelcombustioncontributiontotheincidence ofcarbondioxideintheatmosphereisoneofthesmallercomponentsoftheflux,“whichis dominatedbyexchangesbetweentheforestsandtheoceans,”aprocesswhichisbelievedtohave beennearlyinequilibriumoverthepastseveralthousandyears,apparentlypostIceAge.Hethen presentstheviewthattheriseofunbalancedemissionsduetoburningfossilfuelsaccountsforthe “vastmajority”oftheriseinatmosphericincidence.Inthatcontext,heconsidersthepotentialfor sequestrationinforestsandinsoils,statingthat“theseprojectedgainsareoftensmallanddispersed overlargeareas.”Healsostatesthattheymayleadtodisplaceddeforestationinotherareastomake upthegapbetweensupplyanddemandforforestryproducts.Hethengoesontoadvocatefor“a taxorfeeonCO 2emissionfromfossilfuelsourcesisthemostefficientsystemtoreduceemissions andspreadtheburdenequitablyacrossallsources:industrialandpersonal,”withoffsetprovisionsin incometaxlawtoretaintaxationneutrality[asopposedto incidence ,apparently].

Advocatesofotherschoolsofthoughtwoulddoubtlesspointoutthatifthingssoclearlyvariableas forestsandtheoceansheldanearequilibriumforsuchaprotractedlength,itprobablyindicatesthat thereareequilibrating[“negativefeedback”]mechanismsatworkthattendtodampenoutrisesor fallsinthelevelsofCO 2.

So,whileweneedtobeawareofandreflectonthemeritsandlimitationsofsuchalternatives, proposalsandoftheassociatedscientific,economicsandpolicydebates,theaboveissuesmeanthat theevolutionofthecarbontradingmarketwillbedifficulttopredictwithanyhighdegreeof confidence.Thatis, the inherent riskiness of carbon trading is relatively high. Thiscircumstancefirstcallsfor consultationofexpert,experienced,disinterested[oratleastbalanced]advicebeforeenteringthat markettofindincomesourcestosupportourtransformationtoagreenenergyeconomy.

Afurtherconsiderationistheissueof“additionality,”i.e. for many of the more attractively priced trading instruments, it is necessary to credibly show that the emissions reductions due to the project in question would not otherwise have occurred but for the investment of the partner seeking offsetting emissions reductions here in Montserrat. Provingsuchanegativeanchoredtoanopportunitynottakenupintherealworldisquitehardto do,andatminimumcallsforaccurate,credibleemissionsstatisticsandcostingsofprojectsand alternativeinvestmentsandexpendituresonthebusinessasusualandmoresustainablepaths.Each oftheseinturncallsforenhancedcapacity,whichasaneducationinvestment,willrequiretechnical andfinancialaidfromourdevelopmentpartners.

41 Indeed,thisisthecontextforthepriorityprojecttoupgradeourfuelimportsandemissions statistics.Itwouldalsobeabasistorequesttechnicalassistancetoentertheemissionstrading marketonseveralofthesustainableenergyprojectsunderconsideration.

PARTC: PolicyRationale,GeneralAppendicesandEndnotes

42 MONTSERRAT ENERGY POLICY, 2008 – 2027: ITEGRALATTACHMETS&APPEDICES

PolicyRationale 44

DECLARATION: SCHEDULE1: GoalsforRenewable/SustainableEnergy,2008–2027 10 SCHEDULE2: BOATGeothermalenergydevelopmentmodel 11 SCHEDULE3: PreQualificationforGeothermalEnergyDevelopment 15

ACTION PLAN: APPENDIXPA.1 Anoutlineproposedoperatingbudget,EnergyOffice 32 APPENDIXPA.2 LegislativeandRegulatoryAgenda 33 APPENDIXPA.3 CarbonEmissionsTradingandsimilaropportunities 40

GENERAL: APPENDIXG.1: LogFrameexample 92 APPENDIXG.2: MontserratEnergyStatistics 93 APPENDIXG.3: ProjectConceptPaper[genericformat] 97 APPENDIXG.4 StakeholderResponseForm 100 APPENDIXG.5 Stakeholderconsultationsandcontributions 102

APPENDIXG.6 ElectricalEnergyConsumptionPatternsandConservationIssues 108

43 MOTSERRATEERGYPOLICY,2008–2027,IV: POLICY RATIONALE

INTRODUCTION: Asaclassicdictionarydefinitionsuggests, xiii The Montserrat 2008 – 2027 Sustainable Energy Policy, asdeclaredinthepolicystatementabove,laysout:

priority strategic initiatives thatjointlyandcumulativelyundertake...a course of action forourcommunityinMontserrat,thatwillhelpournationtoidentifyandfulfilladesirable andachievable vision : (1)ofhowwewillobtainenergyfromtechnicallyandeconomicallyfeasible, environmentallysoundsources;and (2)ofhowwewillthenuseiteffectivelyandefficientlytocontributetoanevermore wholesome,prosperousandearthfriendlylifestyle. ....basedonour commitment tocertainvitalandvaluedunderlyingGodfearingethical principles(suchasTheGoldenRule xiv [i.e. “do to others as you would have them do to you” ])and associatedsustainabledevelopmentgoals(asadoptedfromtimetotime).

Indeclaringthatthenationalenergypolicyisbasedontheconceptof sustainability ,wemeanbythat, thatasourprincipalvaluecommitment, we intend to more adequately and more fairly meet our energy needs in our own generation, but at he same time we commit ourselves to not compromise the ability of future Montserratians to meet their own energy needs.

Wewilltherefore,sofarasisreasonable,increasinglyuserenewablei.e.,inprincipleinexhaustible energysources,effectivelyandefficiently.Thisnotonlygivesusasmuchindependencefromthe volatileoilmarketaswecanget,butalsoithelpsustoavoidunnecessarydepletionofkeyearth resources,andreducesavoidabledamagetotheatmospherefromexcessiveuseoffossilfuels.

Thus,promisingrenewableenergysourcessuchasgeothermalenergy,windenergy,solarenergyand biofuelswillbeamajorfocusforourefforts.Thiswillbeaugmentedbyanemphasisonenergy efficiencythroughtheeverincreasinguseofcosteffectiveenergyefficientequipmenttodeliverthe energybasedservicesthatarevitaltoawholesomelifestylethatmoreadequatelyandmorefairly meetsourneeds.Also,wewillavoidenergywastethroughshiftingtoenergyconservinghabitsand strategiesatpersonal/familylevels,andinourfarms,firmsandinstitutionsacrossourcommunity.

Throughthesemeans,wewillshiftfromourpresent,evermoreplainlyunsustainableenergysource andusepatterns,towardsthosethatareindeedsustainableandcontributetoasustainable, wholesome,prosperous,earthfriendlysociety.

Decisionmakers,technicalofficersandstakeholderstaskedtoenvision,develop,state,clarify,apply, manageandimplementsuchapolicywillthusneedtoconsiderandcriticallyreflectonthe following:

44 A] GENERAL BACKGROUND AND OVERALL RATIONALE

Muchofoureconomicactivityfromtransportation,tomanufacturing,tocommerce,to agriculture,tourismandotherservices,andeveninformationtechnologyandtelecommunications isbasedontheimpressingoforderlymotiontomatter.

Therefore,“ work” in the economic sense is closely tied to “work”/“energy” in the physical sense, so that energy sources, use-patterns and costs all play a critical role in our lives and in our prospects for development. Inturn,that meansthats ustainability of our energy sources, energy-using machines, equipment and systems, as well as the energy based services they deliver, is vital to the economic and social well-being of modern Montserrat. Furthertothis,the authorofaprecursortothispolicydocument xv observedthat,fiftyyearsago(beforeelectrification), Montserrat'senergyserviceswerebyandlargebasedonhumanandanimaleffort,andontraditional renewableenergysources:fuelwood,windmills,etc.Therewasalsoasignificantuseoffossilfuelto operatemotorvehiclesandlighting,etc.

However,throughthespurtofemigrationanddevelopmentthattookplacefromthe1950's60'son, ourenergybaseshiftedtofossilfuels;substitutingmachinesforlowcostlabour.Thisgenerally transformedourlevelofdevelopmentandconsumptionpatterns.Unfortunately,thatdesirable improvementinourlifestyleshasalsomeantthatMontserrat,likemuchoftherestoftheCaribbean, wasnowsome90%dependentonimportedfossilfuelsforenergyservices.Thus,wehavebeen vulnerabletothesharpjumpsintheglobaloilmarketoverthepastthirtyoddyears.Thecore drivingforceforsuchjumps(andtheirimplicationforfoodandotherprices.etc.)maybeseenfrom FigA1:

Fig A1: Some basic dynamics of the oil market and linkages to food (and similar) markets, 2008

45 Thus,themostlikely underlying forceinoilpricevolatilityandresultingcostpushinflationofkey commoditiessuchasfoodliesnotsomuchinoilcartelsorspeculatorsorevenintheunintended consequencesofdiversionsofcropsfromfoodtofuelsbutinimplicationsofsupplyanddemand. For,theglobalsupplyforoilhasbeentightinrecentyears,withmuchoftherelativelysmallslackin thehandsofonesupplier,SaudiArabia;controlledbytheHouseofSaud.Atthesametime,dueto theAsianeconomicmiraclesofourtimethatareliftingbillionsoutofpoverty,demandformany basiccommoditieshasbeenstronglygrowingtofeedindustryandconsumption.

Thismeansthereisstrongdemandpullformanykeycommodities,e.g.bothoilandcorn.

Thatlendssupporttoarecentanalysis xvi byformervicechairmanoftheCIA’sNationalIntelligence Council,HerbertEMeyer[nowworkinginthebiofuelsindustry].AccordingtoMr.Meyer,in Chinain1995,percapitaconsumptionofmeatreportedlystoodat25kg/personyear.By2007, thathadmovedto53kg/personyear.On“reasonable”estimatesofcornbasedfeedsrequiredto producethatmeat,suchwouldpushChina’sdemandforcornforanimalfeedsfromabout150to 350milliontonnes.Thus,wewould expect thatlargeacreagesformerlyidledunderlongstanding farmpricesupportprogrammesintheUSA(amajorexporter)wouldhavecomebackintoactual productioninrecentyears.Consequently,itisunsurprisingtoseethatin1995Americanproduction ofcornstoodat192milliontonnes, xvii butby2007,ithadgrownto349milliontonnes.

Ofthe1995figure,14.7milliontonneswereusedtomakeethanol,with4.9milliontonnesofdried distiller’sgraingoingbackintothegrainmarkets.By2007,withtheriseofbioethanol,62million tonneswereusedtomakealcohol;with21milliontonnesofdrieddistillersgraingoingbackintothe grainmarkets.Thus,therewere308milliontonnesofgrainforconsumptionorexport,representing asignificantrisingtrendinactualgrainavailableforhumanfoodintheUSandoverseas.

Evenso,priceshaverisen,evensharply.Why?

Partofthatisindeedspeculation,someistherisingdemandforconvertingcorntoethanol,andpart isinthegeneralcontextoflongstandingdroughtsinAustralia,etc.But,agoodpartofthatissimply thatgraincropproduction,storageanddistributionusesignificantamountsofenergy[andoil derivedfertilisers,etc].So,coststofarmers,processorsanddistributorshaveshotupasthepriceof oilhasgoneup–ashappenedin,say,the1970’s;i.e.beforebiofuelswereasignificantissue.(Letus alsocompare:thereisnoseriousspeculationinthemarketfor fresh water ;as,inthatmarketthereis notthesortofglobalsupplydemandconstraintthatspeculatorscanexploit.Speculators,cartelsand oligopolies,etc.,arethus secondary causesofcommoditypricevolatility.)

Whateverthemeritsonthedetailsofsuchanalyses,oilpricescrediblyfaceagenerallyrisingtrend. Unlesstherearebreakthroughsinsubstitutesforenergyandfuels,and/orthepricerisestothepoint wherewidespreadeconomicrecessiontriggersasharpdropindemandthenceasuddenrisein inventoriesandasharpfallinpricesimilartothatofthelate1990’s–thiswilllikelybesoforthe foreseeablefuture.

Againstthatgeneralbackdrop,wemayobservethat,asMr.Edgecombenotedintherecentstudy (circa2004):

... 2 million gallons of fuels [are] imported annually, Roughly 30% is used for transportation. 65% is used to generate electricity, 5% is used for cooking. The energy bill amounts to $15 million, or about 20% of all

46 imports. TheproblemforMontserratisthatanincreaseofsay,10%,inthecostofoilatthe pumpdoesnotproducethesameincreaseincosthere.Thecostisinstead,magnifiedby numerousaddedchargesthatoccurbetweenthetimetheoilispumpedandthetimeitis deliveredTocompoundtheproblem,thecostsofthenumerousbyproductsofoilthat Montserratimports,alsoincreasealongwiththecostsofallothermanufacturedgoods.But inthelastyearalonethepriceoilhasincreased,notby10%,butby60%.Theeffectislikely tobea30%overallincreaseinthecostofgoodsandservicesthatMontserratimports.This 20milliondollaradditiontotheimportbillforthesameamountofgoodsandserviceswill havetobepaid...[but]therehasbeennocorrespondingincreaseofproductivityin Montserrat.TourismisMontserrat’smainindustrialhope.Oilpriceincreasestendto suppresstravel,however,andMontserrat,beinganundevelopedanddifficultdestinationwill findithardertocompete...[p.8,emphasisadded.]

Ofcourse,overthepastseveralyears,theincreasetheauthornotesturnedouttobebuiltupfrom threemajorfactors: [1]aseasonalsurgeandfallbackinoilprices(e.g.,inpartdrivenbywinterheatingoil demandintheNorth), [2]atrendtohigherpricesdrivenbythehungerforrawmaterialstofeedthefastgrowing emergingindustrialeconomiesandmiddleclassesofChinaandIndia, [3]shocksduetothealwaysunstableMiddleEastand/orothermanmadeornatural disasterssuchashurricaneshittingUSGulfCoastoilplatformsandrefineries,multipliedby theusualspeculationincommoditymarkets.

Indeed,asthispolicyrationalewasbeingdraftedinearly2008,oilpricehadsurgedfromanearly 2007startinglowofaboutUS$50perbarreltooverUS$100perbarrel.Itthenfellbacktojust underUS$90perbarrel(onfearsoftheonsetofarecessionintheUnitedStates).Next,it reboundedtoUS$135+/barrel–withserioussuggestionsthatitisheadedforUS$200/bblwithin1 –2years.(Thisissimilartothequadruplingofoilpricesacrossthe1970’s,fromaboutUS$3/bblto aboutUS$12/bbl.)Alloftheseareominousastothelongtermtrendinoilprices. Such volatility is plainly unsustainable.

ItisrevealingfurthercontexttonotethatMontserrat'sGDP[roughly:nationaleconomicproduct basedonvalueaddedbyMontserratianfactorsofproduction]for2000–2004wasreportedbythe StatisticsDepartmenttorangeEC$79.3494.57millions,thefiveyearaveragebeingEC$86.92 millions;orUS$32millions.Inshort,asFig.A2shows,accordingtoavailablestatistics, xviii theCIF valuesoffuelimportsoverthepastdecadehavesurgedfromthepostvolcanocrisistroughofabout 2%ofGDPatcurrentprices,toabout15–20percentofGDP.

Allthis,inacontextwhereoverallimportsalsoexceedednationaleconomicproductivity; an unsustainable overall situation.

47 CIF Fuels vs Curr Price GDP

120,000,000

100,000,000

80,000,000

60,000,000 1999

40,000,000 2001

2003 20,000,000

2005 - GDP CIF Fuels

Fig. A2: Energy imports compared to GDP, 1999 – 2007. (SOURCE:M'ratStatisticsDept. xix Cf. AppendixG.2.)

Thebottomlineisstark: Montserrat is vulnerable to sharp upward oil price movements, in a context where our economy is already in a dangerously delicate condition.

Thisunsustainableexposuretomarketshockshasbeencompoundedbyarisingwaveofglobal concernthatfossilfuelsarelinkedtopotentiallydangerousanddestructiveclimatetrends.(Indeed, weshouldalsobearinmindthatrecentreportstellusthatperhaps90%ormoreoftouristsmay factorinenvironmentalconsiderationsinchoosingadestinationachallenge;and,anopportunity.)

Totakeinabroaderviewofthelocal,regionalandglobalenergypictureandoutlook,itis convenienttonowexcerptsomeopeningremarksinDrRaymondWright'srecentdraftforthe OECS Renewable Energy Policy document:

Climatechangewillbethegreatestofmanysignificantchallengesforhumanityoverthe remainderofthiscentury.Anytoolthatcanbeusedtoaddressclimatechangewillbeuseful. Therearethreemajorcontributorstoagreenenergyfuture.Thefirstisnuclearpower;the secondisthehydrogeneconomy[expectedtoemergestartingabout2025],spearheadedby fuelcells;andthirdandimportantlyistheuseofrenewablesasanenergysource....

Renewablescoverawidespectrumofenergysources.Theyincludeamongstothers, wind, solar, hydropower, geothermal, biomass, bio-fuels, and ocean energy. Caribbeancountrieswhichare energydeficientinrespecttofossilfuelsshouldmaximizetheuseofrenewablesastheyplan theirenergyfuture....

48 [F]ossilfuels,particularlyoil,havebecomegraduallymoreexpensive,overthepastfiveyears andasafiniteresource,pricesarelikelytoremainhigh....

AccordingtotheInternationalEnergyAgency(IEA),theworld’sprimaryenergydemand willriseby60%between2002and2030.Twothirdsoftheincreasewillcomefrom developingcountries.Electricitydemandwilldoubleandtherequirementsforallfossilfuels areexpectedtogrowatsustainedandsubstantialrates.Moreimportantly,theIEAsuggests thatfossilfuelswillstillaccountformorethan80%oftheenergymixin2030,justasthey dotoday....Theworldisnotabouttorunoutofoil.However,whiledemand,now82 millionbarrelsaday,continuestogrow,productionofeasilyextractedoilwillpeak eventually,withproductiondecliningafterthat.Therearevaryingpositionsastowhenthe peakoccurs,rangingfrom2016to2030....

Inthecontextofenergydeficientcountries,suchasthoseoftheOECS,renewableenergy sourceswillreduceimportcostaswellasemissions.[pp.1–4,explanatoryparenthesis added.]

Inshort,wefaceadeeplychallengingsituation,andmustmakesoberlyconsidered,proactive,robust responsesthat: [i]actingingood time , [ii]willidentifyanddeployour strengths tocapitaliseonour opportunities , [iii]similarly,willusestrengthstocounter threats andovercome challenges ;and, [iv]willcompensateforand/or–wherepossible–correct weaknesses .

Thus,ifMontserratistothriveintheverychallengingdaysahead,weneedtoconstruct,implement andmanageawellconsideredproactiveenergypolicy.Wrightidentifiesfourkeystagesinsucha strategy,forwhichtheongoingenergypolicydevelopmentprocessissteponeforMontserrat:

1. Creationof a national energy policy emphasizingtheuseofalleconomicallyviable renewableresources. 2. Encouragementbywayof tax regimes oftheuseofrenewableenergyandthe promotionofenergyefficiency. 3. Thesettingofreachable targets ,obligatoryornonobligatory,forthedevelopmentof renewableenergyineachnation'senergymix. 4. Theutilizationof carbon trading asavehicletoencouragethedevelopmentof renewables.

Inturn,thisunderscoresthetaskforoftheongoingpolicymakingprocess: that deliberative, logical, fact-driven, consultative, step-by-step sequence of activities through which we will lay out a national strategy to address long-term global, regional and local energy challenges .Then,throughcarryingoutthestrategy,wewillmake bestuseofouropportunities,inthecontextofouridentifiedstrengthsandweaknessesacrosstime; sothatwecanchartandsetoutonafeasiblepathtoasustainable,desirable green energy future.

49 WhatsuchafuturepotentiallylookslikecanbeputinwordsderivedfromtheclassicBruntland definitionofsustainabledevelopment: A sustainable/green energy strategy will enable us to better and more fairly meet our energy needs, whilst not compromising the ability of future Montserratians to meet their own energy needs.

Todoso,asFigA3shows, we first have to identify opportunities ,asitisopportunitythatmakesfor alternatives,andwithoutrealchoices,wehavenocapabilitytoundertakestrategicinitiatives.

Fig. A3: The role of opportunities and sustainable alternatives in change from business as usual [BAU]

BusinessasusualforenergyinMontserratisfossilfuels,butasseenabove,thatisplainly unsustainable.Thus,wehavetoidentifyopportunitiesthatcanbecomethefoundationformore sustainable,greenenergyalternatives.Thatleadsus,bywayofakeyexample,tofurtherconsiderthe facetsandsubtletiesinvolvedinrenewableenergyopportunitynumberone: geothermal energy . For,evenaswesuffertheongoingdamagingvolcaniceffectsofthepowerofsuperheatedwater, steamandhotrocksdeepbeneaththeearth'scrust,thatautomaticallymeansthat Montserrat has a significant potential to harvest some of that geothermal energy through energy development.

Suchabasisforrenewableelectricalandthermalenergyispotentiallymuchcleaner,significantly cheaperandlesspronetopricejumpsthanfossilfuelbasedelectricityandprocessheatgeneration; atleastunderthecircumstanceswefaceasasmallislanddevelopingstate.Furthermore,somehave speculatedthatourgeothermalpotentialmayevenbeupto500900MW;ahugenumberthatifit provesanywhereneartothetruth,couldopenupmanynewindustries.Amongthesewouldbe electricityexporttoneighbouringislands,especiallyGuadeloupe.

TheGuadeloupe[and/orAntigua]electricityprospecthasbeenmuchdiscussedinthepubliceye andinthelocalmedia,butthereareother,subtler,smallerscalerenewableenergyopportunities.For instance,oneopportunitythatmaystillopenupevenifouractualdiscoveredresourceturnsoutto bemuchlower,closertothe5–10MWscalewouldbetobringbackahighcapacityfibreoptic cabletoMontserrat,andtohostwebserverfarmsdrivenbylowcost,highlyreliablegeothermal energyusedforelectricalsupplyandairconditioning.Similarly,overthenext8–15years,asDr Wrightoutlined,theworldwillquitelikelybeginalongtermtransitiontohydrogenpoweredfuel cellvehicles.Thisrequireslargescaleenergyintensivehydrogengasproduction,forwhichpurpose geothermalenergy,windenergy,andoceanthermalenergyconversion[OTEC]areexcellent

50 potentialsources.Also,biofuelswillbeneededlocally,regionallyandglobally,andwehave sunlight,water[includingseawater],enoughlandforatleastlocalorsubregionalproduction,and aneducatedpopulationinalegallyandpoliticallystablejurisdiction.So,withgeothermalelectricity andpostgeothermalhotwaterorsteam,suchcouldbeproducedlocally.

Onbalance,thegeothermalopportunityisthereforesufficientlyattractivethatitisrenewableenergy opportunitynumberoneforMontserrat.However,asthementionofwindandOTECjustnow underscores,thereareothergreenenergyopportunitiesthatshouldnotbeneglected.Thirdly,we mustalsoreckonsoberlywithadeeplyembeddedchallengeforgeothermalenergy: a high degree of risk attending to the exploration phase of geothermal developments.

Thiswas,forinstance,highlightedbytheNationalRenewableEnergyLaboratory[NREL]ofthe UnitedStatesofAmerica,intheir Geothermal Technologies Program Strategic Plan, August2004,p.8: Only about one exploratory well in five discovers a viable hydrothermal resource. Atcostsusually exceeding$1millionperwell,investorsareoftenreluctanttoassumetheriskofan exploratorydrillingprogram...[Emphasesadded.]

Thisissofortworeasons. First ,theexploratoryphase(inclusiveofinterestchargestothepoint whereasuccessfulgeothermalpowerplantiscommissioned),costsabouttenpercentoftypical overallstartupcosts,oraboutUS$300/kWeofplantcapacity.So,wenotewhatCédricHanceof theUSbasedGeothermalEnergyAssociationthereforeobserved,inareportfortheUS DepartmentofEnergy(DOE)onhowrisksandrequiredratesofreturntoequityinvestmentsin geothermaldevelopmenthavetendedtointeract on average xx : Infinance,highriskmeanshighratesofreturn. Equityinvestedingeothermalprojectsisexpectedtoyieldanannualrateofreturnofabout 17%(Owens,2002)... Since it takes a minimum of 3 to 5 years to put a geothermal power plant on line ,theinitial[direct] explorationcostmightinfactrepresentamuchhighercostfortheproject. (e.g.$150/kWborrowedduring4yearsat17%correspondstoanactualcostof150*(1.17) 4 =[US]$281/kWwhenthepowerplantisfinallyonline[afteraboutfouryears]andbegins topayback).[ Factors Affecting Costs of Geothermal Power Development Aug2005,p.9.Emphasis added.(N.B.:TheUSAhasthelargestgeothermalpowerprogrammeintheworld,andthe underlyingcostfactorsaretypicalofglobalconditions.Indeed,theactualreportedfirstcosts forthetwoBouillanteplantsinGuadeloupeareveryneartothisfigure.)]

Second ,theunderlyingreasonforthishighdegreeofriskisthecomplexityofthegeologyof geothermalresourceregions,coupledtothespecificityofthelocationofsuitablenetworksof porousrocks,cracknetworks,faultsandsurroundingimpermeablerockstrata.Theseare sufficientlyhardtoassess,thatnormallygeothermalresourcesareidentifiedfromexploratorywells, andsuchwellsareusuallyonlydrilledneartowheretherearedirectsurfaceindicatorssuchashot springs,fumarolesandchemicallylacedwaters;justaswehavenearPlymouth.So,oursurface indicators,unfortunately,donotsignificantlytiptheoddsinourfavour: for, it is under these circumstances that the on-average odds just cited from NREL work out .(Thefactthatan“ordinary”well drilledattheoldGrovesAgriculturalstationdidhithotwaterand/orsteam(asdidafewotherwells inthevicinity)mayhelpatad,butalasperitspurposeasanordinarywellnocoring xxi andwell

51 temperaturelogdatawerekept.)WemustalsobearinmindthecaseofStLucia,wherehotwaters wereindeeddiscovered,buttheseweretooacidfordevelopment.

Inthiscontext,preliminarygeochemicalandgeophysicalinvestigationsandassociatedmodelling exercisesimpressive3Dcomputer“pictures”notwithstandingserveasguidestowheretodrill, ratherthanhighlyreliable“maps”ofwhatliesunderground.Itisdrillingthatrevealsreality: at up to about US$ 1 million or even more per roll of the die. For,afairlylargeclusterofspecificandhardtodiscern factorshavetocometogetherallatoneplaceandtimetohelpleadenoughgroundwaterintohot zones,thentotrapitand,finally,providethecluesandnetworksofcracksthatallowdiscoveryand commerciallevelharvestingoftheresultinggeothermallyheatedwaterandsteam.

However,onceasuccessfulholehasbeendrilled,itusuallyrevealssufficientabouttherelevantzone thatthechancethatsucceedingwellswillalsobesuccessfuldramaticallyrises,toabout60–80%. Or,astheproverbialwiseoldfishermansays: the problem is to catch the first fish ;for,whereonefishis, thereusuallyareothers.Unfortunately,thisparticularfishingtripisfairlyexpensiveandrisky.

Onthebrighterside,asalsonotedjustabove,thegeothermaldeal may wellhaveanadditional sweetener.

For, if biofuelsbecomemajorfuelsoverthenextdecadeorsointheaftermathoftheoilprice jumpsandclimateconcernsmentionedabove,freshand/orpostgeneratorgeothermalsteamand hotwatermayprovideatleastsomeoftherequiredthermalenergytodrivethechemicalprocesses tomaketheserenewablefuelsfrombiomass.Thiscouldpotentiallymovealternativefuelssuchas ethanol,biobutanol,Holtzapple'slignocellulosederivedmixedalcoholfuels, xxii orbiodiesel xxiii to thefrontburner.

Also,sincehydrogen(oftensuggestedasthelongrunlikelysuccessortopetroleum)isofverylow densityandrequiresspecialhandling,itturnsoutthat carbon-chain based organic molecules are often a more concentrated, easier to handle store of hydrogen than hydrogen gas itself .Somuchisthisthecase,thata promisingapproachforfuelcellsistousealcoholstostorethehydrogenthenreleaseitinthecell, tomakeelectricity.However,biofuelsemitcarbondioxideifburnedorotherwiseoxidised.(Bio fuelsmakeupforthis,byvirtueofthefactthatmuchofthecarboninplantsisdirectlyderived fromthecarbondioxideintheatmosphere,i.e.suchfuelsareineffect(nearly)carbonneutral.)

Now,too,asjustpointedout : bio-fuels normally require electrical and thermal energy for processing from biomass, e.g.transesterificationtomaketraditionalbiodieseloutofvegetableoils,ordistillationto concentratealcoholfuelsobtainedthroughfermentationintousableform.So,throughusing geothermalheatenergyand/orcogeneration,Montserrat could becomeasignificantbiofuelsrefining centrefortheCaribbean.Indeed,iftechnicalandeconomicchallengesareovercome,direct geothermalheatand/orthewasteheatfromgeothermalelectricityproductionmayhaveparticular utilityinproducingbiofuelsfromalgaespeciesthatmayhave30–50+%oftheirbodymassasoil suitableforuseasorconversiontosuchrenewablefuels.

ThekeyrelevanceofthisisthatbasedonthemajorstudiescarriedoutbyUSgovernment researchlabs such algae may supply up to 5,000 – 20,000 gallons of oil per acre per year. [Aswell,the associatedremainingbiomassissuitableforuseasanimalfeed,aminoacidsourcesandconversion tootherbiofuelssuchasethanolorbutanolormixedalcohols,someofwhichwouldberequired forfurthertransformationifFAMEbasedbiodiesel(i.e. Fatty Acid Methyl Esters )isadesired

52 product. xxiv ]Thatis,inprinciple,ifandwhenthechallengesareovercome,asingle200500acre “estate” xxv couldprovidebiofuelfeedstockscomparabletotheapproximatelytwomilliongallons offuelsthatwerereportedlyimportedintoMontserratperannum,circa2002–2004.Inaddition, therequiredlandscouldbesuchaswerenototherwisecroplands,andthewatercouldbebrackish orsalty(orevensewage–asourceofrequiredmicronutrients xxvi ),dependingontherelevantspecies andstrainsofoilrichalgae.Suchnumbersarepotentiallyquiteattractiveandcouldtransformour secondlargestmajorlineitemoffossilfuelconsumption, transportation .xxvii

Likewise,Montserrat'stourismindustryisinpartbasedonthefactthatweareapartofthe Caribbean“sunbelt”thatreceivesanaverageof4–6kWhpersq.mperdayofenergyfromthe sun.So,thereisalsoasignificant technical potentialforsolarenergy,bothasheatandtogenerate electricity.

But, technical potential asjustidentifiedand economic/financial feasibility donotnecessarilygotogether.

Thus,wenowconsidersolarphotovoltaicsystemsasasecondillustrativeandcautionary instanceofacommonlyencounteredchallengetootherwisehighlydesirablerenewableenergy technologies:

SOLAR PV “CASE”: Ifan“average”Montserratian“wall”houseuses,say,300 kWh/monthofelectricity,orabout10kWh/day,thatmeansthat2sq.mofsurfacecould apparentlysupplytheelectricalenergyneedsofthehousehold.Unfortunately,dueto variousfactors,thepracticalefficiencyofsuchphotovoltaicsystemsislikelytobesome 10%;so,wewouldprobablyneed20sq.mofcollectingarea(orabout33ftby7ft),with additionalallowanceforthesupportframeworkfortheactivecollectingarea.Consequently, theresultinghighinitialcost(easilyUS$5–10perWattofelectricaloutputcapacity)of buyingandtheonwardcostandeffortofmaintainingsuchasystem,leadstoanequivalent costperkWh(typicallyUS25¢$1.25/kWh)whichisoftenquitehigherthanthatfor fossilfuelderivedgridelectricity;exceptinsituationswhereintegratedresourceplanning approachesand/orgridextensionrequirementsshiftthebalance.Thus, until promising follow- on generations of solar cells -- such as Nanosolar’s nanoparticle ink-based, printed thin-film Copper Indium

Gallium Diselenide [CIGS] cells, or dye-sensitised TiO 2 Gratzel cells and/or amorphous silicon or polymer (“plastic”) cells -- bring capital costs sharply down, photovoltaic systems will remain a niche item.

Happily,bycontrast,solarwaterheatersareeconomicallycompetitiverightnow,providing,theycan bemade affordable and accessible tothe average consumer.Topromotethis,anenergyauditsandcredits schemewithpaymentthroughtheenergybillsimilartoDemandSideManagement[DSM] initiativesinCanadaandelsewheremaybeausefulinnovation.

Now,also,Montserratisinthetradewindbelt.Wellchosensitescanenjoy1215mphaverage windspeedsformuchoftheyear.Thisismoderatelyidealforwindturbinesthatcancredibly produceatleastupto1/5 th ofournationalelectricityrequisites. xxviii Indeed,theremainsofoldsugar estatewindmillsdotourlandscape,andinthelate1980'sandearly1990's,Monlecactuallyinstalled suchwindturbinesonStGeorge'sHill.TheselastsuffereddamageduringhurricaneHugo,in1989; andwereabandoned in situ ,intheaftermathofthevolcanoeruptionsfrom1995on.

AnencouragingrecentexemplarisseenfromrecenteventsintheFalklandIslands(circa2007):

53 1. TheseSouthAtlanticislandshaveareported15knotaveragewindspeedsimilar to(butsomewhatfasterthan)ourshereinMontserrat.

2. LastAugust,throughEnercon,aGermansupplier,three300kWwindturbineswere setupforStanley,thecapital.

3. AccordingtoaFINN(FalklandIslandsNewsNetwork)reportofatownhall meeting,eachofthesewasgivingabout100kW,andautomaticswitchingwas expectedtosignificantlyupgradethat33% availability factor (whichis“typical”/maybe slightlylow).

4. FINN:“...itisestimatedthatitwilltakeeightyearsofoperationtopayforthe equipment.Conservatively,that’s20%returnbutEnerconestimatesthereturn shouldbemorelike35%.”

A similar configuration of three 300 kW turbines could be installed and commissioned here within several months to a year ,bycontrastwiththetypicalestimatesofaboutthreeyearsormoreforgeothermaldevelopment. Thus,itmaywellmakesensetodothisintheshortterm,evenwhilegeothermalexplorationand developmentareunderway.So,byabouttheturnof2009,wecouldhaveawindfarmintegrated intoournationalpowergrid.Thiswouldimmediatelyputusinapositionwhere,evenwithan availabilityfactorofjust33%,1015%ormoreofourelectricitygenerationcouldbefromcredibly costeffectiverenewablesbyearly2009.Itispossibleaswell,thatappropriatearrangementscould bemadeforCarbonTradingcreditstosubsidisetheinstallation.

However,sinceourentireemissionsmaybeabout40,000tonnesofCO 2/year;evenatahardtoget US$30/tonne,thatwouldnotbealot.Inshort,weneedtotradeonthebasisofpowerplant lifetimeavoidedemissions,notyeartoyear,tonnebytonnereductions.So,wenotethatacrossa30 yearlifetime,300kWof available windcapacityfromathreeturbine900kWfarmwouldgenerate30 times2,629,800kWh,orabout78.9millionkWh.Montserrat'scurrent~36%efficienthighspeed dieselplantusesabout0.064galofdieselfuelperkWhgenerated,andsoemitsabout1.43lbs

CO 2/kWh.Thus,asaroughguide,installingthewindturbineswouldreduceouremissionsby about51,200tonnes;worthaboutUS$1,536,000atthe“best”currentlyavailableprice,fromthe availablerange,US$430/tonneofavoidedCO 2emissions.Athalfthatprice,whichisprobably farmoreachievable,wearelookingataboutUS$750,000ofCarbontradingsubsidy.

Thatisareasonablytradeablenumber,onethatcouldpotentiallyreducethecapitalcostsofthe envisionedwindplant[perhaps–usingWigton,Jamaica,asacostmodelUS$1,300/kWorso] significantly.(Asanaddedbenefit,theintroductionofnewcapacitywouldrelievethehighduty cyclerequiredforthedieselplant,andwouldallowincreasedmaintenance,reducingitsoperating costsoverall,whileincreasingitsreliability.)

Wemaynotice,too,thattheocean'ssurfacewaters–which,whensunheatedtoover80degrees Fahrenheit,becomethe“fuel”forhurricaneshaveanotherside.For,whensuchwarmsurface watersarecoupledtothequitecold,cleanandnutrientrichwaterat2–3,000feetdepthusingthe OTECtechnologiesmentionedabove,electricitycanbegenerated[andfreshwatertoo],withside opportunitiestoundertakehighvaluetemperatezoneaquaculturebasedonthepumpedupcold waters:Abalone,Lobsters,Salmonfishfarming,Kelpetc.So,withdeepoceanwatersfairly

54 closetoshore,MontserrathasOTECpotential,butthisisalongtermprospect,mostlikelysuited toprovidingelectricityforhydrogenproductionastheglobalhydrogeneconomyemerges.

Aswasnotedabove,certaincropssuchashighenergyvarietiesofsugarcane,fastgrowingfuel woods,hemp,wastes,sewage,algaeandthelikecanbeusedtomakebiofuelsandevenHydrogen– the“fuel”forfuelcells.Suchalternative,renewablefuelsandtheirbiomasscropprecursorsare increasinglyviewedasamajorwaveofthefuturefortransportationandsimilarsystemsthatgive greeneralternativestofossilfuels.Sincetheyarelocalsources,theyalsoimproveenergyand economicsecurity.Indeed,theymayalsohelptoslowtherateofcostincreaseoffossilfuels, throughprovidinganincreasinglyacceptable,availableandevenaffordablesubstitute. xxix Ofthe variedpossibilities, ethanol, bio-butanol, bio-diesel andpossiblyHoltzapple's mixed alcohol fuelsarethe mostlikelytobesignificant.

Togeneratethesefuels,fastgrowing,highyieldingsourcesofsugars,starchesandherbaceousor woodybiomassthatgrowonmarginallandsandusematerialsthatwouldotherwisebewastedor viewedasweedsareatapremium;especially,iftheyarealsorelativelyeasytoprocessfrombiomass tofuel,withoutrequiringtoomuchenergyintheprocess.

Forthemajorcurrentbiofuelcrops,Montserrat(alongwithotherregionalterritories)doesindeed possessabundantsunshine,andhasgoodrainfall.Butlocally,croplandspaceisatapremium,as, wehavebeencompressedintoaboutfortypercentofourislandbythevolcanicdisasteroverthe pastdecadeorso.However,certainvarietiesofalgaemayyielduptoapotential5,000–20,000 gallonsofvegetableoilperacreperyear(andcouldgiveadditionalfeedstocksorusefulproducts fromtheotherhalfofthebiomass).Thatoilisroughlycomparablewiththeenergypotentialof petroleumbaseddieselfuel.Indeed,oneargumentontheoriginofoilisthatitwasmadebyin effectburialandresultingapplicationofheatandpressuretosuchalgae. xxx Thus,severalhundred acresofalgaecroplandwould(providingthattechnicalandeconomichurdlesaresurmountedover thenextdecadeorso)beabletoproducesufficientvegetableoiltoinprinciplereplaceourcurrent fossilfuelimports.

Bethatasitmay,ourrenewablefuelsfutureprobablybyandlargerestsinaccesstofuelsgrownin otherregionalterritoriesthathavemoreavailablelandspace,andwithwhichwehavesuitable economicarrangements;suchasthroughthe Caribbean Single Market and Economy [CSME].Thus,we immediatelyseethat the success of our current and future regional partnerships policy is now a key factor in building a successful sustainable energy policy.

Forinstance,sinceharvestedbiomassmayrequiresignificantprocessingtotransformitintosuitable fuels,ourprospectiveaccesstogeothermalheat may makeusasuitablerefiningcentre.Thisallows ustomatchourlowcostgeothermalheatandelectricitytoourimmediateneighbours'relatively largerspacetogrowsomeoftherequiredbiomass.(Nevis,ofcourse,hasasimilarpotential;as doesGuadeloupe.)

Bywayoffurtherillustration,letusconsideraprojectthroughwhichAntiguaweretogrowaseveral thousandacresofalgae(inbrineonotherwisemarginalor“useless”lands),andpressorcentrifugeit tomakeoilandcompresseddryalgaecakes.Then,wecouldtransformthebiomassintobiodiesel, usingourgeothermalenergyandelectricity;perhapsalsoexportingvolcanicashasasourcefor micronutrientsforthealgaefarms.Suchasynergisticagroindustrialarrangement(iffeasible)would beahighlydesirableoutcomethatwouldincreaseemploymentbothhereandnextdoor.Itwould

55 probablyalsosignificantlyreducefuelcostsbothhereandthere[relativetothosehingedtooilat US$200–300/bbl],furtherfertilisingeconomicgrowth.But–aswasnotedaboveitwouldbe criticallydependentonthedegreeofsuccessofcurrentlyongoing,fairlyrisky,geothermal explorationsandsolutiontothetechnicalandeconomicchallengesofdevelopingviableoilalgae farming.

Furtherafield,largerregionalpartnerssuchasGuyana,Suriname,Haiti,BelizeandJamaica,couldbe encouragedtodevelopbiofuelindustriesbasedonnotonlyenergycaneandethanol,butother highyieldbiomasscropsthatcouldthenbeusedtogeneratesyntheticfuelsandrelatedproductsin bulkthroughfermentationorgasificationandsynthesis.Thus,aregionalenergyandchemicals marketcoulddevelopwithintheCSMEzone.

Similarly,throughenhancedefficiencyofenergyuse,wecanbegintomorecloselymanageenergy demand,reducingtherequiredlevelsofinvestmentinenergyproductionandsocuttingenergycosts totheconsumer.Thisbringstobeartheopportunitytoform Energy Services Companies [ESCOs]that canprovideenergyuseimprovementservicestotheregion.

Forinstance,throughenergyauditsandshiftstoenergyefficientappliances,equipmentandlighting, theremaybesignificantcostssavingcutsinenergyconsumption.ESCO'swouldprovidetechnical helpinidentifyingthesavingsopportunities,thenhelpfinance,implementandmonitorthe indicatedchanges.Splittingtheresultingcostsavingswiththecustomerpaysfortheprojects,repays requiredloansandinterest,aswellasprovidingareasonableprofitasareturnto(andincentivefor) thoseundertakingtheriskofjobcreatingenterprise.

Anexcellentrelatedpossibilityis cogeneration [orcombinedheat/refrigeration/airconditioningand electricalpower].E.g.,byusingtheheatthatcurrentlygoesupthesmokestackofthegenerating plants,wecouldharvestheatforindustrialprocesses,orcouldmakeiceandchilledwaterforusein airconditioning.Thislastisvitalformoderncomputerofficetechnologies.Suchanapproachcan easilyyieldanoverallenergyefficiencyof70%orevenmore;as,heatcanbeusedasheatwithgreat efficiencyandrefrigerationsystemsroutinelyreturnatleastasmuchusefuloutputastheyrequireas energyinputs.

Clearly,therearemajorpotentialopportunitiestobeharvestedbyshiftingtoamoresustainable energypolicyforMontserrat,andalsosignificantchallengestobeovercome.Theenergypolicyto bedevelopedisthereforeintendedtoprovideacredibleandfeasiblestrategicapproachtomakethe mostoftheseopportunities,whilstalsorobustlyaddressingourchallenges.Thefirststeptoseeing howthatmaybeistoaddressthelinksamong:

B] ENERGY, ECONOMIES AND SUSTAINABLE DEVELOPMENT

First,letusfurtherclarifytheconceptandeconomicallyrelevantutilityofenergy.For,energyisa thingwhichisimportant,butnotasanendinitself;instead,itisanecessarymeanstomany desirableorevenvitalends.Namely: anything that can be made to exert a force that imparts orderly motion to matter that was originally at rest (by scientific definition) has within it -- or is itself -- a form of energy .

Thisimmediatelyimpliesthatoureconomy,societyandlifestylemayprofitablybeanalysedfroman energyperspective.So, we may view work-/energy-flows as value-adding flows,intermsofenergy sources ,

56 energyusing equipment andassociatedtechnologies,andtheresultingdesired(andpaidfor) energybased services thatweneedorenjoy.Diagrammatically:

Fig. B1: Energy Sources, Equipment and Services. [SOURCE:TKI,2008.]

Inshort,wecanusefullyanalysetheeconomyasawholenotonlyintermsof value-adding cash flows [onebasisforestimating Gross Domestic Product ,GDP],butalsofromthephysicalviewofassociated intelligently directed, order-creating energy flows.Thisviewalsoimmediatelyimpliesthatweusuallydo notdesireenergyasanendinitself,butasaphysicalandtechnical means tothe ends wedesire.

So, if a novel technology provides a financially and/or energetically cheaper or technically superior path to those ends, it may be more desirable than the current way of doing things. Forinstance,thatishowcars,vansandtrucks replacedhorses,mules,donkeys,oxen,carriages,waggonsandcartsasprimarymeansof transportation.Similarly,therelativeunreliabilityofwindledtotheriseofsteampoweredshipping, oncethetechnologywasavailable.Also,electricallightingissofarsuperiortooilorgaspowered lamps,thatthisisthebasicreasonthatelectrificationoftownsbegan.

Indeed–contrarytopopularopinionEdisondidnotreallyinvent the lightbulb.(Othershad alreadymademoreorlessphysicallyfunctionalincandescentlampsbeforehedid.)Instead,he created an innovative, practical direct current [DC] electrical lighting system ,fromgeneratorstodistribution networkstodeliveryinhomesandoffices,andofcourse,reasonablylonglastinglightbulbsthat couldworkwiththesystem.Then,Steinmetzandothersproducedanimprovement:alternating current[AC],whichcanbeeasilysteppedupordowninvoltage,whichalsomakesitsuitablefor longhaultransmission.Soon,compactandpowerfulACmotors(Teslawasespeciallyimportantfor this)wereintroduced,andhelpedeffectaminiatureindustrialrevolution,replacingmuscle,steam andbeltpowerwithsilent,reliable,costeffectiveelectricity.

Bringingthisrightintoourhomes,duringtheSecondWorldWar[WWII],workersinaircraft assemblyplantssometimesfounditusefulto"borrow"thepowerdrillsinuseintheplantstomake aircraftinordertodoweekendprojectsathome,andsoonthehomepowertoolanddoityourself [DIY]industrieswereborn.

Butallofthisisenergy equipment andassociated services .

Theelectricalenergywascomingfromsomewheresources: usually, coal-fired boilers that generated steam used to run engines that turned the electricity generators. Or,throughmassivehydoelectricprojects(that

57 alsohelpedreducetheperennialproblemofflooding),dammedupwaterwouldbeallowedtofall throughmodernversionsoftheoldfashionedMiller'swaterwheel;again,spinningthegenerators. Then,increasinglyfromthe1950'son, oil (then natural gas )wasusedtoreplacecoal, diesel engines often tooktheplaceofboilersandsteamturbines,andfissionpowered nuclear power plants were introduced.(Theselasttypicallyworkbycreatingheatthroughthesplittingofthenucleiiofatoms ofheavyelementssuchasUraniumorPlutonium,thenusingtheheattomakesteam,whichspins thegenerators.)

Consequently,whenelectrificationcametoMontserratinthe1960's,itwasintheformofoilfired dieselpoweredenginesspinningthegenerators,andittransformedthelocaleconomy.Thishas beenapartofaglobaltrendinenergyuse,hereviewedasattheturnofthemillennium:

Fig. B2: The International Energy Agency’s 1998 projections of global fuel use [SOURCE:IEA.]

Inshort,nosoonerhadtheKyotoProtocolcomeoutin1997thanitwasprojectedtobeessentially deadinthewater,bythewellrespected,OECDlinked International Energy Agency.

Whyisthatso?

PartoftheanswercanbeseenfromtheClintonAdministrationeraUSSenate'sByrd(D)Hagel(R) 950bipartisan,unanimouslypassedresolutionofJuly25,1997refusingtoratifytheKyotoprotocol ifitfailedtomeetcerrtaincriteria;and,inanticipationofitsprobable(andintheevent,actual) format:

Whereasthe[US]DepartmentofStatehasdeclaredthatitiscriticalforthePartiestothe ConventiontoincludeDevelopingCountryPartiesinthenextstepsforglobalactionand.. ..Whereas the exemption for Developing Country Parties is inconsistent with the need for global action on climate change and is environmentally flawed ;

58 WhereastheSenatestronglybelievesthattheproposalsundernegotiation,becauseofthe disparityoftreatmentbetweenAnnexIPartiesandDevelopingCountriesandthelevelof requiredemissionreductions, could result in serious harm to the United States economy, including significant job loss, trade disadvantages, increased energy and consumer costs, or any combination thereof . . . .

Resolved,ThatitisthesenseoftheSenatethat

(1)theUnitedStatesshouldnotbeasignatorytoanyprotocolto,orotheragreement regarding,theUnitedNationsFrameworkConventiononClimateChangeof1992,at negotiationsinKyotoinDecember1997,orthereafter,whichwould

(A)mandatenewcommitmentstolimitorreducegreenhousegasemissionsfortheAnnexI Parties, unless theprotocolorotheragreementalsomandatesnewspecificscheduled commitmentstolimitorreducegreenhousegasemissionsforDevelopingCountryParties withinthesamecomplianceperiod,or

(B)wouldresultinseriousharmtotheeconomyoftheUnitedStates...

Inshort, precisely because of the strong, direct links between physical energy use and level of economic activity for a given level of technology , neither leading developed nor leading developing nations were willing to seriously curtail economic activity in the interests of slowing down the projected climate change trends, whicharegenerallythoughttobelargely xxxi duetotheincreasedinjectionofCarbonDioxide[CO 2 ]intotheatmosphere.

So,itisunsurprisingtoseethat,infact,thesubsequentnearlyunanimousglobalsignoffonthe protocolhasnotbeenaccompaniedbyanactualreductionintheemissionsofCO 2,muchlessa returntopre1990levels.Indeed,currentdiscussionisthatChina(the“developingcountry”mostin viewintheUSSenateResolution)maynowwellbeovertakingtheUSAastheleadingemitterof

CO 2.Furthertothis,muchofthecurrentsharpupwardtrendinoilpricesisdrivenbythedemand forsuchfuelstodrivethepaidlygrowingeconomiesofChinaandIndia(theother“developing country”principallyinviewintheResolution).[NB:Botharenuclear,spacefaringpowers.]

Forthemuchdesiredreductioninfossilfuelusetohappen,adrastic,costeffectiveshiftinenergy sourcesandtechnologieswouldhavetohappen,globally.Inourcase,sinceabout2003,from currentstatistics,theMontserratianeconomyemitsabout1.6lbsofCO2/EC$ofGDP.Therootof thatisthefactthatforeveryUSgallonofgasolineordieselfuelweburn,weemitsome20lbsof

CO 2.Thus,sinceourtechnologybaseandenergysourcesareataplateauatpresent,Montserrathas afairlystablerelationshipbetweeneconomicactivityandCO2emissions:

59 Fig B3: A comparison of Montserrat’s Real GDP trends, fuel use and Carbon Dioxide emissions [SOURCE:StatisticsDept,2008.Cf.AppendixG.2.]

Asthefigureshows,ourfueluseroughlytracksGDPinEC$1990,ameasureofourreallevelof economicactivity,andgivesrisetoassociatedcarbondioxideemissions.

Wemayalsoreadilydiscerntheeconomicrisesandfallsduetothepostevacuationrebuildinginthe North,whichtrailedofftowards2001,andthatduetotheAirport,Roadsandashcleanupprojects from2003–2004.ItisnotcoincidentalthatourlasttwoGeneralElections,whichwereheldinthe economictroughsof2001and2006,issuedinchangesofpoliticalleadership.Inshort,forreasons ofbasicpoliticalsurvival, politicians accountable to electorates tend to be extremely sensitive to factors and trends that may lead to economic slowdowns .And,forgoodreason:votershavea right toexpectthatthosethey electwilllookoutfortheirinterests,intheshortandlongterm.

Thatmeansthat we have to find a successful way to bring together economic, environmental, political and energy use/work interests, not only for now but across time, if we are to build a successful sustainable energy policy .It wouldalsobeadvangageousiftheenergystrategyhelpstojumpstartoureconomyintoself sustaininggrowththatisnotdependentonoccasionalinjectionsofexternalcapitaltotriggermini booms,thatthenfadeawayassoonastheprojectswinddown.Thisrequiresalinkagebetween energypolicyandeconomicdevelopmentthroughtransformationsthatcutenergyrelatedcostsfor currenttechnologiesand/orshiftthetechnologicalbaseofrequiredenergybasedservicessothaton aperunitbasis,theyrequiresignificantlylessenergyandmonetaryinputsforequivalent(orbetter yet,superior)outputs.

Therefore,sinceelectricalformsofenergyareincreasinglyimportantinallareasoflifeand production,wenextconsideratypical“static”modelforlevellisedcostsofelectricalenergy [Adapted,AmpereCommission,Belgium,2000]:

60 Cost in ¢/kWh = Fuel cost in ¢/BTU xxxii multiplied by the plant’s heat rate in BTU/kWh + Other variable costs (e.g. operations and maintenance) in ¢/kWh + Capital costs and other fixed costs expressed as an annuity in ¢/kW of capacity, divided by the expected maximum operating hours per year [+ External costs in ¢/kWh] . . . Eqn. B1

Hereweobserve: a]Fuelcostsperunitofoutputarefirstdirectlydrivenbytheefficiencyofafuelbased powerplant,with3,412BTU/kWhasthelower(100%efficiency)bound;andwithtypical heavyfueloilsprovidingsome146,000BTU/gallon(orabout40.7MJ/litre). b]Ageothermalplantorawindturbinedonotusefuelsdirectly,buttooperatetheplant willingeneralrequire some fuelinputs;usuallyreckonedunderoperationsandmaintenance. (ItcanbearguedthatsinceavoidedCarbonemissionscanbetradedinmarkets,such renewableenergyplantshaveanequivalent negative directfuelscost–incomefromfuelnot burned,perunitofoutput.Typically,fromcurrentCarbontradingmarketreports,thatis xxxiii potentiallyUS$4–30pertonneofavoidedCO 2emissions, dependingoninstrument usedtotradeCarbonCredits.[NB: Burning one gallon of gasoline or diesel fuel emits about 20 lbs of

CO 2.]AsseenfromSectionAabove,providingwecanaccessanappropriatelyfavourable deal,thiscould potentially harvestupto~US$1.5millions(withuptoUS$250,000probably morelikely)asagreenfundssubsidytothecostofinvestmentinathreeunit,900kWwind turbinefacilitymodelledoffthesuccessfulFalklandsIslandsexemplar.] c]BytheCarnottheoremofThermodynamics,thereisaphysicalupperboundtoheat

engineenergyefficiency,η≤(T h – Tc )/T h .Thatis,forheatengines,therandomagitationof themoleculesofhotgasescannotwhollybeconvertedintowork.[So,foramachine workingbetweensaysteamat523Kelvins(250 °C)andambientairatsay303K(30 °C), energyefficiencypertherelevantThermodynamicscannotcrediblyexceed42%. (Monlec'scurrent high speed dieselplanthasanobservedefficiencyofabout36%.)] d]The“fuel”costitemisalsoconvenienttousetocoverthe fair market value orsome acceptablycomparablevaluetothat xxxiv ofthegeothermalsteam/hotwaterresourcesused intheproductionprocess.For, steam/hot water is a substitute for fuels .Thisvaluecanthenbe treated separately frompioneeringinvestorholidaysforbusinessincometaxesorthelike, xxxv andassessedas royalties ,incashvalueand/orinkind.(Thatis,anycashroyaltypayable wouldbenetoftheagreedvalueoftraining,technicalservicesandmanagementfee equivalentsorofprovisionof“freepower”forGovernmententities,etc.) e]Similarly,theassessedvalueoftheresourceused,forroyaltypurposes,wouldbenetof theexpensesandinvestmentsmadebythepowerproducertoextractitfromthegroundon thebehalfoftheGovernment. f]Onthis activity-based costing approach,anexplicit, stakeholder-understandable tradeoffcanthen bemadeongeothermalenergyproductionroyaltylevelandresultingcosttothedesignated local single purchaser oftheincomegeneratingelectricityproducedbytheplant.Onward,we wouldthenbeabletodiscussthepublicinterestquestionofthebalanceofprice,profits, businessinvestmentincentives,taxesandroyaltiesandbenefitstotheconsumerand

61 communityinabalancedcontext. g]Awindmill“escapes”theCarnotefficiencylimit,asitisconvertingthe orderly motionof wind–its“substituteforfuel”intoequallyorderlyrotationofthebladesandgenerator. However,sincethebladesmustinterferewiththeflowinordertoharvestenergy,Betz workedoutanupperlimitforwindturbineefficiency, 59.3% of available wind power. Inturn, windpowerisafunctionofthecubeofthewindspeed,andduetoreducedsurface frictionwindspeedundercommonlyobserved[butnotuniversal]circumstancesrises roughlyastheseventhrootofheight,i.e. doubling the height of a turbine may increases wind speed by 10% and available power by 34%. h]Forairofdensity1.2kg/cu.m,movingat6.7m/s[~15mph],thepowerinthewindwill be180W/sq.mcrosssection,sothatatmost107Wcanbeharvestedfromit.Fora windmillwith15mlongblades[~49ft],thetheoreticalupperlimitonpowerinsucha6.7 m/swindis75.6kW.Withan availability factor of33–38%,thisyields218,000–252,000 kWhperyear;enough on average for60–70housesat300kWh/month. i]Thenextlineitemisannualoperationsandmaintenance,whichispartlyafunctionofthe technologychosen,partlyofresourceinputsofvariouskinds[thus,oftheactivitiesthatuse theseresources],andpartlyafunctionofthemanagementoftheplantacrosstime. (Younger'sestimateforalocal5MWegeothermalplantis2¢(US)/kWh.) j]Thisitemalsotakesinleasehold,userfees[e.g.forroads,piersetc]andthelikethatmay beassessedbyGovernmentasapartoftheoperationsandfacilityusebythepower producer.Similarly,theuseofatargettedbreakdownofsuchassessmentsallows stakeholderstounderstandandcontributetodecisionsregardingthetradeoffsbetweentax andquasitaxrevenuesandultimatecostsforelectricity. k]Capitalcosts(etc)havetodowithhowmuchaplantcoststobringtocommissioninginto regularoperation,whichforgeothermalplantsistypicallyaboutUS$800–3,000/KWe, withthehighendbeingmoreusual.So,forinstance,a5MWplantatUS$2,500/kWwill costUS$12.5millions. l]Thisthenhastobeequatedtothepresentvalue[PVA n]ofan annuity acrosstheplant's workinglife,perhaps30years[n=30];andthenthededucedlevelannuityyearbyyearterm [CF]isappliedtotheformula.Forthis,the weighted average cost of capital acrossequity,debt andgrants/softdevelopmentorgreenfundloans[r]wouldhavetobeworkedout,perhaps using: n n CF = PVA n / { [ (1 +r) - 1] / [ r(1 + r) ] } . . . Eqn. B2 m]Forinstance,usingUS$12.5Mnsat10%acrossa30yearlifespan,thatannuityterm,CF, isUS$1.326millions.Applyingittoa5MWplantwitha95%availabilityfactor[41,638,500 kWh/yr],thisyieldsalevellisedcostcontributionof3.18¢(US)/kWh.( If more recent figures that suggest a capital cost of ~ US$ 3,000 – 4,000/ kW are closer to the mark, a similar calculation at the midpoint of that range [US$ 3,500/kW] yields CF = US$ 1.8564 millions, or 4.46 ¢ (US)/kWh.) n]“Externalcosts,”thefinalterminEqn.B1,reflectthewayinwhichatransactionbetween abuyerandaselleroftenhasimpactsonthirdpartiesnotinvolvedinthetransaction,andon thewidercommunity.Thus,effortsarenowincreasinglybeingmade,throughregulatory interventions,to internalise someofthosecoststothecostofmakinganddistributingthen buyingandusingelectricalenergy.

62 o]However,itisquitedifficulttoassignnoncontroversialvaluestoresultingcosts,benefits anddiscountrates.(Theoreticalandpracticalcontroversiesalsoattendtheunderlying welfareandenvironmentaleconomics.)TheAMPERECommission'sestimatesrangeupto approximately6070%ofothercostsforcoalplants,anddownto2–3%forwindturbines andnuclearplants.[Cf.p.17.]Itisreasonablethatageothermalplantwillmoreclosely resemblethelatterthantheformer,sonoexplicitexternalitiescalculationwillbeneeded. p]TheYoungerreport'sprojectionisthatifa5MWgeothermalplantisfeasible,andcanbe builtforsomeUS$2,500/kWe,thecost to produce electricityforlocalusewouldfalltoabout 4.5¢(US)/kWh.IfthecapitalcostsaremorelikeUS$3,500/kWe,thiswould proportionatelyrise,e.g.iftheYoungerestimatefortheoperationsandmaintenancecosts areusedasaballparkfigure,weareeasilylookingatelectricity production costs ofabout7¢ (US)/kWh.Thus,itiscrediblethatashifttoGeothermalenergywouldmateriallyreduce consumerrates[bearinginmindtheimpactoffuelsurcharges],whichmight“reasonably”be “guestimated”asabout2–3timesthisfigure.So,forinstance,ahouseholdusing300 kWhr/monthmightonthis scenario seeabillofaboutEC$150200,whichwouldnotbe highlysubjecttoonwardjumpsinfuelprices. [These are of course rough, illustrative calculations based on generic estimates, not hard and fast costs.]

Thus,EquationsB1andB2allowustocomparethecosteffectivenessofvariousalternative electricitygenerationtechnologiesasalternativemeansofsupplyingthehighlydesirableformof energy,electricity.Ultimately,thatyieldssomethingratherlikeTableB1,whichthenallowsustosee whatalternativetechnologiesmakebestsenseforMontserrat,intermsofbothenvironmental soundnessandeconomiccosteffectiveness.For,ifourenergyrelateddevelopmentprojectsareto betrulysustainable,theywillhavetomeetbothcriteria.Thecurrentresult,unsurprisingly,isthat wind and geothermal energy are excellent alternatives, but the general use of solar photovoltaic electricity awaits more cost-effective technologies .

Somebalanceonclimateconcernswillthereforeneedtobestruck.Forinstance,givenourminimal contributiontotheglobalemissions,wecanreasonablyadopttheleastregretsprinciple that no Anthropogenic Global Warming-based policy action should be taken unless it is reasonable on other grounds as well , whichwilldisarmcriticsand/orshowitselfjustifiedinthepossiblesituationthatsomeofthe critiquesoftheIPCCpolicylevelapproach(e.g.thatbythewellknownhurricanescientistWilliam

Grayetal)turnouttohavemeritinlightoffuturedataandanalysis.Forinstance,whileCO 2 emissionsareasourceofsignificantconcernanddebateontheirpotentialimpactsonglobalclimate (especiallythroughproposedinteractionswithwatervapourafarmoresignificant greenhouse gas [GHG]),wehaveindependentgroundstoshiftawayfromoiladdictioninlightofthevolatilityof thatmarket(whichjusthitthenpassedUS$90–100/barrel),andpossiblyagreatopportunitywith geothermalenergy.

Thus,wemayspecifyandwarrantthedeclaredstatementofintentforMontserrat'ssustainable energypolicy,throughmodifyingtheclassicBruntlandstatement[1987]:

. . . across time, and in light of identified opportunities, challenges, strengths and weaknesses we shall more adequately and more fairly meet our energy needs in our own generation, but at the same time we commit ourselves to not compromise the ability of future Montserratians to meet their own energy needs.

63 Operationally,asacomponentofanyproposalorfeasibilityand/ortechnicalinvestigation,abrief EnvironmentalImpactSelfstudyshouldbeincluded.Iftheprojectcrediblyhassignificantimpact anindependentEIAshouldbecommissionedanditshouldundergoformalreviewbythe appropriatedepartment,withastakeholderparticipativecomponentasintegraltothat.Established EMS’sshouldreflectreasonablebestpractice,whetherornottheyformallyincludesystemssuchas ISO14000,andshouldundergoregularindependentauditandreasonableregulatoryreview.

However,caremustbetakenthatthisprocessdoesnotbecomeundulybureaucratic,complex, costly,arbitraryandburdensome.Perhaps,thiscanbeinpartachievedthroughasimplecost benefitsanalysisbasedonbalancedscorecardacrosstherelevantfactors,joinedtoaneffective appeals/arbitrationprocesstothetechnicalandscientificadvisorypanel,hereactingasombudsman.

So,letusnownarrowourfocustothemainidentifiedstrategiccosteffectivegreenenergy opportunities:

64 Turnkey Current Energy Potential energy CO2 Emission, Technology Capacity factor, % Investment cost, cost, US c/kWh cost, US c/kWh grams C/kWh US$/kW

Biomass, 25 - 80 900 – 3,000 5 - 15 4 - 10 - Electrical

Biomass, 25 - 80 250 - 750 1 - 5 1 - 5 - Thermal

Wind, Electrical 20 - 30 1,100 – 1,700 5 - 13 3 - 10 -

Geothermal, ~ 95 800 – 3,000 2 - 10 1 - 8 - electrical

Solar PV, 8-20 5,000 – 10,000 25 - 125 5 - 25 - Electrical

Solar Thermal, 20 - 35 3,000 – 4,000 12 - 18 4 - 10 - Electrical

Low- temperature 8 - 20 500 – 1,700 3 - 20 2 - 10 - Solar heat

Large hydro 35 - 60 1,000 – 3,500 2 - 8 2 - 8 -

Small hydro 20 - 70 1,200 – 3,000 4 - 10 3 - 10 -

Natural Gas Combined 445 2.91 – 3.24 91 Cycle, steam- cooled turbine

Coal Integrated Gasifier CC 1091 3.12 – 3.70 210 plant, steam- cooled turbine

Pulverised Coal, Flue Gas 1090 3.23 – 3.94 238 Desulpurisation

PWR Nuclear 85 1,528 2.8 - Reactor

Pebble Bed Est. reactor (under ~ 85 - < 3.5 - ~ 1,500 – 2,000 development)

TableB1: Energy Technology Options and Economics, costs at plant. [WEA 2000: Table 7.25, p. 266; Natural Gas & Coal from Table 8.4, p. 281; PWR: Ampere Commission, 1-7 and 1-9, PBMR: MIT & various.]

65 C] STRATEGIC ENERGY SOURCES AND TECHNOLOGIES FOR MONTSERRAT

Therearefivemajoralternativeenergyopportunitiesandthusstrategicalternativesfor Montserrat:(1)geothermalenergy,(2)windpower,(3)energyefficiencylinkedto demand side management ,DSM,(4)solarenergy[thermalandelectrical],and(5)biofuels.Eachfacesprosand cons,andchallenges[e.g.anearthquakecould“break”ageothermalwell,orahurricanecould damagewindorsolarsystems,andcropsforbiofuelscanfail],butsodoesbusinessasusual–fossil fuels.

WethereforenowsurveythecrediblymajoropportunitiesforMontserrat;for, opportunity is foundational to policy.

C.1] Geothermal – renewable energy opportunity no. 1

Fig C1.1: Sources, dynamics, identification and harvesting of Geothermal energy [Source:IGA/IGG,2004]

AsFig.C1.1shows:

a]Rainfall(andseainfiltration)intopermeablerocklayersallowsforthepoolingofground waterinzonesheatedbymagmabodiesorotherheatsourcesarisingintheearth'scrust.

b]Impermeablelayerscontributetothetrappingprocess,andfaultsandcracksintherocks areimportantinformingaflownetworkfortheponded,heatedwater.

c]Thepooledorflowinghotwaterentrainsand/ordissolvesmineralswhichmayallowits source,pathandhistorytobededuced–ontheusualprovisional(buthopefullymoreorless reliable)basisthatholdsforscientificmodelling.

66 d]Unfortunately,italsomeansthatiftheconcentrationsofdissolvedmineralsishigh enough,somemayprecipitateout,partlyorwhollycloggingnaturalflownetworksand/or pipesingeothermalwellsandpowerplants.(Thisimposesanoperatingriskofgradually degradedplantcapacity.) e]Onthebrighterside,highqualitysilica(etc.)inthewatermayberecoverableasavaluable sideproduct. f]Theresultinggeologyisspecifictothelocality,iscomplexandispermanyexpert reportsdifficulttopredictfromsurfacesigns. g]However,faultsandotherlocalfeaturesallowsometothewatertomigratetothesurface, givingrisetohotsprings,geysers,fumarolesandthelike. h]Suchsurfacesignsareagoodgeneralindicatorofpotentialgeothermalresources,but specificexplorationandmappingofgeophysicalandgeochemicalsignsareonly indicia of possiblelocationsfortestboreholes. For, the specificity of highly localised flow networks due to cracks and porosity of specific rocks at specific depths in particular locations within the field is decisive. i]AccordingtoarecentNRELreport[ Geothermal Technologies Program Strategic Plan, 2004], initialexploration(inclusiveofinterestchargesaccruedtothetimeofplantcommissioning) maycostabout10%ofoverallgeothermaldevelopment,andhasoftenprovedtobea criticalroadblockduetotherelativelyhighrisk.[pp.4–5.]Inparticular,initialexploratory wells(whichtypicallytakefrom25–90daystodrill[Hance,Cédric/GEAforUSDOE, Factors Affecting Costs of Geothermal Power Development, 2005,p.13])have about a1in5chanceof strikingacommerciallyusefulflownetwork[NREL,p.8],butonsuchstriking,thesuccess probabilityforsuccessivewellsinthevicinityrisestoabout60–80%[Hance/GEA,p.17]. j]SincesuchwellsmayeasilycostuptoperhapsUS$1millioneach[NREL,p.8 xxxvi ]it meansthatgeothermalexplorationanddevelopmentarerelativelyhighriskinvestments, especiallyintheexploratoryphases.Overall, equity investmentreportedly“expects”areturn of~17%[Hance,p.9],asignificantnumberofpointsbeyondsaythelongtermaverage StandardandPoorrateofreturn(about8–9%),anindexofarelativelyhighriskindustry. k]Areasonableestimateforgeothermaldevelopmenttimelineshasalsobeenadvancedby GeothermieBouillante,Fig.C1.2.GeothermieBouillanteobservesofthisreferencetimeline, that“ Time needed for the discovering of the resource and its evaluation can be much longer (10 years and more), especially due to difficulties met in their financing by private operators, often substituted by public and/or international funds. ”[Slide5.AsthetimelinefordevelopmentofBouillanteitselfshows [slide8],actualinitialexplorationanddevelopmenttheretooksome1020years.]

67 Fig C1.2: A reference timeline for geothermal energy development. [Source:GeothermieBouillante, 2004,slide5.] l]Othersources[cf.NREL,Hanceetc]concurthat 3 – 5 years is a reasonable “standard” timeline ,andsuggestthat a reasonable cost-range for such a plant is US$ 800 – 3,000 per kW of electricity production capacity. [Cf.NREL,Hance,IGA/IGGandtheironwardcitefrom Fridleifsson,2001.] m] The high end of the range is more likely to be the case ,anditwouldbereasonabletoexpectUS$ 2,500–3,000/kW. This costs a 5 MWe plant at about US$ 12.5 – 15 millions. (Cf.Younger reporttoMUL,2006,pii;etc.) n]However,itisalsonoteworthythat, to date, plant designs and specifications tend to be unique ,per thelocaltemperature,pressure,flowrateandchemicalcompositionconditions: Becausethetemperaturesofmostgeothermalresourcesarelowrelativetothe combustiontemperaturesoffossilfuel,thesizeandcostofsurfaceplantequipment aregreater. Almost all geothermal plants to date have been built specifically for individual sites. While this may permit optimal energy capture, it also prevents the economic gains from mass production. Furthermore,thechemicallyreactivenatureoftypical geothermalfluidsrequiresprotectivemeasurestopreventequipmentdamagefrom scalingandcorrosion.Mitigatingtheseproblemscanbeexpensive...[NREL,2004, p.10;emphasesadded.(NB:Thisremarkimplies,potentiallytoourbenefit,that if and as more generic off-the-shelf technologies emerge, this may shift plant capital and operations and maintenance costs downwards .)] o]Inthiscontext,unfortunately,thehightemperaturebutexcessivelycorrosivegeothermal watersdiscoveredinStLuciamaybearelevantfactorinestimatingriskshere.Onehopes that the known differences in volcanic behaviour (thus the associated geochemistry) between the northern and southern parts of the EC volcanic island arc will tell in our favour. p]Consequentupontheabovefactors,andassuggestedbyGeothermieBouillanteinthe aboveremarkondelaysinsuchprojectsintheinitialphases,twomodelsforgeothermal energydevelopmenthaveemergedinourregion: [1] wildcatting, wholly commercial development, [2] development fund aided development. IntheCaribbean,thesolelongtermsuccessstory, BouillanteinGuadeloupe,hasadoptedthelattermodel,commissioninga4.5MWeplantin

68 1986,andoneof11MWecapacityin2004;whichlastisthereforeasourceofcurrent empiricallyanchoredinformationongeothermaldevelopmentprospectsforourregion. [Young,2006,p.4;GeothermieBouillante,2004,slides89;ADEME,2006,slides35]. q]DrSimonYoung'ssomewhatsoberingobservationsonthecomparativesuccessofthe developmentmodelstodateintheregionthoughtheGeoCaraibesprojectmaynow enableseveralprojectsunderthefirstmodeltonowbecomesuccessfulthrough incorporatingelementsofthesecondapproacharethereforeworthreflectingupon: “... financing of the initial, high-risk exploration phases [for geothermal development] is both difficult and expensive .IntheeasternCaribbean,therehavebeentwoapproachesto overcomingthistwinproblem. The first isfor international aid funding ofearlyexploration,sothatacredible geothermalmodelcanbeestablishedandcommercialdevelopersbearlessoftherisk ofanunsuccessfulproject.Thisfacilitatestheattractingofmoreexperienced developers...andalsoenablesGovernmentstonegotiateamuchbetterdealfor licensingandpowerproduction.... The second isforearlyinvolvementofa commercial developer ,whomusttieupa licenseforexplorationandpowerproductionandusuallyapowerpurchase agreementbeforegettingaccesstofundingforexploration.... This approach has not yet been successful in the Caribbean and, in several cases, has resulted in the stymieing of development due to exclusive exploration licenses being tied up for many years or hawked at an unrealistic price to third parties who might otherwise be interested in development.” [Montserrat Geothermal proposal ,July2006,p.4.Emphasesadded.] r]Uptodate,theformerapproachhasrepeatedlybeenchallengedtoovercomebarriersas discussedabove,thoughthecurrentGeoCaraibesWorldBankGTZGEFOASprojecthas apparentlyhelpedseveralinitiativesonthefirstmodeltomoveahead; by introducing elements of the second model. Happily,activegeothermalexplorationanddevelopmentprogrammesare nowintrainthroughthisprojectin Dominica, St Lucia and St Kitts-Nevis. s]Currently,Montserrat(whichasaUKOverseasTerritoryisineligibleundertheGeo Caraibesproject)is~6–12monthsbehindthethreeislandsbenefittingunderthisinjection ofinternationalaidmoney.Happily,though,throughinitialdevelopmentaidassistance throughtheUNEconomicCommissionforLatinAmericaandtheCaribbean[ECLAC]and DFID,initial,aidbased,precommercialisationgeophysical,geologicalandgeochemical explorationshavenowbeenbeguninMontserrat.Thatis,elementsofthesuccessful BouillantemodelarenowbeingincorporatedintotheMontserratcase.(Kindly,cf.excerpt fromtheprojectconceptnote,following.) t]Furthertothis,theGeoCaraibesactiveprojectsmayconfersocalled second mover advantages ,wherebywemaybeabletoleverageexperiences,discovereddata,emerging geophysicalmodellingtechniques[astheybecomevalidatedbysuccessinotherislands],and theavailabilityintheregionofresourcessuchasdrillingrigs,transportationtotheregion havingalreadybeenpaidforbysomeoneelse.

69 u]Consequentonalloftheabove,astherecentProfessorPaulYoungerreport[2006] identified: “...availabledataonthehydrothermalsystemofMontserratrevealstheexistenceof severalmajorhydrothermalcirculationsystems...oneofwhichissafelyaccessible atpresentintheElbertonRichmondarea...[which]isarealisticprospectfor exploratorydrilling(estimatedtocostnotmorethanUS$1M [now perhaps quite higher - oil price up, drill rig demand up] ),withaviewtodevelopinga power plant of 5 MW capacity ... The capital cost of such a plant is estimated at around US$13M, anditcouldbe expectedtohaveoperatingcostsintheregionof2cents(US)perkWh.Theoverall [production]costofelectricity(levellisedovera30yearplantdesignlife)isestimated atnotmorethan4.5cents(US)perkWh,andpossiblyaslowas4centsperkWh.It isconceivablethatasubstantialproportionofthedevelopmentandoperatingcosts ofthesystemcouldberecoverablebytradingthecarbonemissionreductionbenefits oftheplant.... it is likely that it will take at least 26 months, and possibly as long as three years, before commissioning of the plant can be achieved.” [Younger,Paul: Preliminary Assessment of the Technical Feasibility and Likely Costs of the Development of Geothermal Power Generation on the Island of Montserrat, East Caribbean (UK: InstituteforResearchonEnvironmentandSustainability;UniversityofNewcastle UponTyne,February2006),p.ii.Emphasesadded.]

ItisthereforereasonablethatMontserratshouldundertakeaprocessofcollaborative,international aidassistedgeothermaldevelopment.Indeed,suchaprocesswassparkedbythevisitofthe UNECLACenergyexpert,Mr.ManlioCoviello,inlateSeptember2007.Thisemergentstrategywas furtheradvancedbythesubsequentinitiativeofDFID,Montserrat,toapproachDFID,UK,for incrementallyreleasedfundingofthehighriskexploratoryphases,actingincoordinationwiththe GovernmentofMontserrat.Underthisinitiative,theprocessofidentifying(andthusvaluing)the resourceandassociatedpotentialforgeothermalenergy– if successfulwouldbepriortothe “Phase4”onwardcommercialprocessofdevelopmentoftheprospectiveidentifiedresource.

Theinitiativehasbeensummarisedinaprojectconceptnoteentitled Montserrat - Evaluation of Geothermal Potential:

A three phase proposal tocarryoutandmonitorthegeophysical,geologicalandgeochemical operationsandstudies,togetherwithasmallboretestdrillingprogrammetodetermine whethertheIslandhasthepotentialtodevelopcommerciallyviablegeothermalpower. A successful conclusion to this programme would enable bids for commercial exploitation to be sought ....Thesuccessfulconclusionofthisprojectwillleadtothe establishmentoftheobjectivessetoutinStrategicSubobjectives1.2.2,1.2.4and1.2.5ofthe GovernmentofMontserratDraftSustainableDevelopmentPlan.Iftheresultsarepositive itwillestablishastrongbasisforfuturenegotiationswithcrediblepartnersforthe constructionofacommercialgeothermalenergyplantontheIsland.... Phase 1 ScopingSurvey Aninitialscopingsurveytodefinetheactions/operationswhichneedtobecarried outinthenextphaseofinvestigations,andmoreaccuratelydefinethecostsoffuture phases....

70 Phase 2 PreliminaryInvestigations ThisphasewillbebetterdefinedfollowingtheconclusionofthePhase1Survey,but willcontain....Geophysicalandgeologicalstudies....Geochemicalmonitoring (inparallel)....Analysisofthedatafromtheabove,togetherwithallprevious availabledatatodefineOptimumtestdrillingsites.... Phase 3 Smalldiameter[i.e.“slimhole”]testdrilling FollowingcompletionofthePhase2Investigations,tenderdocumentswillbe preparedfortheonIslandsmalldiametertestdrilling. Thetestdrillingandreportingworkswouldbecompletedinaround12months.... Phase 4 CommercialExploitation (not covered in this proposal) TheresultsofthePhase3testdrillingworkswill(withabouta75%certainty) confirmanddefine(orotherwise)thepotentialforgeothermalenergygenerationon theIsland. Atthesestagereputablecompaniesspecialisingintheexploitationofthisresource couldbeapproachedforofferstotakeforwardthedevelopmentprocess(attheir cost/risk).Estimatedcostforinstallinga5MWplantarearoundUS$15m.This wouldresultinacredible,transparentpartnershiptothebenefitofthewholeisland [....] ANTICIPATED PROGRAMME Phase 1 ScopingSurveyFeb.2008April2008 Phase 2 PreliminaryInvestigationsApril2008Dec.2008 Phase 3 TrialDrillingJan.2009–Dec.2009 Phase 4 Ifproven Commercial ExploitationJan.2009July2010Possibledatefor commissioningofplant

Itwouldofcoursebehighlydesirabletoacceleratethesuggestedtimeline,ifpossible.(Possibly,this canbedonethroughoverlappingactivitiesunderPhases2and3.)

Asatthetimeofwriting,anaidagencysponsoredscopingfieldvisitenvisionedinPhase1just abovehasnowbeenundertaken,andonthestrengthofreportsandrecommendations,expressions ofinterestandthenbidsforfullfledgedexplorationsunderPhases2–3wouldbeinvitedon submissionofthevisitingexperts’report.Asfurtheridentificationofthepotentialemergesthrough thesefollowingphases(andonapositiveresult),commercialisationoftheprocesswouldfollow,i.e. “Phase4.”

Forthat,itisrecognisedthatthehighlyspecialisedtechnicalnatureofgeothermaldevelopmentand operationspointsto a local-regional-international partnership, arrived at through a Tenders Board bid process xxxvii [perthepubliclyownednatureoftheunderlyingresource;onMontserratLawonmineral,treasure andwaterrights],asthemostcrediblewayforustoacquirefirstaneffective,functioningplant,then alsotheonwardcapacitytooperateitacrosstimeusingfullylocalresources.Accordingly,onthe resultsofPhases2–3,itwouldbelogicalforinvitationsforexpressionsofinterestbyprospective jointventurestobeissued.

71 Onreceiptofresponses,thiswouldbefollowedbyprequalificationrelativeto(1)financialcapacity toundertakethedevelopmentprocess,(2)technicalcapabilityshownbyoperationalexperience,and (3)involvementofasuitablelocalpartner.AstandardTendersBoardbidprocesswouldfollow, basedonthewellestablishedCommonwealthlegalprinciplethat the underlying resource is a public good, per the established law on mineral, water and treasure rights. Thiswouldthenleadtoawardofacontractfor developingandoperatingtheenvisionedplant(inacontextoftechnologytransfer,capacitybuilding andtransitiontofulllocalownershipandmanagement),undertheBOATmodelenvisionedinthe Declarationabove.

AkeyunderlyingconsiderationisthepointthatifPhases2–3aresuccessfulinidentifyingan exploitableresource,itwouldputGOMinthepositionofrequestingbidsforproposalfrompre qualifiedfirmsand/orpartnershipstodevelopaprovedresource.Thus,throughapplicationofthe existinglawthatineffectvestsmineral,treasureandwaterrights,inthepeople,developmentand operationofageothermalpowerplantwouldcontrolledbyourdemocraticallyelectedand accountablegovernmentsacrosstime,inatransparentfashion.Moreover,byreducingthedegreeof riskthroughaprecommericalisationexplorationprocess,wewouldnotbedealingwithhighrisk wildcatting xxxviii explorationanddevelopmentofgeothermalenergy.

Tothatend,itappearsadvisablethat: i]Phases13forexplorationshouldbeadvancedandexpeditedifpossible,especiallyiftrial drillingcanreasonablybeinitiatedrelativetoinitialandinterimfindingsoftheinitial geochemicalandgeophysicalinvestigation. ii]SosoonasreasonableresultsareinhandfromPhases1–2,lettersofinvitationshouldbe issuedforexpressionsof(neworcontinued)interestbylocal,regionalandinternational firmsandpartnerships.(NB:theseshouldspecifyanticipatedbasictermsandconditionsof geothermaldevelopmentinMontserrat,perhapsalongthelinesofthesuggestedBOAT modificationoftheBOOT/BOTmodel;whichentrenchesparticipationbylocalfirmsand technology,managementandownershiptransferacrossthelifeoftheplantasappropriateto thespecifictermsofasuccessfulbid.) iii]Onthebasisofresponsestosaidlettersofinvitation,theindependent Technical and Scientific Advisory Panel [TSAP]attachedtotheanticipatedEnergyOffice,shouldratethe proposersonabalancedscorecardbasis,andrankandweighttheminorderofpre qualificationasbidders.Thisshouldbecommunicatedonastrictlyconfidentialbasisto GOM,toguidetheonwardTenderingprocess,asperrevisionsnowintrainthroughthe MinistryofFinance. iv]Onsuccessfulcompletionoftheexploratorydrillingandassociatedconfirmationofthe existenceofacrediblecommercialgeothermalresource,formalinvitationstosubmitsealed bidstotheGovernmentTendersBoardshouldbeissuedtotheprequalifiedexpressersof interest,leadingonwardtofulldevelopment.

C.2] Wind:

Asdiscussedabove,theFalklandsIslandsexemplarstronglyindicatesthatitisinitiallyapparently feasibletoinvestin,installandcommissionamodernwindfarmofperhaps~900kWnominal capacity.ThiscouldpotentiallysupportuptoUS$500,000toperhapsashighasUS$1.5millionsof

72 Carboncreditsontheinvestmentandassociatedpassingonimmediatesavingstotheconsumer linkedtoavoidedfossilfuelsuse,onbothcapitalandoperationscosts.Atthesametime,the reducedstressonthealreadyexistinghighspeeddieselunitswouldreducetheiroperationsand maintenancecosts,multiplyingthebenefits.

Thisisaveryattractiveclusterofpotentialbenefits,anditshouldbemorecloselystudied,towards possibleimplementationacross2008.(Already,stepsareintrainthroughapartnershipofthelocal powerutilityandDFIDtoundertakejustsuchaninvestment.)Capacityforsuchawindfarm crediblywillcostUS$1,100–1,700/kW,nominal,i.e.theoverallinitialinvestmentwouldlikelybe oforderUS$1.2–2millions.

However,windpowerhasinitcertaincharacteristicsandsubtletiesthatpolicymakers, implementersandstakeholdersshouldappreciate,evenaswegoaboutanexpeditedinvestment process.Thefirstoftheseistheasymmetryintheavailablepowerinwind:

Fig C2.1: Wind's Weibull speed distribution and availability of energy [SOURCE:Windpower.org]

Asthegraduatedsizeofthewinebottles(whichobeyasimilarlawwherebyvolumegoesasthecube ofbottleheightforthesameshape)suggests,inFig.C2.1,fasterwindshavemorepower,aspower perunitcrosssectionofwindisproportionaltothecubeofthespeed.

So,giventhetypicalWeibulldistributionofwindspeeds,astronglydisproportionatefractionofthe totalpowerfromawindenergysourceisdeliveredwhenthewindisblowingrelativelyfast.Indeed, sometimes,thereisjusttoomuchenergyavailable,e.g.inahurricane,andtheresultsaredestructive. Whenthewindslowsdown,hardlyanyenergyisavailableforharvest.Thismeansthatthereisa usefulrange,outsideofwhichthereiseitheraninadequateresourceorapotentiallydisastrous condition.(Thisistypicalbehaviourformanyrenewableresources.)

InthecaseofMontserrat,theearlymid80'swindstudies(asreportedbyBritishElectricity International[1987])identifiedthatourwindresourcemayreasonablybecharacterisedbyaWeibull distribution[Cf.EqnC2.1below]with shape parameter k=3.0and scaling parameter λ=1.075times mean wind speed:

. . . Eqn. C2.1

73 Inlookingataveragewindspeeds,thesestudiesalsoshowedatypicalpatternofannualvariationfor sitesinMontserrat,withtroughsaboutMarchAprilandpeaksduringthesummerandataboutthe turnofthecalendaryear.

ThisisborneoutbythecurrentmonitoringatGeraldsAirport:

9.0

8.0

7.0

6.0

5.0 Average Wind Speed (m/s) Speed Wind Average

4.0

3.0 0 2 4 6 8 10 12 Month

Fig C2.2: Annual observed winds, Geralds, Airport, 2006 [SOURCE: Graves,R.,ImperialCollege M.Eng.EngineeringSummerStudy,2007.DatafromMetOffice,Montserrat]

Observeaswell,howtheaveragewindspeedfluctuatesfromabout4–5m/sinthetroughs,to about8–9m/satthepeakperiods.Thismeansthatourwindresourcefluctuatessignificantly aroundthe“typical”statedaveragefortheECofabout6.7m/s.Thiswillaffectwindturbine economicsasitmeansthereisasignificantseasonalvariationinavailabilityfactor.

Often,windturbinesareratedatspeedsabouttwicetheidentifiedlevels,andarederatedatfactors dependingfundamentallyonthecubeofwindspeed.Thisishoweverreflectedinthesortof availabilityfactornumbersalreadycited.Bywayofcomparison,the Wigton wind farm atSpurTree Hillridge,Manchester,Jamaica,hasaninstalledcapacityof20.7MWandisexpectedtoyieldan averagepowerof7MW.The3MW Tera Cora plantinCuracao,basedonmid1990'stechnology, hasanavailabilitypercentageof93.2%andacapacityfactorof0.38.TheWigton900kWturbines costsomeUS$1,270/kWcapacity,orUS$3,740/Waverageavailablepower.DrRaymondWright, theresponsibleofficerfortheproject,alsonotesthatbymovingfrom250kWclassturbinesto~1 MWones,siteconstructioncostsforthesameoverallcapacitygodownbysome30%.

Afurthersubtletyliesinthedailytypicalvariationofwindpoweranddemand.AsGreaves[2007] compared:

74 Fig. C2.3: Diurnal wind speed vs. Electrical power demand, Montserrat. [Source:Greaves,2007]

PanelAdisplaysthediurnalwindasreportedbytheBEIstudybasedonearly1980'sdata.PanelB displays,foraweekinSeptember2007,a“typicalloadprofileacrossweekdaysandontheweek end.Duringweekdays,aclearplateauedpeakdemandatjustunder2MWisvisible,probably correspondinglargelytodemandforairconditioning,computersandotherofficeequipment.On theweekend,thisplateaudisappears,andatypicaleveningdemandpeaktakesover,atabout1.6 MW.Thissamepeakappearsonweekdays,asasecondarypeakatthesamelevel.

Thewindresource,asshowninPanelA,peaksbetween9:00am–12:00noon,atabout5.5–6.0 m/s;thenfairlyrapidlytrailsoffintheafternoon,withthetroughatabout4m/sat6:00pm.This alsofitsinwiththeannualpatterndisplayedinFig.C2.2.However,theafternooncontinuationof thedemandplateauisnotwellmatchedtotheavailablewindresource,whichistrailingoffatthat time.

75 Intheshortterm,thisspeakstotheneedforamixedportfolioofgenerationassets,withwind penetrationbeingconsistentwiththeneedforsystemstabilityandloadfollowingcapacity.Inthe longerterm, if it turns out that due to inability to identify a viable geothermal resource, tied to the relatively high risks of the exploration stage of geothermal development, wind has to carry the bulk of our renewable energy electrical load, it suggests an opportunity for pumped storage hydro-power systems:

Fig C2.4: Okinawa's Yambaru saltwater pumped storage hydroelectric unit [SOURCE:Seawaterpower.com]

AsFig.C2.4shows,theYambaruplantinOkinawapumpsseawateruptoareservoirunitonahigh bluffoverlookingthecoast,whichservesasineffectagravitationalpotentialenergystoragebattery. Thisuppumpingisdoneduringoffpeakdemandhours.Then,whendemandrisestopeaking levels,thestoredenergyisturnedbackintoelectricalenergythroughstandardhydropower techniques.(Thisisofcoursephysicallyrelativelyinefficient,butitallowsreallocationofelectrical energyacrosstimefromoffpeaktopeakhours,throughaprovenenergystoragesystem.)

However,itmustbenotedthatsinceMontserrat'ssoilandrocktendtobeporousinrelevantareas, anysuchreservoirwillhavetobelinedtoreduceseepagetoacceptablelevels–especiallyifthe waterinquestionissaltwater,asissoinOkinawa.

Furthertothis,onasmallerscale,recenttechnologicaldevelopmentssuggestasynergythatmaybe harvestedthroughtherecentmergerofMonlecandtheWaterAuthority.For,thereisaneedfor enhancedstoragecapacityforwaterintheNorth,especiallyastheLittleBaydevelopmentproject willcrediblyattractincreasedresidentialsettlementandcommercialdemandintheprospectivenew townandneighbouringareas.Wecanthereforeconsiderthepossibilityofwinddrivenpumpingto liftthepotablewateruptothestoragereservoirs,joinedtoinwaterlineturbinestoharvestexcess gravitationalpotentialenergyandturnitintoelectricity.

76 C.3] Energy Efficiency and Demand Side Management [DSM]:

Inacertainsense,energyefficiencytheprovisionofadequate,affordableenergyserviceswitha minimumofwasterelativetothestateoftheartofenergyusingtechnologiesshouldberegarded as“opportunitynumberone.”For,itisprobablythequickestlineofactiontogetofftheground, andcouldgivesignificantsavingstousersofelectricityalmostimmediately.However,the geothermalenergyopportunity,fornationalpolicyreasons,hasrightlytakenthatplace.

Butthen,aconsiderationonthetimecrediblyrequiredtoimplementgeothermalexplorationand development(aboutthreeyears)introducesoption2,wind,whichcouldbeputintooperationhere withintheyear,andatlowercapitalcost;albeititraisesintermittencychallenges.Energyefficiency, bythatcriterion,comesinevenhigher,asitcouldinprinciplebeginrightaway,throughpublic education,followedrapidlybyenergyauditandassociatedinitiativesthatcouldinprinciplebe initiallyimplementedwithin3–6monthstooneyear.

“Demand Side Management” DSMnowentersthispicture,throughtheobservationthatpower generationanddistributionsystemsshouldhavethecapacitytocarrytheinstantaneouspeakload (andareasonablebufferontopofthat),eventhoughsuchpeaksusuallyoccurforonlyarelatively smallfractionofthetime.Iftheutilityfailstodothat,theresultingshortbutintenseoverloadscan destabiliseanddegradethesystem,andcandamagetheutility'sownequipmentaswellascustomer equipment.ThisforcesCaribbeanelectricalutilities,includingourown,tobuildinaconsiderable amountofreserve,peakingcapacityinthesystem;whichnaturallyincreasescostsofgenerationat peakhours,andrequiresfinancingoftherequiredpeakingandreservecapacity.So,ifinstead, demandcanbemanaged,reducingpeakloads,investmentsinadditionalcapacitycanbepostponed, yieldingsavingstotheutility,asfuturesumsholdlesspresentvaluethancurrentonesinaworld withapositiverateofinterest.

Thishasbeenthetraditionalrationalefordemandsidemanagement,DSM;especiallywhen studies fairly commonly show that DSM initiatives could produce savings in electricity use and peak demand of up to 20 – 40%. Accordingly:

Sincethe1970s,utilities...havebeenimplementingDSMprogramsdesignedtoreduce residentialandcommercialelectricitydemandthroughinformationdisseminationprograms, subsidies,freeinstallationofmoreefficienttechnologies,andotherconservationrelated activities.[Auffhammer,BlumsteinandFowlie,2007]

. ..manydifferent[DSM]programapproaches...canbeusedincluding:

1.Generalinformationprogramstoinformcustomersaboutgenericenergy efficiencyoptions.

2.SitespecificinformationprogramsthatprovideinformationaboutspecificDSM measuresappropriateforaparticularenterpriseorhome.

77 3.FinancingprogramstoassistcustomerswithpayingforDSMmeasures,including loan,rebate,andsharedsavingsprograms.

4.Directinstallationprogramsthatprovidecompleteservicestodesign,finance,and installapackageofefficiencymeasures.

5.Alternativerateprogramsincludingtimeofuserates,interruptiblerates,andload shiftingrates.Theseprogramsgenerallydonotsaveenergy,buttheycanbeeffective waystoshiftloadstooffpeakperiods.

6.Biddingprogramsinwhichautilitysolicitsbidsfromcustomersandenergy servicecompaniestopromoteenergysavingsintheutility'sservicearea.

7.Markettransformationprogramsthatseektochangethemarketforaparticular technologyorservicesothattheefficienttechnologyisinwidespreadusewithout continuedutilityintervention.[Nadel,Zhirong,andYingyi,1995.]

So,despiterecentdebatesabouttheeffectivenessofDSMinitiatives[e.g.LoughranandKulick, 2004],itremainscrediblethatwellconceived,ablyexecutedDSMinitiativesareavaluable investmentforutilities,customersandgovernments.[Cf.Auffhammer,BlumsteinandFowlie, 2007.]

Moreover,inaworldthatisnowincreasinglyconcernedovergreenhousegasesandfacing unprecedentedpricesforfossilfuels,somethingmoreisnecessary,tofacilitatetheshifttogreen energy.Whatthatsomethingmoreis,canbebestseenthroughshiftingourperspectivefromthe traditionalemphasisonsupplyofelectricitytoaddressingthecontextinwhichelectricalenergyis demandedandusingittomanagedemandforitsproduct.For, people do not usually buy electrical energy for its own sake, but to provide useful services ,e.g.lighting,refrigeration,informationprocessing,industrial oragriculturalproduction,transportation,etc.

So,ifweshiftsources,technologiesandusagepatternstoamoreefficientbutadequatebasis,we canreducelossesofenergyinthetransformationprocessfromsourcestoenergyusingequipment toenergybasedservices,whilemaintaininganadequatelevelofservicesandeconomicactivity. Thus,thekeyquestionisnotsomuch whether suchatransformationwilloccurastheworldmoves toagreenenergyfuture,but how well we will manage it.

So,forinstance,recentlyexpressedconcernsthatifwemovetogeothermalenergy,Monlec's generatorstaffwouldprobablylosetheirjobsaresomewhatmisplaced.For, if energy import costs continue to eat up an ever-increasing proportion of our national economic product, that would further destabilise our economy as a whole; plunging it into ever-deeper recession. Thatwouldcostmanyacrossthewholeeconomy theirlivelihood.

The key challenge, therefore, is to redeploy the valuable skills and knowledge of workers and managers in our energy sector to more economically sustainable alternatives in good time to avert the further destabilising of our economy.

Thiscanbestbedonebyfocussingonprovisionofinnovativecosteffectivesustainableenergy servicesbasedontechnologiesandsourcesthatarewithinreachofthetechnicalcapacityofour energysectorworkers.“Withinreach”impliesthatthisincludesfurtherdevelopingthoseskills

78 throughtraininginthenewgreenenergytechnologies.Therefore,aswindenergy,solarenergyand (assumingsuccessfuldevelopment)geothermalenergybegintocomeonstreamoverthenextone tothreeyears,weshouldbeactivelytrainingandredeployingourgeneratorplantstaffandother skilledpersonneltojobsthatmakeadvantageoususeoftherisingwaveofrenewableenergy technologies.Equally,giventheimportanceofandtrendtowardsenergyefficiency,similartraining andinnovationsshouldleadtoopeningupofjobopportunitiesinenergyauditingandassociated supportingofenergyefficienttechnologies.

Allofthishingesonakeyobservation.Namely , there is precisely one existing cluster of relevant skills and managerial expertise in Montserrat: Monlec. Thisthereforepointstoan opportunityfortheutilitytocreateanewlineofrenewableenergyandDSMlinkedtechnical, marketingandfinancialenergyrelatedservicesbasedonitstechnicalexpertiseinenergyproduction, transmissionanduse.Suchanewfocusforbusinessshouldalsoseektocapitaliseonsomeofits moreintangibleassetssuchasitsrelativelylowdegreeofriskforloans,itsexpertiseinenergythat confersanabilitytobetterassesstheriskinessofinvestmentsinrenewableenergyorenergy efficiencyequipmentthanourbanksandotherfinancinginstitutions,anditsbillcollecting mechanisms.

Onthestrengthofsuchassets,acasecanbemadeforourlocalutilitytoconsiderthefollowing possibleDSMinnovations(andrelatedonesforrenewableenergytechnologies): 1]EnergyAuditsandassociatedrecommendationsforcostsavingsandassociatedgreen energytransformationprojectsforfirms,farms,households,smallandlargerbusinessesand institutions.(Possibly,atechnicalcooperationpartnershipcouldbeenteredintothrough oneormoreregional energy services companies ,i.e.ESCOs.) 2]Provisionofaffordabilityenhancingfinancingmechanismsforsuchtransformation projects,probablyinpartnershipwithoneormorelocalfinancinginstitutions. 3]Forinstance,throughsuchapartnership,aMonlecDSMunitcouldbesetupandusedto undertakeauditsandrecommendenergyequipmentchanges,withanattachedanalysisof costsavings.Thiswouldleadtoagreedtermsforsharingtheseprospectivecostsavings betweenthecustomerandthetechnicalsupportprovidingandfinancingpartners. 4]Creditcouldthenbeextendedtocustomerswhoagreetoundertakeagreenenergy transformationproject,andwarrantswouldbeissuedforpurchaseofcertifiedgreenenergy compliantequipmentasagreed,throughparticipatingsuppliers.Forinstance: • Compactortraditionalfluorescentlampshaveaboutfourtofivetimestheefficiency ofincandescentlamps[~60–85lumens/Wvs.~15–20lm/W]andmaylastthree totentimesaslong[3,400–10,000hrs].However,they pose a potential mercury vapour toxic waste hazard. • Theemergingsolidstate,whitelightLightEmittingDiode[LED]lampmaybesix totentimesasefficientastheincandescentlamp[potentially~100–200lm/W], andmaylastaboutahundredtimesaslongasanincandescentlamp:upto100,000 hoursofuse.Also,itdoesnotposeamercuryvapourtoxicwastehazard. • SimilarlyLCDtelevisionsandcomputermonitorsarerathermoreenergyefficient thancathoderaytubeunits–andcompoundthiseffectbytherefore reducing the

79 officeairconditioning xxxix loadtohandletheheatgivenoffbythemonitors.(This alsopotentiallyreducesworkerfatigue.) 5]Theassociatedloansforenergyefficiencytransformationwouldthenberepaidthrough theenergybillingmechanismcurrentlyusedtopayforelectricity,andappropriatetransfers wouldbemadetothefinancinghouses,netofareasonableservicecharge. 6]Asimilarmechanismcouldbeusedforpromotingsolarhotwatersystemsandonward solarPVandsimilarrenewableenergytechnologies. 7]Sincegreenenergytransformationisastrategicregionalandglobalissue,theoverall packagecouldinprincipleattractsupportthroughinternationalgreenenergyprojectsand possiblycarbontradingcredits.Toenhancethechancesofsuchaidsupport,Montserrat couldofferitselfasaregionaldemonstrationprojectforsuchadevelopment,especiallyin lightoftheLittleBaynewtowndevelopmentthatisnowinprospect. 8]Associatedtechnical,financial/economicanalysisandmanagerialleveltraining programmescouldbedevelopedinpartnershipwiththeCommunityCollegeandUWI,and thenofferedregionallythroughdistanceeducationsystems,orsimplyfranchised.

9]Initially,suchcoursescouldbejointlydevelopedthroughUWIandtheCommunity CollegeincollaborationwithMUL/Monlec,andwouldtargetitstechnicalandmanagerial staff.Thishasthefastestturnaroundbetweentrainingandapplication,andrespondsto immediateneeds.Perhaps,thiscanbedonethroughinitialworkshopsandsseminars,leading intomorestructuredcourses

10]Onward,asenergyrisesasasignificantcareeropportunity,energycareertrackeducation atsecondaryandtertiarylevelscouldreceiveincreasedemphasis.Onthemodelofwhat happenedwiththesixthformersinPhysicswhovolunteeredforinvolvementwiththe MontserratVolcanoObservatoryfromabout1994–5on,thisinitiallyshouldfocusonthe basicsciencesofPhysicsandChemistry,aswellasassociatedElectricalandMechanical technologystudies[and,increasingly,informationandcommunicationtechnologystudies]. Curriculashouldthenbranchouttospecificenergyrelatedfieldsattertiarylevel.This shouldincludenotonlytechnicalstudies,butalsoprogrammesthatretoolourdecision makingandmanagerialclassestobecomeeffectivefunctionalandstrategiclevelsustainable energymanagers.

11]Immediately,thatmeansaswellthatthereisanurgentneedforpublicawarenessand educationinitiativescomingfromMonlec,theCommunityCollege,UWIandotherpartner institutions.Theseshouldbuildontheopportunityprovidedbythecurrent“buzz”dueto consultationsandmediadiscussionsondevelopinganenergypolicyandalsoduetorelated controversiesaboutsomeoftherelatedalternatives.

C.4] Current and future Solar Energy

Solarenergyisinherentlyanattractiveprospect,inaregionthatcommonlyenjoys4–6kWh/dayof energyfluxfromthesun,persquaremetre:

80 Fig 4.1: Solar energy per day per square metre availability at select sites in the Caribbean [SOURCE: Headley,O,asprocessed,Greaves,R,2007.]

Ofthesitesdisplayed,VereBirdAirport,AntiguaisaboutthirtymilesfromMontserrat,soits insolationshouldbeagoodproxyforMontserrat's: about 4.2 – 5.9 kWh/sq. metre per day ,withthe peakbeingJunetoAugust,andthetroughinDecember.Thisyieldsanannualaverageofabout5.3 kWh/sq.mperday,orabout1,900kWh/sq.mperyear.Whileinaggregatethisisvastlymorethan weuse,muchofthatisrequiredtomaintainplantlifeandotherenvironmentalsystems,andthecost toharvestapracticalquantityofthatenergy,unfortunately,istoooftenabarrier.

Suchinsolationisharvestedthroughthreeprimarymechanisms:photosynthesisinplants,heat energyandphotovoltaicconversiontoelectricity.Thefirstisimportantforbiofuels,thesubjectof thefollowingsubsection.

Solarthermalenergycanbeuseddirectlyasheat,e.g.inasolarhotwaterheatingsystem;or,itmay beconcentratedandusedtogenerateelectricitythroughheatingaworkingfluidthatdrivesa turbinegeneratorset.Thishastheadvantagethatsinceitiseasiertostoreheatthanelectrical energy,suchstoredupheatcanbeusedtoallowactualgenerationtofollowtheload(andtomake upfortimeswhentheremaynotbesunlight,orreducedlightduetocloudyweatherorthelike. Solarthermalsystemsusuallyrequireafairamountofspace[whichisatapremiumforMontserrat], butitmaybeusefultoexaminethepossibilityofintegratingsuchasystemswithsayabinary geothermalplant(as“peaking”plant)and/ortousesuchunitstocomplementwindturbines.For instance,perhapsthestoredheatcouldbeusedtocarrytheeveningpeakelectricalload.

Ocean Thermal Energy Conversion [OTEC]isarelatedtechnologythatusesthenaturalheatingupofthe ocean'ssurfacewatersandcouplesittocoldwatersflowingbackfrompolarregionsdeepunderthe surface,tomakeelectricity.(ThiswasfirstdemonstratedinCubaabout100yearsagoandisin limited,smallscaleuseatseveralsitesaroundtheworld.)

Inthecaseofaclassicflatpanelsolarwaterheater,itisnowgenerallyacceptedthatsolarheatingis notonlyenvironmentallypreferabletosayusinggasorelectricalheatersthatusefossilfuelsastheir sourcefortheelectricalenergy,butthattheunitsaredesirable.Theprincipalbarriersare[1]wantof affordability[duetotheirrelativelyhighinitialcosts],and(sometimes)[2]bureaucraticbarriersto actuallyaccessingdeclaredtaxbreaksorthelike.So,thekeybreakthroughstepwouldbetocreatea mechanismbywhichhouseholdersandsmallfirmsthathaveauseforsuchheaterscanaffordthem.

81 Forthat,agreenenergyfinancingschemeadministeredthroughthelocalelectricalutilityseemsa promisingapproach,aswasdiscussedinsectionC.3above.

Solarphotovoltaic[PV],aswasnotedinSectionAabove,isamorechallengingcase.Thekey reasonmaybeseenfromTableB1.Namely,solarPVsystemstypicallycostaboutUS$5–25per Wattofcapacity,leadingtoacurrenttypicallevellisedcostofelectricityof25¢[US]$1.25 [US]/kWh,andwithahopedforreductionto5–25¢[US]/kWh.

Suchcostsarenotcurrentlygenerallycompetitive,saveforspecialised,offgridpurposes.However, asadvancedmultiplejunction,thinfilm,polymer,dyesensitisedcellandothertechnologiesmature overthenextonetotwodecades,thismaychangesignificantly.So,sincePVtechnologiesmaybe deployedatconsumptionpointinhomes,farmsandcommercialorinstitutionalbuildings,thatmay leadtoPVbecomingcompetitiveattheconsumptionendofthegrid(consumerendgridparity, perhapsatUS8–10¢[US]/kWh]),providingaffordabilitymechanismsareinplacetospreadout thecapitalcostacrosssufficienttimethattherewillbeasignificantdemand.LateronPVmay becomecompetitiveatthegeneratorendofthegrid,andsoweseeanoptimisticcase2003 projectionforPV,fromGermany,withPVtakingoff2030–40andthenbecomingdominant:

Fig. C.4.1: A high solar-energy growth scenario for future energy

Onthisscenario,PVandsolarthermalcouldeasilybecomethedominantenergybasefortheglobal economy,withhydrogenbeingusedasanenergycarrierfortransportation.Insuchascenario, hybridand/orrechargeableelectricalvehiclesandHydrogenbased fuel cells xl wouldalsobecome importanttechnologiesfortransportation.Furthertothis,shouldfusiontechnologiesapproach commercialisation,hydrogenproductionbyelectrolysiswouldbeakeystagetowardstheproduction ofthemostlikelyrelevantisotopesforuseinfusionpowergenerators,suchasdeuterium.

Suchascenariomaycurrentlyseemoptimistic,butifPVcostscomedownenough,inthelongterm, asolarPVhydrogeneconomymaybecomequitelikely.

82 Accordingly,MontserratshouldmonitorPVprogress,builduptechnicalcapacityforphotovoltaics andfuelcells,andbepreparedtofollowtrendsthatmaywellmovesuchadevelopmentfrom optimistic to likely; especiallyiftherearerealbreakthroughsinthePVindustry.Indeed,already,there seemstobeatleastonefirm, Nanosolar ofCalifornia, xli whichreportedlyclaimstohavedeveloped athinfilmcellthatusesananoparticleinkthatis printed ontoarolloffairlythickaluminiummetal foil(thebottomelectrode),andthenselfassemblesfromparticlesof Copper Indium Gallium Diselenide [CIGS].Ahighcurrentcapacitytransparentconductoristhendepositedasthetopelectrode.All, dulyprotectedbyasuiteofover180patentsgranted,pendingorinapplication.Theresultingcells arereportedlyrobustanddurable–thecompanyoffersa25yearwarrantybasedonitsextraharsh acceleratedtesting.

ThefirmclaimstohavebrokenthroughtheUS$1/Wsalespricelevel(ofcourse,doubtedby critics).ForCaribbeanlevelsofinsolation,thismightyieldabasiclevellisedcostofabout5–6¢ [US]/kWh.(NB: Balance of system costs togivepowerin alternating current [AC]formand/orwhenthe sunisnotshining,wouldliftthissignificantly;thoughNanosolarclaimstohavereducedcoststhere tooastheAluminiumfilmsubstratetheyuseisclearlyeasierandcheapertoworkwiththanglassor wafersubstrates.)However,suchaPVcostbreakthroughwouldpushthemarketsforelectrical equipmenttowards direct current [DC]equipment,especiallysincemostelectronicsequipmentis actuallyDCandcurrentlyusesapowersupplymoduletoconvertACmainstoDC.(Switchmode converters,similartotheswitchmodepowersuppliesnowusuallyusedinpersonalcomputerscan reliablyconvertonelevelofDCtoanother.)

ShouldsuchaPVbreakthroughsucceedinthemarket,itwouldraisetheissueof net metering and associatedelectricitysalestothegridfromtraditionalconsumers,nowPVgeneratorsintheirown right.Thisbringstotheforeaclusterofrelatedissues:

a]Inthe1950's–60's,whenMontserratwasinitiallyelectrified,thetechnologiesweresuch thatitwasnecessarytohaveaguaranteedgeneratormonopolyforMonlec,anditwasof greatassistancetohaveDeutcheWelle/RadioAntillesasamajorcustomer.

b]Thus,electricitygenerationwasseenasanaturalmonopolyduetothehighcapitalcosts andeconomiesofscale.Monlecwasthereforelegallyestablishedasageneratingmonopoly, andothergenerators[downtothelevelofsmall“standby”generatorunits]strictly,wereto belicensedbytheelectricityutility.

c]Thisdecisivelyshapedthecorporatecultureandbusinessmodel,andMonlec(alongwith otherCaribbeanutilities)normallyviewsitselfasprincipallyanelectricitygenerator,withan associateddistributionnetworktodeliveritsproducttoconsumers.

d]Furthertothis,sinceCaribbeanutilitiesnormallyfacerelativelysmalldemandlevels,and wouldfaceprohibitivecostsintryingtosetuparegionalgrid,requiredlocalreservecapacity islarge.Thus,electricityproductioncostsandconsumerpriceswouldnaturallybehigh relativetoworldstandards.

e]Theenergyservicesperspective,multipliedbytheprospectiveriseofmoremodular renewableenergytechnologiessignificantlyshiftsthescenario.For,first,itmustbe recognisedthatenergyusersdonotdesireelectricityorotherformsofenergyfor themselves,butasmeanstotheenergybasedservicesthattheyneedtosupportproduction

83 andconsumptionactivitiesandtheirdesiredlifestyle.(Already,thisisevidentfor transportationandtelecommunication,wherecarsandcellphoneshavebecomeincreasingly dominant;bothbeingtechnologiesthatareenergybasedanddecentralised.) f]Second,onceawirebasednetworkhasbeeninvestedinandestablished,itisactuallythe gridthatistheevident“natural”monopoly,notthecentralisedgenerationassets.For,the overallcosttomakemultiplegridsinthesameregionortohaveagreatmanyoffgrid individualpointsourcesthathaveadequateonsitereservepower,isplainlyfarmorethan thattomodifyaccessforsupplyanddemandononeincommonelectricalenergycarrier network.So,oncecosteffectivemodulargenerationandgridcouplingtechnologiesare available,robustdistributionofelectricalenergyonamomenttomomentbasisfrom net sources-for-the-moment to net loads-for-the-moment arguablybecomesaninprincipleviableoption. g]Also,itisawasteofthecommunity'sinherentlyscarceeconomicresourcestooverinvest inoffgridsitebasedelectricitygenerationcapacitywithlocalised,sitebysitereserves.Butif modularrenewableelectricitygenerationtechnologiesemergeinacontextwhereinaddition toindividualsitebasedcostadvantages,thereisaperceivedenvironmentalimperativeto moveawayfromfossilfuels,itwillbeverydifficulttopreventtheemergenceofawaveof sitespecificminipowerplantsthatinaggregatewastethecommunity'seconomicresources throughunnecessaryduplication.Inshort,gridconnectedPVandsimilartechnologiesare mustfaceissues. h]Now,too,inthe1990's,thelogicofnetworkeconomicsjustoutlinedledtotheriseof independent/privatepowerproducers.Thatis,privategeneratorcompaniesfinanced,built andoperatedpowerplantsthensoldelectricitytothegridatguaranteedpricesand quantities.Unfortunately,experiencewithsuchventuresintheregionhasnotbeenentirely happy,andthereareissuesconnectedtothespecificbusinessmodelsofasignificant numberoftheventuresthatwereundertaken. i]Bethatasitmay,theunderlyinglogicstillhasconsiderableforce.So,thepotentialriseof lowcostphotovoltaicsandsimilarmodularelectricitygenerationtechnologiescomesback tothesamepoint,multipliedbytheissueofhowtohavesufficientreserveinthegridfrom momenttomomenttoensuresystemstability.Furtheraugmentingthepoint,isthe imperativetomoveawayfromexcessivedependencyonfossilfuelstorenewableenergy technologies.For,manyofthesetechnologiesareinherentlymodularandiftheyaregoing tobecosteffectiveatallwillachievegridparityatrelativelysmallscale. j]Thatmeanswehavetofindanewmodelfortheelectricityutilityinourcommunity,one thatcanaccommodateashifttodistributedgenerationthatinsignificantpartusesrenewable energytechnologiesthataremodularandusuallyintermittent.Oftenaswell,that intermittencydoesnotsmoothlymatchourconsumptionpatternsasshowninFigC2.3 above,especiallythedoublepeakonweekdays–oneinworkinghours,oneintheevenings. k]Arguably,theenergyservicesviewofSectionBabove[cf.alsopointejustabove] providesthebasisforsuchamodel.Thatis,wemustfirstrecognisethat consumers do not buy energy for its own sake, but to provide desired, energy-based services. So, they will naturally gravitate to credible, cost-effective, convenient, affordable, attractive technologies and associated energy sources. Thelogic ofthismarketplacedynamic,joinedtotheimplicationsofnetworkeconomicsappliedtoa

84 nationalelectricalgrid,leadstotheconclusionthat our utility should consider becoming the preferred provider of (or broker for) such accessible and affordable energy-based technologies and associated services. Thisimmediatelyentailsleveragingoftechnicalexpertisesothatcustomerscanbeassured thattheywillbeabletoaccesshasslefree,reliable,affordable,desirabletechnologies,with backupsupportthroughtheutilityorutilityapprovedsupportservices.Italsosuggeststhat weshouldseektousethegridasthenaturalmonopolytomanagethedevelopmentofahigh renewableenergyeconomy. l]Thisissuestartswithwinddevelopment,whichmayhappenasearlyas2008.So,while manyCaribbeanpowerengineersbecomeveryuncomfortablesosoonaswindorother intermittentsourcesapproach20%gridpenetration,wewillhavetocarefullyassessthe stabilisingpotentialofmoderngridmanagementsystemsforrelativelysmallscalepower gridswithwindnearto,atorwellabove20%penetration. m]Ifgeothermalcomesonstreambyabout2010,thiswillbeaverydispatchablesupply, withanavailabilityfactorthatcrediblyisatabout95%.Thatwouldbuyustime,aswewould thennothavetogoforverydeepwindpenetrationofthegridaugmentedbythingslike pumpedstoragehydroelectricitytogiveusabilitytoaddressmismatchesbetweendailypeak energysourcelevelsandpeakdemand.However,iftheongoinggeothermalexploration processregrettablyfailstoidentifyanexploitableresource,thentheunderlyingissueis reinforced. n]Ifandasphotovoltaicsachieveconsumerendgridparity,itwouldthenbecomeattractive relativetoextendingthegridtonowisolatedareas.Thatmeansthat over the next ten years or so, the first significant penetration of PV systems would probably occur in areas that are remote and that are currently held back from development because of prohibitive grid extension costs. xlii Theremayalsobea relativelysmallnumberofhouseholdsandfirmsthatmayeitherwanttogooffgridorto haveanetmeteringinterfacewiththenationalgrid;wherebyatsometimestheyarenet usersandatothertimesnetprovidersofelectricity. o]Aslongasthecumulativeimpactisminor,itwouldprobablybeusefultousethisasa naturalexperiment,studyingandlearningwhatapproacheswouldbebestifandwhenPV costsfallsufficientlythatitbecomesapotentiallycompetitivemainproviderofelectricityto thegrid.Accordingly,aslow,experiencedrivenrelaxationofgridconnexionpermit regulationswouldbeadvantageous,anditwouldbeworththewhiletopayoutafeetoa limitednumberofselectminorprivategeneratorsthatfrommonthtomonthmaybenet providersofelectricity,underreasonable net metering terms. p]Similarly,should renewable energy air conditioning systems takeoff,thatwouldprobablyhave significantrelevancetothedaytimepeakload,anditwouldbeworththetime,effortand moneytoundertakeasimilarexplorationofthepotential.

q]Thus,throughsuch“naturalexperiments,”therewouldbeabasisoffactuallygrounded technicaldatatoaddressthesituationthatmayemergeonthescaleof10–20years(or possiblysoonerthanthat),bywhichPVelectricitybecomescostcompetitivewiththemajor gridgenerationtechnologies.Thatwouldgiveafoundationforgraduallydevelopingan emergent,experiencebasedonwardpolicy.

85 C.5] Bio-fuels and other “fuels” alternatives:

Transportationisoursecondmostimportantuseoffuels.Bydirectinferencefromourfuelimport numbersandthefractionthatisusedforelectricitygeneration,itcrediblytakesupsome35%of suchimports.Hitherto,thatconsumptionhasbeenbasedonfossilfuels,butoverthenextfiveto tenyears,renewablebiofuelswillincreasinglycomeintothepictureasanalternative.For,crops suchassugarcane,certainfastgrowingfuelwoods,hemp,wastes,sewageandthelikecanbeused tomakebiofuelsandevenHydrogen–the“fuel”[strictly: energy carrier xliii ]formanyfuelcells.These alternative,renewablefuelsareincreasinglyviewedasthewaveofthefuturefortransportationand similarsystems.

TherehasbeenmuchdiscussionoftheanticipatedHydrogen[and/orSolarHydrogen]economy. SuchaneconomywillhavethemajorenvironmentaladvantageofeliminatingCarbonfromthefuel cycle;though,therehavebeenconcernsaboutescapinghydrogenandfreeradicalformationinthe atmosphereunderimpactofUVradiation,leadingtoozonedepletion.Ofmoredirectconsequence isthechallengeofHydrogengeneration,storage,transportanduseintransportationsystems.For, currently,themostenergeticallyandcostwiseefficientwaytogeneratehydrogenisfrom hydrocarbons;electrolysisrequiringabout50kWh/kgofelectricityfromwatertovehicle.So,while concentratedgenerationofHydrogenpluscarbonsequestrationispossible,thatonlybringsup storageandtransportationissues,inthecontextoftheimplicationsoftheH 2molecule’sbeingsmall andenergetic;leadingtoembrittlementofstoragetanksforespeciallycompressedgas.Liquefaction isenergeticallyexpensive[requiringtemperaturesoforder250°C(~20K)],andleadstohandling challenges.AbsorptionstoragetechniquescanattainaboutthestoragedensityofliquidH 2,butthat willbeaboutthreefifthsthevolumeconcentrationofHatomsingasoline.H 2canbeburnedin suitablymodifiedinternalcombustionengines,orusedinfuelcells(which,perunitpower,maystill beuptoahundredtimesasexpensiveasordinaryinternalcombustionengines).

Moreover,theintroductionofH 2wouldrequirelargescaleinvestmentsinrequiredinfrastructure oftheorderofhundredsofbillionstotrillionsofdollars[US]whichwillclearlysignificantlydelay deploymentofH 2.Consequently,Hydrogenisanexploratoryandlongtermdevelopment alternative,ratherthanamediumtermsolution.But, since breakthroughs are always possible, we should undertake some exploration and demonstration.

Electricityisalsoasuitablemeansforpoweringvehicles.Theenergystoragecanbeintheformof fuelsusedinfuelcells[orincurrenthybridcars,torunasmallenginethatspinsagenerator]. Alternatively,ifmaycomefromstoragebatteries.Unfortunately,suchbatteriesareoftenexpensive, heavy,somewhatbulkyandtendtowearoutafterseveralyearsofuse.Probablythemostlikelyuse ofbatterieswillbewiththeemergenceofpluginhybridelectricvehicles.Butagain,wearelooking attechnologiesthatareabitdowntheroad.

Bycontrast,majorbiofuelalternativesarefareasiertohandleusingcurrentinfrastructureand engines;perhapswithrelativelymodestmodification.

Forsuchfuels,amajorconsiderationisproductivitypotential.AccordingtoHoltzapple[2005]and others,biomassproductivitypotential(asoils,starchesand/orsugarsorattheupperendligno cellulose)canrangefromabout2–8tonnesperacreperyear,touptoabout60–90.Forinstance, Energy Cane isaleadinglandbasedcrop[~upto19tonnes/yearbagasse(lignocellulose),and8 tonnes/acreyearsugar]. Miscanthus ,asterileperennialhybridrelatedtosugarcane(butoften

86 misidentifiedas“elephantgrass”),whichgrowsinbothtemperateandtropicalregions,canroutinely yield12–15tonnesperacreyearofbiomass,withonecropinIllinoisrecordedasover24tonnes peracreyear. Water Hyacinth is,similarly,aleadingaquatic“crop”[6090tonnes/acreyearligno cellulose].Unfortunately,itisalsoapotentiallyecosystemdevastatinginvasivewaterplantspecies (preciselybecauseitissofastgrowing).

Hemp ,i.e. Cannabis sativa sativa [not indica ,the“smokeable”variety],isalsonoteworthyasapotential sourceofoils[fromthe“seeds”apparently,properly: fruit ],offibres[stems]andoffastgrowing woodybiomass.AccordingtoestimatesbyBioGasCompanyofNewZealand,hempcanbe processedtoyielduptoabout450gallons/acreyearofbiodieseland[throughfermentationofthe biomass]about1,500gallons/acreyearofethanol.Methanol(oncecalled“woodalcohol”asitcan bemadebypyrolysingwood)productionisasimilarpossibility. xliv

Hempderivedalcoholscouldbequitehelpful;as, trans-esterification requiresaconsiderable proportionofalcoholstotransformvegetableoilsintobiodieselsuitableforvehicularuse.Itis noteworthythatthisprocessissosimpleandfoolproofthatthereisnowaconsiderablehomebrew biodieselmovement,especiallyusingthesocalledAppleseedreactor,basedonanoldoildrumor waterheatertank.(NB:Intropicalcontexts,somestationarydieselengines,reportedly,cansimply directlyburnsocalled “straight vegetable oil,” SVO;and/orfiltered waste vegetable oil ,WVO,aminor source.Withafuelheatermodification[cost:perhapsUS$1,200],again“reportedly,”socanmany vehiculardieselengines;thoughmostoftheserelyona(small)tankofordinaryortransesterified dieseltoinitiallystartup–andthentopurgethesystemofSVObeforeshutdown.Several manufacturersmakeinjectorkitsthatallowmodificationofastandarddieseltorunSVO,without needforasecondtank.ThisharksbacktothefactthatMr.RudolphDiesel'soriginalengineactually ranonpeanutoil.[CAUTION:Ineachcaseoneshouldchecktherelevanttechnicalandwarranty details;recognisingthatifadieselisratedatadurabilityof500,000milesandonecutsoffevenjust 50,000milesoffthat,onehasineffectputuptheunderlyingenergyandmaterialsconsumptionfor dieselenginemanufacturingby10%.])

AlcoholsarefurtherimportantbecauseafuelcellthatfirstconvertsalcoholtoHydrogenthenuses thefreshlygeneratedHydrogengetsaroundmanyofthechallengesofusingHydrogenasafuel.

Inthisgeneralcontext,amajorindustrialchallengeisthat ligno-cellulose, the naturally occurring fibre- polymer and glue matrix composite material that forms the herbaceous and woody biomass that dominates the high end of the scale, is much harder to process to generate desired fuels than are oils, sugars and starches. Ineffectthesugar polymerfibresneedtobeseparatedfromtheirligninmatrixandbrokendownthroughhydrolysis intodigestiblesugars(whichmayrequirewellchosenand/orengineeredmicroorganisms,especially for pentose sugars ),thenfermented.

Lignin,theothercomponentoflignocellulose,canbeburnedasafuel(withcomparableheatvalue tocoal)andcanalsobedigestedor gasified throughapplicationofheatandpressure,withsteam(and oxygenorair)injection,yieldingamixtureofhydrogenandcarbonmonoxideknownassynthesis xlv gas[H 2andCO].Butthen,justaboutanyorganicmaterials canbegasifiedinthisway,whichcan thenbechemicallyrecombinedthroughtheFischerTropschsynthesisprocessintodesiredfuels. Unfortunately,theprocess–thougharelativelyefficientmeansofextractingenergyfrombiomass throughgasificationthensynthesisingdesirablefuels,iscapitalintensiveandhashighoperations andmaintenancecosts.(Historically,itwasusedtomakesyntheticfuelstodefeatblockadesor embargoes,e.g.GermanyintheSecondWorldWar,andSouthAfricaduringtheApartheidera.)

87 Starchyandsugarycropstendtotopoutat2–5tonnes/acreperyearoffermentablebiomass, leavingmicroalgaederivedvegetableoilthechampionofprospectively“easily”producedbiofuels.

Ofexistingorprospectiveconventionaloilproducingbiofuelcrops,calculationsstandardisedto yieldsinUSgallonsperacreperyearbasedonvarioussourcesindicatethat Palm Oil withupto760 USgallonsand Chinese Tallow ,ataboutupto700USgallons,arethehighestproducers(i.e.aboutan orderofmagnitudebelowtheinferredpotentialofmicroalgae). Honge ,orIndianBeech,whichdue toadeeptaprootissuitableforaridregions,isreportedlyabletoproduceupto~300gallons/acre peryear. Jatropha ,whichisconvenientlyasmallish,fastgrowingcrop,reportedlyproduces“easyto reap”seedsyieldingupto200360USgallonsperacreperyear.

Oilycropshaveafurtheradvantageaswell,forasRapier[March28,2006]summarises:

1 gallon of biodiesel has the effective energy value of 1/0.65, or 1.5 gallons of gasoline . . . [and] 1 gallon of gasoline is worth around 1.5 gallons of ethanol on a BTU equivalent basis, so 1 gallon of biodiesel is effectively equivalent to (1.5*1.5) or 2.25 gallons of ethanol ....[However,sinceinNorthAmerica especiallydieselenginedvehicles,forvariedreasons,arenotverypopularforpersonal/ familytransportation]itwilltakesometimeforatransitiontodieselstotakeplace.Thisis themostseriousobstacletowidescaleadoptionintheshortterm.

Aseconddisadvantagethatisoftencitedisthatbiodieselhasamuchhigherpourpointand cloudpointthanpetroleumdiesel.

Thislastchallengeisnotdirectlyrelevanttothetropics,butisaconcernintemperatezones,which dominatedieselenginemarkets.Itis,asdescribedbyvarioussources,addressableinprinciple throughtheuseofanelectricpreheaterand/orpreheatingthoughtheexhauststreamfromthe runningengine(whichcouldbestartedfromasmalllowpourpointdieseltank).But,such technologicalchangestendtomakeforbarriers,inthiscaseapreheatermayeasilycostuptoUS$ 1,200.Longchainalkanefuelsderivedfromgasificationandsynthesis,asineffecthighquality,more orlessconventional(butbiomassderived)dieselfuels,donotfacethischallenge.

Thus,dieselenginesaredesirableonenergeticgroundsbutduetovariouscharacteristicsareoften unpopularwithconsumers.Onward, plug-in rechargeable hybrid vehicles then fuel cell vehicles willcredibly bekeytrendsastheworldmovestowardsafutureenergytransportationsystem.Sincealcoholsare “better”storesofhydrogenthanhydrogengas,thesetrends–again–underscoretheimportanceof alcoholbasedbiofuelsandbiodieselfuelsassubstitutesforcurrentfossilfuels,especially:

[a] Ethanol, whichisacurrentlyusedgasolineadditive,andisundermajorregional considerationinlightofthewellknownBrazilsuccessstory,whichhingesontheabilityto usethebagassesideproductaswoodybiomassburnedtogenerateheatandelectricityfor theprocessofmakinganddistillingthealcohol.However,ethanolhasthedisadvantagesthat (i)ithasonlyabout2/3rdstheenergydensityofgasolineand(ii)ifusedatnear100% concentration,requiressignificant,thoughnotparticularlydifficult,modificationstovehicles andpossiblytohandlingequipment.For,ethanolatthehighconcentrationsrequiredforit toworkasafuelisapotentsolventandhasdifferentvolatilitycharacteristicsthan gasoline.

88 [b] Bio-butanol, afourcarbonatomalcoholsimilartobut“thicker”thanthefamiliartwo carbonatomalcohol, ethanol. Itiscommonlyusedasathinnerforpaints,but it is also a quite close substitute for gasoline; one which can reportedly be handled pretty much as gasoline is, using the same equipment with little or no modification. Inparticular,itsenergydensityisabout90%thatof gasoline,anditisabitmoreefficientincombustion(andhasniceoctanenumber characteristics),sothatonthestrengthoftheverylimitedandoftenunofficialteststodate, itmayyieldatadmoremileagethanconventionalgasoline.Itsproblemtodatehasbeenthat ithasbeendifficulttogeteconomicallyfeasiblehighvolumeproductionfrombiomassusing bacteria[thetraditionalbiomassbasedmethodofproduction,tracingtoChaim Weizmann, xlvi 19151916].However,ongoingdevelopmentswithfermentationtechnologies seemtobepromisingtochangethat.Inparticular,theidentificationordevelopmentof strainsofyeasttodigestwoodyand/orsugarcontainingbiomasstogiveeconomically feasibleyieldsisinprocess.Analgaebasedproductionpathwayalsoexists.

[c] Mixed Alcohol fuels: Holtzapple'spredigestion“composting”andfermentation processbasedonnaturalbacteriaculturescapturedfromtherumensoffistulatedcows (completewithplasticcapsforconvenienceintappingfermentationbacteriacultures)to generatemixedalcoholfuelswithoutexcessivesterilityconstraints,isalsoasignificant,but easilyoverlooked,contenderforacosteffectivebiofuelssolution.(Alsosignificantisthe factthattheresultingbiofuels,duetothemixtureofalcoholsinvolved,hasasuperior energydensitytoethanol,thoughnotquiteequaltogasoline: up to ~ 83% that of gasoline .)

Overall,whileeachoftheabovepotentialopportunitiesembedsrisksandchallenges,collectively theypointtothefeasibilityanddesirabilityofasustainableenergybasedalternativepathfor Montserrat'senergypolicy.

D] THE “POLICY ROLLOVER” APPROACH

Theabovesurveyofenergyopportunitiesunderscoresthedynamicnatureoftheenergysectorand especiallytheinitialimperativeofriskyexplorationofgeothermal,windandsolarenergyprospects.

Itisthereforereasonabletoproposethatafteraboutayearinwhichinitialinvestigationsare undertaken,thereshouldbeareviewoftheimplementationplanfollowing,andalsoofthemain policydeclarationandrationale.

Goingfurther,sincethatdynamismisnotexpectedtodecrease,atthefifthyear,thereshouldbea furthermajorreview,leadingtoapolicyrolloverkeyedtoanewfiveyearimplementationplan.That is,circa2012,thecurrentpolicywouldbeupdatedtoapolicyfortheyears2013to2032,andwould haveattachedanimplementationplanfortheyears2013–2017.Andsoon.

Thus,thepolicyprocesswillbeabletorespondtothedynamismoftheenergysector,while allowingustotrackthecapacityofsuccessivepolicydocumentsandprojectionstoaccurately predictlongtermdevelopments.Itwouldalsoaidusinmanagingtheimplementationprocessby comparingachievementsandprojectionsatanypointintheongoingprocess,towardssuch adjustmentsorcontingenciesasmaybereasonableatthetimeinquestion.

89 E] MONTSERRAT ENERGY POLICY ELEMENTS:

The Montserrat 2008 – 2027 Sustainable Energy Policy,isbasedon the intent that:across time, and in light of identified opportunities, challenges, strengths and weaknesses we shall more adequately and more fairly meet our energy needs in our own generation, but at the same time we commit ourselves to not compromise the ability of future Montserratians to meet their own energy needs.

Toachievethisintent, priority strategic initiatives mustbeidentifiedthatthatjointlyand cumulativelyundertake... a course of action for our community in Montserrat, that will help our nation to identify and fulfill a desirable and achievable vision : (1) of how we will obtain energy from technically and economically feasible, environmentally sound sources; and (2) of how we will then use it effectively and efficiently to contribute to an ever more wholesome, prosperous and earth-friendly lifestyle.

Themaintaskoftheaboverationalehasbeentoidentifytheframeworkforsuchacourseofaction, andinturnthisframeworkundergirdstheelementsinthepolicydeclaration,anditsassociated goals,objectives,wavesofadvanceandlinesofaction,acrosstheperiodto2027:

I] POLICY VISION -- TOWARDS A SUSTAINABLE ENERGY FUTURE : This is a one-paragraph synopsis of why we need to change from business as usual on energy, to a more sustainable alternative, and of how we will do so.

II] POLICY OVERVIEW – RISING TO MEET THE CHALLENGE OF SUSTAINABLE ENERGY : This presents an introduction to and one-page executive summary of the energy policy. It starts from briefly reviewing the economic and environmental unsustainability of our current over-dependence on fossil fuels, and proposes that we must move towards renewable energy and enhanced efficiency in light of an energy services oriented perspective. Capacity building through transparent credible partnerships and training will play a role, and we intend to be a regional exemplar and centre of excellence on sustainable energy.

III] DECLARATION OF POLICY INTENT: This identifies where we the people and government of Montserrat intend to go, thus outlining a plausibly achievable view of where we could be over the next twenty years, in light of the principles of sustainable development.

IV] INDICATIVE POLICY TARGETS: FIVE, TEN, FIFTEEN & TWENTY YEARS This breaks down the overall goal into objectives structured around five lines of action and four five- year waves of advance. The attached Schedule 1 presents a matrix that displays the resulting specific targets for achievement by lines of action and waves of advance.

90 V] MAIN POLICY INSTRUMENTS: To achieve outcomes, we must first undertake targetted action, along lines of action shaped by our intents and commitments. To do so, we need means that can work effectively towards the desired ends. These are the policy instruments, starting with the creation of an Energy Office to serve as a focal point for action towards sustainable energy, especially through coordinating priority projects. Legal/regulatory and financial instruments (including Carbon Trading, taxation incentives, consumer and small business level affordability schemes and similar mechanisms) then provide additional tools for moving towards the targets.

VI] FIVE-YEAR INITIAL PROGRAMME OF IMPLEMENTATION: To give initial effect to the policy, a five-year operational plan is presented in outline, based on the identified targets for the first five-year wave of advance. The prospective Energy Office will be critical to fulfilling the plan. It also is expected to serve as a focal point for strategic initiatives, managed through a project team structure and with transparency through a stakeholder based board, a technical and scientific advisory panel and a regular programme of public forums on the state of and prospects for energy in Montserrat.

VII] ORGANISATION, RESOURCING, OVERSIGHT, REVIEW

The prospective Energy Office, under an appropriate Ministry, is the prospective designated focal point for coordinated action on sustainable energy under the energy policy. As such it would access appropriate GOM resources, and through partnerships with relevant partners in the context of priority strategic initiatives and projects, it would access further resources. GOM oversight would be through the Ministry, and transparent governance would be enhanced through the stakeholder based advisory board, the technical and scientific advisory panel and the public forums. Through these mechanisms, regular review of progress and challenges would be made, and a basis set for developing onward five-year programmes of action under the policy as it evolves across time in light of developing global, regional and local trends and circumstances relevant to energy.

VIII] ONWARD LINES OF ACTION: The institution of a sequence of five-year programmes of action, and the associated review and revision of the policy, in a context of participative governance provide a basis for proactive onward sustained transformation of Montserrat's energy base to a green energy sustainable foundation.

______

SUMMARY & RECOMMENDATIONS: Montserrat’scurrentenergysystemshelpedfuelour transformationtoamoderneconomy,fromthe1950’stothe1990’s.

But,asthenewmillenniumdawned,ithasbecomeincreasinglyevidentthatalongwiththerestof theworld we must now urgently transform our energy systems to a sustainable basis. Thatinturnjustifiesthe needforawellthoughtthroughpolicyframeworkthatenjoyssufficientrobustsupportand resourcesthatitcanhelpguidethatprocess.

Overthenextfewmonths,inlightoftheopportunities,risksandchallengeswefaceandthrough thepolicyprocessnowintrain,letusnowbeginthattransformation.

91 APPENDIX G.1:

SAMPLE PROJECT “LOGICAL FRAMEWORK”

2. IMPLEMENTATION, MONITORING & 3. PROJECT RISK MANAGEMENT 1. PROJECT CONTROL 2a. CRITICAL 3a. ASSUMPTIONS RE 3b. RISK FRAMEWORK: 2b. CSF INDICATORS/HOW 3c. CONTINGENCY SUCCESS ENVIRONMENT: PEST + OBSERVED RESPONSES FACTORS BP HI MED LO

1a.VISIO(SUSTAIABLE?):

1b.PROJECT:PURPOSE /GOAL(S):

1c.PROJECT’SDELIVERABLE OUTPUTS:

1d.PROJECT’SACTIVITIES:

1e.PROJECT’SREQUIRED IPUTS:

92 APPENDIX G.2

Montserrat Energy Statistics

ThebackdroptoMontserrat’senergyimportstatisticsistheglobalfossilfuelmarket,witha particularemphasisonoil;whichiscurrentlyproducedatarateofabout85millionbarrelsperday.

Inturn,theoilmarketfacestheissueof Peak Oil ,athesiswhichtracestoM.KingHubbert,1956. Currently,forinstance,MattSimmons,Houstonbasedinvestmentbankerandauthorofthemajor 2005book, Twilight in the Desert ,observestrends xlvii intheSaudioilwellproductivitythatsuggests thatthesetheleadingconventionaloilreservesintheworldhavepassedtheirpeak.Sucha trendwouldbecompoundedbythealreadystronglyrisingdemandfromChinaandIndia,whichhas alreadyhelpedbidpricesupwardssharply,tonowoverUS$100/barrel;whereonebarrelcontains42 USgallonsofcrudeoil.Astheseandothermajorproductioncentrespeakanddeclineinthefaceof risingdemand,oilshortageswouldnaturallydrivepricesupwards,accordingtoMrSimmons, perhapsashighasUS$300/barrel.

Others,suchasShell’sUSOperationspresident,JohnHoffmeister,suggestthatwhileconventional oilmayindeedbepeakingassuggested,therisingpriceshavemade/willmakenonconventionaloil sourcessuchasCanada’sAthabaskaoilsands,Venezuela’sextraheavycrudeintheOrinocoriver basinandextradeepoffshorewellseconomicallycompetitive,whichmayhelpstabilisethetrend beforeitreachesthatsortoflevel.For,clearly,wideningoftechnologicalfrontiersandtherisingof pricesopensspaceforeffectivesubstitutesforconventionaloil.(Thisnowincludesopeningspace forrenewableenergytechnologies.)

However,intheshortterm,itisevidentthatwheneverdemandforoilisnearthepeakofavailable productioncapacityatanygiventime,increaseddemandorsuddenfallsinsupplyleadtooilprice spikes,partlyexplainingthevolatilityofthemarket.Then,ifsuchaspikeleadstoacombinationof risingproductionfromnewsourcesandafallindemand(orinjustthegrowthtrends)duetoa resultingorassociatedslowedglobaleconomy,thepricewillthereafternaturallytendtofallagain;at least,inrealterms.For,astrongriseinoilpricestendstoinflatetheglobaleconomy,ineffect depreciatingthevalueofcurrencies.Thatiswhy,forinstance,thelate1990’soilpricesofabout US$19/barrelwereviewedasbeingmoreorlesscomparabletothe1959levelsofabout US$2/barrel.

Againstthatgeneralbackdrop,Montserrat’soilimporttrendsareindicativeofourhighdependency onimportedfossilfuels,andofthepotentialforeconomictransformationandstabilisationifwecan significantlyshiftelectricityproductionand/ortransportationawayfromdependencyonoil. Unfortunately,thecurrentoilimportstatisticsaresomewhatquestionable[threedatasetsfromtwo governmentdepartmentsbeingsomewhatincoherenttodate],so the figures below, from the initial set supplied by the Statistics Department circa January 2008, per data request 710, must be taken with a few grains of salt; fuel import numbers may be about 50% of this size (as per an earlier data set which was apparently used for the Edgecombe study circa 2004). The portrayed 2002 spike is perhaps in part at least an artefact :

93 Fig.G2.1 Montserrat’s aggregate fuel imports, by bulk

Fig.G2.2 Montserrat’s fuel imports, by energy content

94 FigG2.3 Energy intensity of Montserrat’s Economy, using GDP at current prices

FigG2.4 Montserrat’s Constant-dollar GDP vs. Carbon Dioxide emissions

95 Table G2.1:MontserratFuelImporttrendsandrelatedstatistics,1999–2007,asperinitiallysuppliedStatisticsDeptDatacircaJanuary 2008,relativetodatarequest710andassociatedcalculations

M'rat fuel use trends 99 - 07 YEARS 1999 2000 2001 2002 2003 2004 2005 2006 2007 A: FUEL CONS. DATA gasoline, US Gal. 87,882 423,748 277,868 2,254,576 1,467,906 1,853,823 1,440,254 1,642,669 1,826,347 diesel, US gal. 72,527 591,519 430,906 5,858,182 2,209,469 2,753,643 2,438,496 2,298,164 2,281,725 LPG [Propane] US Gal 277,685 196,257 122,517 5,697 249 530,319 1,047,700 1,000,571 311,721 Kerosine, US Gal 3.11 29.53 664.78 0.31 1.86 434.17 131.78 35.43 72.10 Jet fuel, US Gal 1,411.92 493.54 332.55 33.25 555.07 6.84 89.51 15.23 9.32 energy from that fuel, GJ 49,631 166,283 115,215 1,204,535 535,563 721,398 667,639 668,036 623,720

Monlec gen, MW h 8408.4 8876.9 8990.9 9555.6 9741.2 10607.6 11302.4 11412.4 Monlec fuel use, US gal diesel 590,737 619,486 644,283 669,396 712,071 729,577 740,835 gal diesel/MWhe 65.70 64.83 66.14 63.11 63.00 63.93 Absolute energy Efficiency 0.354 0.359 0.352 0.368 0.369 0.364

Tot fuel per req 710, US Gal 439,509 1,212,047 832,288 8,118,488 3,678,180 5,138,226 4,926,671.01 4,941,455 4,419,874.39 1 Fuel, per earlier data, US Gal 1,796,000 2,025,000 2,043,000 2,251,000 2,373,000

CIF value. Per req 710, EC$ 1,837,659 6,168,400 3,441,394 12,771,112 10,493,362 14,449,697 19,010,042 23,281,800 22,688,849

Current price GDP, Mn EC$ 80 79 83 88 89 95 99 106 GDP, Mn EC$1990 60.32 58.51 56.85 58.74 58.2 60.79 60.58 58.86 57.26 Population, mid-year 3,392 3,894 4,517 4,563 4,482 4,681 4,785 4,655 GDP EC$ 1990/capita $17,783.02 $15,025.68 $12,585.79 $12,873.11 $12,985.27 $12,986.54 $12,660.40 $12,644.47 $11,882.13 energy/current price GDP, MJ/$ 0.62 2.10 1.39 13.73 5.99 7.63 6.77 6.29 CIF/Current GDP 2.3% 7.8% 4.2% 14.6% 11.7% 15.3% 19.3% 21.9% n/a

1 Evidently, as used by D Edgecombe, circa 2004

96 APPEDIXG.3:

PROJECT CONCEPT PAPER FORMAT GEM/TKI 2001, this rev. 2008

CONTEXT: Projectconceptpapersareusedtosetoutthekeyideasforaprojectina formatthatcanbeusedforfurtherdevelopmentthroughthestagesoftheprojectcycle:

Fig G.3.1: The World Bank’s summary of the Project Cycle 2 Inthecaseofsmallprojects,theconceptpapermaybeenoughtoserveasaproposal.More complexprojectswillusesuchapaperasthestartpointforfurtherdevelopmentina standardformat. Thus,beingabletowritesuchapaper,tocaptureanideaforaprojectinaformatthatcan beusedfordiscussionanddevelopmentisacriticalprojectmanagementskill. Theconceptpapershouldbeofabout35pagesinlength[exclusiveoftheLogFrameand anyotherappendicesyouwishtoadd],andshouldbeaccompaniedbyacoveringletter. Theframeworkforsuchapapershouldinclude: OUTLINE OF A PROJECT CONCEPT PAPER TITLE: Bebrief,descriptive,andmemorable.

2(SOURCE: Project Cycle Manual, http://www.mos.gov.pl/mos/publikac/Raporty_opracowania/manual/source_1.html#9.5 )

97 INTRODUCTION: A brief statementoftheneedfortheproject,whyitisimportant/urgentto meettheneed,andhowitmaybesuccessfullyandsustainablymetthroughcarryingoutthis project.WhatistheFIRSTthingyouwantthereadertoknowaboutyourproject?

1. Background and Rationale: Anexplorationofthecontextfortheproject,inlightofthe underlyinganalysis,givingabitmoredetailthantheintroductionon:

• Howtheneedforaprojectcametobe;

• Athumbnailsketchonthestateoftheartinknowledgeonthematter: environmentalfactors,trendsanddynamics,issues/controversiesandperspectives, howinterventionscouldgiverisetothedesiredoutcomes.

• Theexisting/expectedresourcesandstakeholdercommitmentsthatpermitan effectiveresponsetobedeveloped;and,

• Whatfactorscouldmotivateaswitchfrombusinessasusualtoamoresustainable paththroughdoingtheproject.

2. Goals and Objectives: Conciselystatetheoverallgoaltobeachievedthroughdoingthe project.Then,breakitdownintoasmalllistofmorespecific,brief,observable(andpreferably quantitativelymeasurable)objectivesthatcanbeachievedbygiventimes(totheday,week,or month,typically).Whenattained,theseobjectivesshouldcollectivelyindicatetheachievement ofthegoal.

3. Proposed Implementation: Brieflyoutlinehowtheprojectwouldbeorganised,managed andcarriedoutusingpeople,organisational,financialandmaterialresources,acrosstime.(It maybehelpfultodrawachartthatstatesthegoal,thenbranchesouttotheobjectives,then liststherequiredactivitiesforeachobjective.Thisiscalleda work break-down structure .An organisationalframeworkformakingdecisionsaboutandmanagingtheprojectwillalsobe helpful.)

4. Milestones and Deliverables: Identifyandlist,stagebystage,whattheprojectistoachieve andproduceasoutputs.(Thesewillbeusedformonitoring,management,controland evaluationoftheimplementationprocess,soinception,interim["progress/gap"]andfinal narrativeandfinancialreportswillbeimportantdeliverables.)

5. Inputs: Identifyandlisttheinputsrequiredfortheproject:peopleandskills,teams/work groups,reportinglinkages,equipment,space,materials,funds,permitsrequired,etc.

6. Estimated Budget: Asummarybudgetbasedonreasonableestimatesofthecostsformajor activities,andoncontributionsfromthedifferentfunding(andinkind)sources.Perhaps,as anappendix,withareferenceinthemaintext,asthatallowseasyexclusionincopiescirculated tothosewhodonotneedtoseeabudget.(Thelogframeandworkbreakdownstructureare veryhelpfulinbudgetconstruction.Itisoftenusefultoincludeacontingencysum,tobe

98 releasedunderappropriateauthorisationif/ascontingenciesarewarrantedorunforeseen opportunitiesarise.)

7. Key Assumptions: Identifyandlistcriticalenvironmentalconditionsthatmayaffectthe achievabilityoftheproject'sgoals.Someassessmentoftheirriskandimpactsontheproject mayprovehelpful,withsomebriefreferencetohowtheywillbemonitoredandrespondedto asnecessary.

8. Outcomes, Benefits and Impacts: Ayearorsoaftertheprojecthasbeencompleted,what willithavechangedforthegood?Whataboutfivetoten(ormore)yearsafter?Whowill directlybenefitfromthesemediumtolongtermchanges?Whoelsemaybeaffectedbythe project,forgoodorill?[Thesegroupsarethe stakeholders .]Also,iftheprojectislikelyto significantlyaffectthehumanornaturalenvironment(e.g.genderissues,culturalheritagesites, stakeholdergroups,economicprospectsofstakeholders,rivers,watersheds,forests,coastal zones,threatenedfloraandfauna),favourablyoradversely,thisshouldbebrieflynotedand requirementsforpreparinganEnvironmentalImpactAssessment(ifoneisneeded)shouldbe listed.

SUMMARY AND RECOMMENDATIONS: Summmarisethepointoftheprojectasbriefly asyoucan,stateyourverdictonfeasibility,importanceanddesirability,andinviteparticipation.A respectful,professionallydignifiedtoneisbest.

APPENDICES: LogicalFramework(whichwillprovidethebasisformanyoftheabovesections ofthepaper),andcontactinformationfortheprojectimplementers.Anyotherreferencematerial thatseemsappropriate,suchasaSWOTanalysischart,abudget,oraGanttChartoraWork BreakdownStructurechart.)

99 APPEDIXG.4: COFIDETIAL: Stakeholderreviewandresponseform

As a stakeholder of a green energy future for Montserrat, you are kindly invited to fill in then submit the following, to the Environment Department of the Ministry of Agriculture, Lands, Housing and the Environment [MALHE], Brades, Montserrat, or at other locations as announced:

1]Generalresponse:

a) I see the following as three major good points for this proposed energy policy:

GOODPOITS WHYTHEYAREGOOD 1:

2:

3:

b) I found the following to be three major bad points about this energy policy:

BADPOITS WHYTHEYAREBAD 1:

2:

3:

/Please turn over . . .

100 2]Pointsforimprovement:

Thisdraftenergypolicywouldbe improved if... 1: Because . . .

2: Because . . .

3: Because . . .

3]Anyothersuggestionsorcomments...

I also suggest that . . .

4] If youwishtodoso,youmaycontacttheDepartmentoftheEnvironment,Brades,for furthercommunication.Youdonotneedtodoso,butitmightbehelpful.

THAKYOU

101 APPENDIX G.5:

Remarks on Stakeholder & Partner Consultations and Contributions

Thestakeholderandpartnerconsultationprocessforthisconsultancybeganonaninformalbasis withtheUNECLACexpertvisitinSeptember2007;thatis,inthepreparatoryphasebeforethe actualcontractwassignedinmidDecember.

Duringthatvisit,aninformalofkeypartnersandstakeholderswasconsultedwith, subsequentlybecomingthenucleusoftheformalEnergyPolicyConsultationGroup.Thisgroup hasplayedavital,shapingroleacrossthelifeoftheproject.Thedevotionoffocus,timeandeffort byMrPeterWhiteofMULhasbeenofparticularlynoteworthyimportance.Likewise,major concernsraisedbyCRM/MGPChavealsoplayedakeyshapingroleinthepolicydraftingprocess. MrAlbertDaleyoftheDevelopmentUnithasrepeatedlycontributedsignificantinsightsand information.Manyofficersindepartmentsandunitsacrossthegovernmenthavegivensignificant inputsandcomments,especiallythroughprovidingkeydocumentsanddata;theDevelopmentUnit, theFinanceDepartment,theStatisticsDepartmentandtheCustomsDepartmentbeingparticularly noteworthy.MrRoydenGreaves’2007EngineeringsummerstudyforhisM.EngatImperial College,London,wasgraciouslymadeavailabletotheconsultancy.

Beyondthis,manyindividualsandgroupsacrossMontserratalsocontributedinsightsandinputsin variousways,especiallyfollowingthecirculationofadraftoverviewwithattachmentsstarting December17,2007;thedateofcontractsigning.Membersofgroupsandthepublicwho participatedinindividualdiscussions,ingroupmeetingsandinpublicmeetingsandmedia appearancesarealsotoberecognised.

Similarly,widerelectronicconsultationsandmeetingswithvisitingexpertshavebroughtininsights fromvariousstakeholdersanddevelopmentpartnersoverseas.Especiallynotableamongthese overseascontributionsare:

• Themany,variedandbeyondthecallofdutycontributionsofUNECLACthroughMr ManlioCoviello, • Technicalinsights,observationsandcommentsbyvisitingexpertsfromGeothermExand IGG, • DrSimonYoung’sgeneralsuggestionsandhiscommentsinresponsetoquestionson certaintechnicalgeologicalissues, • OASandtheGovernmentofDominica[whohavekindlysuppliedacopyofthe GeoCaraibesprojectdraftgeothermaldevelopmentlawandassociatedlegalcommentary], • ConcernsonpossibilitiesforexploitiveforeigninvestmentvoicedbyDrSharonRomeo FivelDemoretinaseriesoftransatlantictelephoneconversations,and • FormerenergyofficerandPSMrJosephDaniel’scontributiononelectricvehicles.

DiscussionswithrepresentativesofCRM[CommitteefortheRedevelopmentofMontserrat]onthe energypolicyandonGeothermalEnergydevelopmentprovedveryimportantfromDecember2007 on,asthisNGObecamethefocusforexpressionofcriticalconcernsandchallenges.Itis importanttodocumenttheirperspective,asexpressedinaseriesofmeetingswithprincipalsofboth

102 CRMandMontserratGeothermalPowerCompany(MGPC,thespunoffproposedgeothermal developerbasedonCRM),fromDecembertoJanuaryFebruary:

1]CRM/MGPCconsidersthatthekeyissueistomoveforwardongeothermalenergy developmentthroughgrantingalicensetothe local, communitybasedinitiative,MGPC, withoutfurtherunduedelay.ForMGPC,intheirstatedopinion,hasidentifiedandsourced adequatefundingtoinitiallyexploreandthenlayabasisfordevelopinggeothermalenergy. (Therewasastrongconcernthatquestionableoverseasinterestsmightholdsignificant equityinormanageanygeothermaldevelopment,leadingtoariskofinappropriate exploitationofMontserrat’sresourcesandpeople.Theunfortunatecircumstancesofthe 2006attemptedsigningofageothermalexplorationanddevelopmentlicensecontractwith WestIndiesPowerLimitedandresultingpublicprotestsandcontroversieswerecitedasa keyevidentialbasisforthisconcern.)

2]OnlearningthattheGOMwishedtodevelopanenergypolicyasaframeworkbefore carryingoutgeothermaldevelopment,oneofCRM’smemberspreparedandsubmitteda draftforsuchapolicybasedontheCARICOMdraftpolicyascutdowntowhatwas deemedappropriatetoMontserrat’scircumstances.So,intheiropinion,therewasnoneed foranyfurtherelaboratepolicydevelopmentprocess.(NB:Attheconsultant’srequest(and asofferedbyCRM),acopyofthedocumentwascommunicated;theCARICOMandOECS policydraftshavingalreadybeenapartoftheprocesstodate.Itwasconsultedinthe draftingofthepolicydocument,butprovedtobeofsomewhatlimitedutilityrelativetothe broadertermsoftheremitforthepolicyassetbyourdemocraticallyelectedgovernment anditsdulyappointedofficials.)

3]MostofthealternativeandrenewableenergyideasintheCARICOMpolicydocument wereviewedasbeingirrelevanttoMontserratandsowhatinCRM’sviewisthekeyissue wasidentifiedandhighlighted, geothermal energy development. Inthatcontext,theremitofthe policydevelopmentconsultancywasthereforeseenbythisNGOasfartoobroad.The policydevelopmentprojectwasseenaseffectivelyadelayingtactic,perhapslinkedto concernsidentifiedat1justabove.

4]ThegroupthenclaimedthatGoMhadgivenanundertakingtoCRM/MGPCthatno actionwouldbetakenongeothermalenergyuntilthepolicywasinplace.Further,theyhad beentoDfIDabouthelpingtofundgeothermalexplorationanddevelopmentthrough MGPC,onlytoberebuffedonDfIDpolicygrounds.So,onlearningthat DfID (nb:as opposedtoGOM)hadinitiatedaprojectwithUNECLACtobringtoMontserratan AmericancompanyandanItalian“company”toundertakealowbudgetinitialsurvey,itwas viewedasnottransparentandthusmostlikelyasteptowardsinjectionofexploitative overseasinterests.This,CRMwouldpubliclyprotest.(Indeedthissetofconcernsformed theframeworkforsubsequentradiobroadcasts.)

5]Thetechnicalcompetenceoftheproposedcompany,GeothermExandthatoftheItalian research institute ,IGG,werequestioned.Sowastheinitialcostingandprojectedriskfor geothermalexplorationanddevelopment:especially,theCovielloNRELestimatesthaton basicprobabilityanalysissuggest~5050oddsoninitialexplorationuptoandincluding exploratorywells;atacostprobablyintheballparkofuptoaboutUS$2millions.

103 6]DrPaulYounger’s2006estimatesfortheprobableoverallprojectcostsandtimelines wereviewedastoohigh,relativetoquotationsCRMhad.DrSimonYoung’sobservation thatearlycommercialdevelopmenthadrepeatedlybeenstymiedintheCaribbeanandhis associatedrecommendationonthestrengthoftheGuadeloupesuccessstoryandthethen emergentGeoCaraibesproject,thataidfundedexplorationwasmorelikelytosucceedwas alsoobjectedto.SoweretheobservationsofADEMEonthekeysuccessfactorsofthe Guadeloupegeothermaldevelopments;namely,theinjectionofaidfundingtoundertakethe highrisk,relativelyhighcostexploratoryphasethathadrepeatedlybeenaroadblockto strictlycommercialdevelopment.SimilarlyNRELoftheUSA’sobservationsthat exploratorygeothermalwellscrediblytendtocostuptoormorethanUS$1mn,andhavean industryaveragesuccessrateof1in5,wasdismissedasirrelevanttoourcase.

7]ThesolutionofferedbyCRM/MGPCwastoineffectadopttheCRMdraftpolicy documentwithoutfurtherdelay,rapidlythereaftergrantanexplorationdevelopmentlicence toMGPC,andletthedevelopmentofgeothermalenergymoveaheadbasedon Montserratianownershipandalreadyidentifiedfinancing.Whereexternaltechnicalexpertise wasneeded,itwouldbehired,managementwouldbeinexperiencedhandsaspresentinthe leadershipofMGPC,andtherequiredplantwouldbemoreorlessavailableatlowcostoff theshelf. xlviii

Thesethemes,issuesandargumentshavesubsequentlycomeupfromtimetotimeacrossthelifeof theconsultancy,inpublicmeetingsandinsomegrouporindividualconsultations.Doubtless,this reflectsthepublicrelationsandpubliceducationactivitiesofCRMandMGPCoverthetwoyear intervalsince2006.Itisthereforeappropriatetonoteonafewpoints,observinghowtheabove concernshavebeenreflectedinthedraftedpolicy,especiallyonpointswherethepolicyaddresses geothermalenergyasamajoralbeitfairlyriskyandlikelyhighcostopportunityforagreen energyfuture:

a]Geothermalenergyisjustoneofseveralrenewableandenergyefficiencyopportunitieswe needtoaddresstotransitionMontserrattoamorerobust,secureandsustainableenergy base.So,whiletheGOMDfIDUNaidfundedprojecttocarryoutexplorationandif successfulidentificationandcharacterisationofaresourceisanongoingproject,soisawind initiative,andstepsarebeingconsideredtomoveaheadonotherrenewables.Energy efficiencyinitiativesanddemandsidemanagementarealsounderconsideration,andmore futuristicpossibilitieslikehydrogen[throughUNIDO’sHydrogenIslandsinitiative]andbio fuels[throughtheregionalinitiative]arealsounderconsideration.

b]Throughapplyingthelegalprinciplethatmineral,waterandtreasurerightsarepublic resources,anydevelopmentofgeothermalenergywillbethroughatransparent,legally mandatedTendersBoardprocesswithbidderprequalification.Also,geothermalenergyis generallyviewedasacomplex,capitalintensive,fairlyhighriskformofenergytodevelop; whichhinderscommercialdevelopment.Consequentlytheglobalcircleofexperienced, successful,credibledevelopersisfairlynarrow.Thisledtotheproposedaidfunded explorationprocess,whichisnowongoing.Then,ifacommerciallyviablegeothermal energyresourceissuccessfullyidentified,theprospectivedevelopmentpartnershipwillhave todemonstratefinancialandtechnicalcredibility,andwillhavetoincorporatea Montserratiancomponent,towardstechnology,managementand[ifrelevant]ownership transfer.

104 c]Thisreflectsnotonlytheneedforustodevelopourowncapacity,butalsothehistory– drivenbalanceofforces,viewsandsensitivitiesinourcommunityandregiononownership ofkeynationalassets.For,wecannotforgetthattheCaribbean’sfirstexperiencesofforeign investmentwereassociatedwithconquest,enslavement,slavery–basedplantationsand colonialism.Inmorerecenttimes,therehavebeentoomanyoccasionsintheregionwhere majorinvestmentdealswerenotcarriedoutintheinterestsofthepeopleatlarge,andin somecaseswerenotonlynottransparent,butsometimesoutrightcorrupt.Itisthis backdropthatlendsplausibilityandstingtoCRM’sexpressedconcernthatgeothermal developmentheremightfallvictimtosimilardestructivepatterns.

d]Havingnotedthat,giventheneedtomoveaheadwithoutunduedelayonenergy developments,itisactuallyanearlypayoffoftheenergypolicydiscussionanddevelopment processthatithashelpedtriggeraidfundedgeothermalexploration,aswellasasimilar projectthroughMULandDfIDtobringmodernwindenergybackintoMontserrat’s electricitygrid.So,thepolicydevelopmentprocessisplainlynotacauseofunduedelayson greenenergydevelopment.

e]Similarly,assoonasalinkwasseenbetweentheestablishedTendersBoardfinancial transparencyregulationsandtheprincipleofpublicownershipofthepotentialgeothermal resource,leadingtoaprequalifiedbidprocessforcommercialdevelopment,theGOM wouldhavebeenirresponsibletorejectorpostponesuchanaidfundedexplorationprocess. Notleast,suchaprocesstakestheobservedmajorcommercialdevelopmentroadblock [highcost,highriskexploration]offthetable.Ifsuccessful,itwouldatonceput Montserrat’speopleandelectedgovernmentinthepositionofinvitingbidsagainstaknown, valuedresource,notanunknown,riskypossibility.Thatshouldputusinapositionof negotiatingfromapositionofknownstrength.

Atthesametime,asapartoftheinceptionprocess,astakeholderidentification,impactanalysisand consultationstrategymatrixwaspreparedincollaborationwiththeDOEandwaspresentedatthe firstmeetingoftheEPCG,earlyinFebruary.Publicandgroupconsultationshavebeenundertaken initslight,electronically,throughindividualandgroupmeetings,andthemediaappearancesand publicmeetings,withsomewhatmixedresults.Lowattendanceatpublicmeetings,andrepeated delaysanddifficultieswithmakinginitialcontactsandwithfollowuptofirmupmeetingsforgroup sessionswereparticularlynoteworthyaschallenges.Havingnotedthat,theenergypolicy consultationgroupwasaparticularlynoteworthypointofsuccess,andseveralsignificantinputs havecomeinelectronically.Also,inmanycases,observedpatternsofinteraction,issuesand discussionindicatethatmostoftheissuesandconcernsstemfromtheclearimpactoftheCRM concernsjustnotedabove.

Onekeyissuewasthatmanystakeholdersaremoreconcernedtoseepracticalreductionsinbillsand costs,ifpossibleandwishtoknowhowsoon.Thetimelineisthatenergyefficiencycanmakea differencerightaway.Windpowercanbeonlinewithinayearorso.Geothermalifsuccessfulmay crediblytakeaboutthreeyears.Biofuelsandthelikeareprobably5–10yearsoffformajorimpacts. SolarPVwilltakeseveralyearstobereallycostcompetitiveandaffordable.Anenergyaudits, creditsandefficiencypromotionschemecouldinpartsstartrightaway,butwouldtakesome monthstoorganise,beforeinitialimplementationwhichwouldtakesomemonthsbeyondthat.

105 Already,winddevelopmentisunderway,andthegeothermalexplorationhasreachedtheinitial phase,apreliminaryscopingfieldvisitinFebruarywithinitialreportscurrentlybeingpeerreviewed.

AfurthernoteworthyconcernisthatsomeseethedevelopmentofGeothermalenergyasliableto dislocatejobsamongMonlec’sstaff,aswasforinstancehighlightedinaLabourSpeakspresentation onZJBradio.(Thisprobablyinteractswiththeongoingconcernsregardingthemergerbetween MonlecandtheWaterAuthority,toformMUL.)Whenthisconcerncameupinapublicmeeting[in StPeters],itwasobservedthatthestaffofMonlecconstitutethesoleconcentrationofrelevant technicalcapacityforenergytransformation.So,whiledislocations,discomfortandrisksarelikely, thishastodomorewithretrainingandretooling,notsomuchwithariseinunemployment.

AninterestingissueraisedinLookoutwasthatofwhetherbiofuelsarecostcompetitivewithfossil fuels,oncesubsidiesareremoved.

Ofcourse,fuelandtransportationpriceshavealwaysreflectedmanydirectandindirectsubsidies andtaxes;e.g.tosupportthenationalroadnetwork,portsetc–allthewayuptothemultiple hundredsofbillionsinvestedintheoceanicpowernaviesthatsecuretheworld’soiltraderoutes. And,ithasbeenevidentsincethedaysofclassicalempiresacrosstheworldthatsuchsubsidies oftenreturnsuchlargebenefitsthattheircostiswellworthundertaking.

Moredirectly,weareexploringanopportunityforthefuture;onethatwouldmakefuelsafarmore indigenousproduct,thussignificantlyimprovingrobustness,stabilityandsecurityofenergysupply. Further,forbiofuels,thisisinacontextwheretheprocessingrequirementstotransformbiomass intofuelsareoftenfairlysimple.Thismeansthatthemostsignificantquestiontypicallybecomes feedstockcosts,which–apartfromrecoveredwastes–areintheenddrivenbytherequisitesof farming.Ofthevariousbiofuelsalternatives,alcoholfuelsandbiodieselareparticularlypromising. Algaeoil,asisdiscussedintherationalesection,isahighrisk,butparticularlyhighpotentialpayoff initiative.

Similarly,therewassomeconcernoverthedrivingforcesbehindfoodpricejumps,inlightofrecent internationalmediaconcernsonfoodtofuel,ineffecttakingfoodoutofthemouthsoftheworld’s poor.(Thisconcernhasbeenexpressedinpublicconsultations,datingbackatleasttotheradio appearanceonApril26 th .)Whileindeedthereisalegitimateconcernthatsuchmayhappen[which makesnonfoodfeedstockssuchasalgaeorcellulosicbiomassparticularlyvaluable],wemust reckonwiththeimplicationsofthesharppriceriseofoil.Thisismultipliedbythegrowthin demandforfoodandanimalfeedsinplaceslikeChina,andimpactsofnowprolongeddroughtin Australia.Indeed,cornproductionintheUSAhasmorethandoubledacrossthepasttwelveyears, withmorefoodavailableforfoodconsumption,notless;evenaftertheethanolproductionhasbeen subtracted.

Itwasalsorequestedinthesamemeetingthatanestimateforconsumercostsavingsfrom implementingsay15%gridpenetrationofwindbegiven.Nowofcourseweshouldnotbind Monlecbyputtingupillfoundedpublicexpectations,butwindtypicallycostsUS$1,100– 1,700/kWnominalcapacity,witharealisticestimateofactualoutputbeingabout1/3ofnominal,as windisintermittent.Thatintermittencylimitsgridpenetrationpercentage,andso15%isa reasonablefirsttarget;whichinlightofourcurrentpeakofabout2MWwouldbe300kWeffective, orabout900kWnominal.Theimmediatesavingspotentialwouldbemoreorlesseliminationof

106 fuelfor15%ofourelectricity,andthatwithinaboutayeariftherearenodelays.Sowemaymakea simple,indicativecalculationofhowwindonthegridmighthelpussaveonenergycosts:

TakingWigtonJamaicaasacostmodel,windcouldbeaboutUS$1300orsoperkWof capacity,asaforillustrationpointestimate,soa900kWratedplantwouldcostaboutUS$ 1.2millions

CostofwindenergymaybeUS5–10c/kWhr,leadingtoaroughconsumerpriceestimate ofmaybeEC60c/kWhr[attheupperend],withoutfuelsurcharge.Arecenttypicalbillfor 300kWhrwentlike~EC$200fordirectcost,andEC$300forfueladditional,averaging aboutEC$1.67/kWhr.

Forsuchaconsumerwith85%dieseland15%wind,thatyieldsaweightedaverageof:

300*[(0.60*0.15)+(1.67*0.85)]=300*[0.09+1.42]=EC$453

This“10%reduction”isofcourseonlyasimplisticestimate,togiveanideaofhowwind couldhelpussaveonenergycosts.Fullscalecalculationswouldbealotmoresophisticated, andwouldhavetoreflectchangesincircumstances,butwouldreflectgenerallysimilar patterns.

PerhapsthemostsignificantpointthatcameoutintheBradespublicmeetingwastriggeredbythe observationthatmanymembersofthepublicdonotunderstandthemeaningofthehighfuel surchargethatnowappearsonourelectricitybills.Welearnedthatthefuelsurchargeisjustthat, andgoestofuelsupplierstopayforfuelusedinelectricitygeneration.So,itdoesnotformaproper partofMonlec’sactualincomefromelectricitygeneration.

Furthertothis,thereisincreasedcostpressureonMonlec,sothattheutilityisbeingsqueezed betweencoststoprovideservicesandthesharpincreaseduetofuelpricerises.Whenthisis multipliedbyproposedenergyconservationandshiftsoffgridforenergysources,Monleccomes undernotjustcostsbutalsorevenuespressure.Thus,tariffstructureshavetoberevised,and Monlecmayhavetolookatitscosts,maintenancerequirements,overheadsandrangeofservices,in thecontextoftheriseofalternativeenergysystemsbasedonrenewableenergy,moreefficientuses ofenergy,andsubstitutionoflocalgeneration[e.g.solarPV]forgridconnexion.

Thus,whilestakeholderconsultationsweresomewhatofamixedoutcome[withpublicmeeting attendancebeingaparticulardisappointment,andsomeofthetonethatdevelopedsurrounding concernswasquitepainful],inaggregatetheymadeamajorandpositiveimpactonthepolicy developmentprocess,andhaveshapedthedraftinmanysignificantways.

Onward,giventherequiredsubmissionandreviewprocess,furtherconsultationswillbecontinued, withanintenttoincorporateanyadditionalsignificantstakeholderinputsinthefinaliseddocument.

Finally,inaboutayear,thepolicyasinitiallyimplementedshouldbereviewedinlightofexperience, freshopportunitiesandchallenges,andfurtherstakeholderinputs.

107 APPENDIX G.6

Electrical Energy Consumption Patterns and Conservation Issues:

Energyconservationmustbeginwithanappreciationofhowmuchenergyweareusing,andfor what.Then,wemayreflectandactonouralternatives.

Forthis,wemaybeginwiththeMonlecloadcurvefora“typical”week:

Fig. G6.1: Monlec Load Curve, for a “typical” week in September 2007. [Source:Greaves,2007.]

Anexaminationoftheloadcurveshowsaweekdaytimepeakofjustunder2MW,correspondingto officehours.Thereisasecondaryeveningpeakatabout1.6MW.Thereisabaseloadof~1MW. Thesemaybeexplained,tentatively[per“educatedguess”tobeconfirmedthroughformalenergy audits],asprobablydueto:

1]Aworkdayloadwithasignificantuseofcomputers,similarofficeequipmentand especiallyairconditioners.[Severalsavingsopportunities.]

2]Eveningloadsduetolighting,somecookingandentertainment,especiallytelevision.

3]Abaseloadthatisprobablyinsignificantpartshapedbyrefrigeration.[Notehowthe basetrendlineshiftsabitlowerduringthecoolerhoursoftheday.] Thissuggeststhatanappreciationoftheloadpatternsposedbytypicalequipmentwillbehelpfulin improvingconsumptionandreducingcostsforconsumers.Forthat,EEREoftheUSDepartment ofEnergyhaspreparedausefulsummary:

...examplesoftherangeofnameplatewattagesforvarioushouseholdappliances 3[excerptedandhighlighted foratropicalsituation]:

[ADDED: Air Conditioning – consult a professional! EnergyconsumptionisafunctionofEER(10–14is better)andrightsizingrelativetotheload.A 1-ton [12,000BTU/hr], EER = 10 unitproduces~3,500Wof cooling,and by definition requires 1,200 W electricaltooperateit. It may cool 400 – 700 sq feet of indoor space. If theairtemperaturedropsby15–20°Facrosstheevaporatorcoil,itis“acceptable”performance.] Aquarium=50–1210Watts Clockradio=10 Coffeemaker=900–1200 Clothes washer = 350–500 Clothesdryer=1800–5000 Dishwasher=1200–2400(usingthedryingfeaturegreatlyincreasesenergyconsumption) Fans Ceiling = 65–175 Window=55–250 Wholehouse=240–750 Hairdryer=1200–1875 Clothes iron = 1000–1800 Microwaveoven=750–1100 Personalcomputer CPU - awake / asleep = 120 / 30 or less Monitor [CRT] - awake / asleep = 150 / 30 or less Laptop = 50 Radio(stereo)=70–400 Refrigerator (frost-free, 16 cubic feet) = 725 [current values may be ~ 400 W] Televisions(color) 19" = 65–110 27"=113 36"=133 53"61"Projection=170 Flatscreen=120 Toaster=800–1400 Toasteroven=1225 VCR/DVD=17–21/20–25 Vacuumcleaner=1000–1440 Water heater (40 gallon) = 4500–5500 Waterpump(deepwell)=250–1100

Theabovenumbersgive“typical”powerconsumedwhenanapplianceisactuallyrunning;one wouldneedtoexamineandperhapsmonitoractualequipmenttoseetheactualenergyusage.(For instance,abasic9cuftrefrigeratormayberatedat130W.)However,somereasonablecalculations basedontheaboveareinstructive.First,togetestimatedenergyusagewewillneedtomultiply powerbythetimeofuse(inseconds),andthendivideby3.6millions[togetkWh]:

Considera100W19”TVburningfor6hoursperday(notunusual...)acrossamonth:

Energypermonth =[100Wx6h/dayx30d/month]/[1,000W/kW] =18kWh/month

3 http://www.eere.energy.gov/consumer/your_home/appliances/index.cfm/mytopic=10040 Costat~EC$1.4/kWh,includingfuelsurcharge:

Cost =18kWh/Monthx$1.40=EC$25/month

Thisisasignificantcost;especiallyforanappliancethat,strictly,isnotanecessity.

TheremayalsobemoretotheTV’senergycost.Ifa60WbulbisgoingwhileoneiswatchingTV (andwatchingmodernhighbrightnessTVsinthedarkposeseyestrainchallenges),thataddsan extra$15. If the TV is an instant-on, remote controlled TV, it may have a parasitic load of 10 W for the other 18 hrs/day as it monitors for a remote’s “turn on” signal; whichwouldcostanadditional$7/month.Thus,the TVcouldbecostingnearlyEC$50/monthalltold;justforelectricity.

Moreover,ifone’s400W,16cuftrefrigeratorburnstheequivalentof8hoursperday(thinkofhow oftenonehearsithummingaway,especiallyafteropeningandstandinginthedoorwaytodecide whattotakeout...),itwoulduse96kWhina30daymonth.Thatwould,onthesameestimated totalelectricityrates,costaboutEC$134.(The9cuft,130Wunitwoulduseabout31kWh, costingaboutEC$44.) Thus, we see how a monthly electricity bill of EC$ 200 - 300 can be arrived at without obviously “excessive” consumption, and how using adequately functional, lower power appliances can cut this.

Suchnumbersalsoopenuproomforsavings,firstofallthoughselfmonitoringandenergyuse changes.Thatis, if there is an energy use awareness campaign, consumers could be sensitised to what is using up now increasingly expensive electrical energy, and can thus be motivated to change habits. (Small,consumerlevel energyusemonitoringdevicessuchastheEnergyDetective,maybeaworthwhileinvestment.)

However,suchchangeswouldoftenberelativelysmall. To get bigger reductions, consumers, offices and businesses would need to undertake more formal audits, leading to significant changes in equipment: replacing over- sized equipment with adequate size, but smaller units. Or,ifthereisaneedforthelargersize,specially designed,energyefficientappliancesandequipmentmaysaveupto20–40%;e.g.EnergyStar compliantequipment.

Such audits would therefore need to be coupled to a credits [and possibly savings monitoring] scheme, asis envisionedinthemainbodyofthepolicy.Inturn, this could be part of the redeployments of skilled energy sector workers to Demand Side Management [DSM] programmes .

Consequently,suchprojectswillalsohavetoaddresspossibleimplicationsforlongtermutility viability–especiallyinacontextwherebenefitsofpostponedmajorcapitalinvestmentsonthepart oftheutilityarenotacountervailingbenefit. This will require a very careful assessment of relevant factors on undertaking such green energy projects, so that steps may be taken to preserve the long-term viability of the utility. Endnotes:

i Thatis, “do to others as you would have them do to you,” entailingthat “[neighbour-] love does no harm.” The SustainableDevelopmentprincipleis,ineffect,anapplicationofthisrulethroughintraandinter generationalequity: better and more fairly meeting needs, while not compromising the ability of posterity to meet its needs [i.e.throughavertingorminimisingenvironmental,socioculturaland/oreconomic degradation]. ii Asacomparison,theUN,OASandGTZsponsoredGeoCaraibesproject’sstandardformdraft geothermallawof2005,dulyfootnotingonthebalancetobestruckbetweenroyaltiesandtaxes, proposesthat: 61.(3) GeothermalResourcesConcessionsshallbefullyexemptedfromincometaxes... (a)forfifteen(15)yearsfromthecommencementofCommercialOperationsforPioneer Firms;and (b)forten(10)yearsfromthecommencementofCommercialOperationsforNonPioneer Firms iii Similarly,intheGeoCaraibesdraftgeothermallaw,itisrecommendedthatroyaltiesbeassessedas follows: 50.(1)...royaltiesshallservetocoverthecostofadministrationandinspectionandshallserveto recompensetheStatefortheuseofGeothermalResources.TheholdersofGeothermalResources ConcessionsshallpayaroyaltyforeachGeothermalResourcesConcessionasafunctionofthe productionfromsuchConcession'sGeothermalResourcesArea. (2) Theroyaltyshallbeconsideredasanexpensefortaxpurposes. (3)TheroyaltyforeachGeothermalResourcesConcessionshallbedeterminedasafunctionofthe grossannualsalesfromsuchGeothermalResourcesAreaandshallbepaidinthemanneragreedin eachGeothermalConcession. (4)ForGeothermalEnergyuseddomesticallysuchroyaltiesmaybezerobutshallnotbemorethan ThreePercent(3%)ofthegrossannualsalesoftheConcession. (5)ForGeothermalEnergyexported,suchroyaltiesmaybezerobutshallnotbemorethanFive Percent(5%)ofthegrossannualsalesvalueoftheConcession. iv Communication,MrMarkLambridesofOAS[Manager,GeoCaraibesproject],March132008. vTheGeoCaraibesdraftlawof2005isdrawntotheattentionoftheGovernmentofMontserratas asuitablemodel,shoulditbedeemednecessarytodraftaLaw. vi ThismaybeaconsequenceofcurrentfieldworkbeingcarriedoutthroughtheaidofUNECLAC andDFID. vii ItishelpfultomakeacomparisonoftheGeoCaraibesdraftgeothermallawforsisterOECS territories,clause33.(3)on due diligence investigationbeforeawardingalicenceforexplorationor developmentofgeothermalenergy: UponreceiptofanApplication,theGeothermalResourcesPromotionManagershallinitiatedue diligenceinquiries. Due diligence, at a minimum, shall include verification by knowledgeable third parties of the applicant’s financial status, technical competence and experience as a geothermal developer . [Source:Gov’tofDominica.Emphasesadded.] viii Inaddition,itisnotedfromsimilarpreliminarytechnicalreviewsandcredibleexpertopinion,that onglobalaverages,theinitialgeophysicalgeochemicalexploratoryphaseidentifiespotentialsitesfor drillingbut,evenso,onglobalexperience,a“typical”clusterofthreeinitialexploratoryboreholes mayfacecumulativeoddsoffailingtoidentifyacommerciallysuccessfulresource,ofabout50%. Whileitishopedthatthelocalsituationmayimprovetheseoddssomewhat,itremainsclearthatthe exploratoryphasesareexpensiveandfairlyhighrisk. ix Includingenvironmental. x NotethattheSAC’scurrentidentificationthatthevolcanoisprobably~10monthsintoa20–24 monthorsopauseisrelevant,asistheirsuggestionthatitmaycontinuedomebuildingeruptions fordecadesasthatshiftsprojectlifetimeriskestimates.SACwillneedtobespecificallyinstructedto identifyzonesofhazardandassociatedprobabilitiesforprospectiveGeothermalfields. xi Itisnoteworthythat,eventhoughthe1980sBritishElectricityInternational[BEI]studyidentified foursitesintheN:Drummond,Lookout,Geralds,Blakes;ofthese,twohavebeenusedforbuilding variousentities,andDrummondandBlakesareassociatedwithproposalsforbuildingprojects. Zoningregulationsandplanscouldbeusedtoprotectkeywindassetsasnationalresources. xii Inaddition,itisnotedfromsimilarpreliminarytechnicalreviewsandcredibleexpertopinion,that onglobalaverages,theinitialgeophysicalgeochemicalexploratoryphaseidentifiespotentialsitesfor drillingbut,evenso,onglobalexperience,a“typical”clusterofthreeinitialexploratoryboreholes mayfacecumulativeoddsoffailingtoidentifyacommerciallysuccessfulresource,ofabout50%. Whileitishopedthatthelocalsituationmayimprovetheseoddssomewhat,itremainsclearthatthe exploratoryphasesareexpensiveandrelativelyhighrisk. xiii policy noun (pl.ies)acourseorprincipleofactionadoptedorproposedbyagovernment,party, business,orindividual.[ Oxford Concise English Dictionary, CD,2001.] xiv TheSDprincipleineffectappliestheKantian Categorical Imperative toethicsofdevelopment.In turn,itsunderlyingthemescanbetracedtotheGoldenRuleanditsJudaeoChristiancontext,as statedbyMoses,JesusofNazarethandPaulofTarsus:cf.Deut.6:1–18,Lev.19:15–19,Matt. 7:12&22:37–40,andRom.13:1–10,esp.8–10.Deut.6:3isnoteworthyforexplicitlylinkingthe ethicallegalframeworkofaculturetotheirprosperouswellbeingandthatoftheirland: “Hear, O Israel, and be careful to obey [theMosaiclaw] so that it may go well with you and that you may increase greatly in a land flowing with milk and honey.” xv Edgecombe,D,2004. Elements of an Energy Policy for Montserrat. xvi Presentedinacolumnfortheblog, American Thinker ,May14,2008: http://www.americanthinker.com/2008/05/the_bum_rap_on_biofuels.html .Itisalso probably not irrelevant to observethatthisisanAmericanelectionyear,andbioethanolhasbeenamajorgreenenergy initiativebythecurrentadministration. xvii Admittedly,inatroughofproduction,butwithinthegeneralvariability. xviii Certaindifficultieshaveshowedupintheavailablestatistics,asisdiscussedinAppendixG2. xix The“bump”inCIFfuelsimportsin2002seemstobeassociatedwithahardtoaccountforjump inimportationofdieselfuels.[Cf.discussiononfuelimportdatainAppendixG.2.]Perhaps,inpart atleast,itreflectsarealphenomenon;suchasalargetransactioninthefuelsmarketthatwasnot associatedwithanyobviouslocalprojectorevent. xx Asindustryexpertspointedoutonbeingconsultedonthispoint,thereisawidescatter[reflective ofthefairlyhighdegreeofrisk],sotheaveragescitedaretobeseenaspartofawiderangeof possibleoutcomes,notaspreciseonepointestimates.Forinstanceinsomeprojects,exploration hasturnedouttorequireupto50%ofoverallinitialinvestmentcosts,andtheactualprofitabilityof anygiveninvestmentisaspecificoutcomebasedonitsownactualcircumstancesandthequalityof managementinvolved.But,theaveragessummarisedheregiveusabalancingnotewhichshouldbe borneinmind. xxi Expertscautionedthatitislikelythatcoringbitswilltendtobindhere,andadvanceslower,so eventhoughtheyseemtobecheaperonaperdiembasis,itisunwisetousethatasasoledeciding criterionwhenitcomestoexploratorydrilling. xxii Holtzapple,Mark,Dept.ofChemicalEngineering,TexasA&MUniversity(2005), MixAlco: Biofuels and Chemicals from Biomass ,URL: http://www.epa.gov/Region6/6pd/pdu sw/wte_ftworth/cafo/holtzapple.pdf xxiii PetroAlgaeofFlorida ,circa2007,hasshowedona4acretestfarmthatfastgrowingCO 2 bubbledmicroalgae(apotentialmatchfor powerplantemissions )giveaboutatwodaycropcycle, andthroughcentrifugetechniques,theoil[50+%ofbiomass,comparabletooilseedyields]maybe separatedfromtheremainingbiomass,withupto9899%recoveryofwater.Annualyieldsare projectedatuptoabout14,000gal/acreyear[4.3mnacrestosupplytheUSdieselfuelsmarket].XL TechGroup,theparentcompany,holdsthatalgaearetheonlycommerciallyviablenearterm solutiontobiofuels,andhaveevidentlyinitiallytargettedthefueladditivemarket,atatargetprice ofUS$0.26/lb.(A January2007estimate atUS$0.22/lbyieldsarawoilcostofUS$1.73/gal,ora processedbiodieselcostofUS$2.25/gal;suitableforuseasanadditive.[Learningcurveeffects wouldreasonablypushthatcostleveldownovertime.]URL: http://www.xltg.com/archive/PetroAlgae_Overview.pdf.) Scaling an estimate by John Sheehan of NREL toa moreCaribbeansizedpowerplant,a200acrealgaefarmusingtheemissionsofa100MWpower plantwouldproduceupto4mngallonsofbiodieseland5mngallonsofcellulosicethanolfuels, peryear.Insodoing,itwouldextract40%ofemittedCO 2and86%ofemittedN 2O. xxiv NesteOil,ofFinland(alongwithothers)haspioneeredanalkanebasedbiofuelalternativeto typicalbiodieselscomprisingmethanolorethanolbasedlongchainfattyacidesters.(Theprocess alsoconvertstheglycerolsidechaintopropane.)Thealternativebiodieselistermedbythem NexBTL .Asat2008,a550millionEuro,800ktonne/annumplantisprospectiveforSingapore,and onwardplansincludedevelopmentofagasificationandFischerTropschsynthesisbasedthird generationbiofuelsprocessthatwouldeasilyuseanybiomassasafeedstock. xxv IfthepriceofalgaederivedvegetableoilperbarrelwouldtargetUS$50orso,ataproductivity ofabout100bbl/acre,theannualprospectivesalesofrawoilwouldbeoforderUS$500,000fora farmof100acres;whichshowsthattheeconomicsprobablyfavoursaregionalsectorbasedon clustersoffairlylargeestates,withcontractalgaefarmerstogainadditionalfeedstocksoncethe maincapitalcostsandcapacitydevelopmenttosetupanalgaeoilprocessingagroindustryhave beenmet. xxvi Volcanicashisapotentialsourceofmicronutrientsalso;cf. Azomite . xxvii Goingtogloballevel,theUSDOE's2007 World Energy Outlook ,Ch.3,projectsthat“Inthe IEO2007referencecase,worldconsumptionofpetroleumandotherliquidfuelsgrowsfrom83 millionbarrelsoilequivalentperdayin2004to97millionin2015and118millionin2030... liquidsproductionisprojectedtoincreaseby14millionbarrelsperdayfrom2004to2015andbyan additional20millionbarrelsperdayfrom2015to2030.OPECproducersareexpectedtoprovide morethanonehalfoftheadditionalproductionin2015(8millionbarrelsperday)andmorethan twothirdsin2030(23millionbarrelsperday).”Thattranslatestoabaselineofsome1.27trillion gallonsoffuelperyear,orsome100–400,000sq.milesofpotentialalgaeproduction,equivalentto [forthelowerproductivityfigure]asquareofland631milesontheside,growingto753mileson thesideby2030. xxviii Aboveabout20%,thereareincreasingtechnicalchallenges.TheseusuallymakeCaribbeanutility engineerslessthancomfortablewithahigherproportionoftheelectricitythan20%beingfrom wind. xxix Biofuelsareofcoursecurrentlyasarulemoreexpensivethanfossilfuels.Thatisabigpartof whythefossilfuelshavedominatedthemarketsforsolong;evengiventheirvolatilityonprice,and theunstablepoliticsandresultinggeostrategicsecuritychallengesanoilbasedeconomyimposeson theworld.However,theconversionprocessformanybiofuelsisrelativelysimple–e.g.thewell knownAppleseedreactor,madefromanoldwaterheater,isusedformanybasementbiodiesel “plants”thatconvertwasteoilrecovered“free”orfornominalcostfromfastfoodfranchisesand similarsources. Thus, the principal cost-drivers for bio-fuels are tied to feedstocks costs, so if feedstocks can be brought down in price through say cost-effective provision of algae and cellulosic biomass, joined to low-cost transformation processes, this picture can change dramatically. (Itisalsoworthnotingthatmethanol[formerly knownas“woodalcohol”]canbemadefromalmostanybiomassbypyrolysis.Somethenarguethat coalcanbeusedasafeedstockformethanol,andmaybecomparabletooilat~US$50/bbl.They goontopropose–onenergyindependence,strategicgroundsthatgasolineenginesforcarssold intheUSAshould,bylaw,beconvertedtoaflexiblefuelbasis[anyblendfrom100%methanolor ethanolto100%gasoline]throughadditionscostingUS$100.Already,itiscrediblethatbutanolwill workinmanyordinary,unmodifiedgasolineengines.Ifbatterytechnologiescomedownsufficiently inprice,thismayleadtotheriseofpluginhybrid,flexiblefuelvehiclesgettingperhapsupto100 mpg,asamajorsegmentoffuturetransportation.Withsuchvehicles,thebattery[rechargedby beingpluggedinovernight]wouldhandleshortrange,lowspeedtrips,andthegasolineengine wouldinthemainservetoextendrangeandprovideforspurtsofhighperformance.Oncebatteries comedowninprice,mainselectricitywillproveaveryattractiveenergysourceforshortrange transportation.) xxx Suchahighpressurebreakdowniscomparabletoawellknownindustrialprocessofgasification andsynthesisintolongerchainhydrocarbons.Theseindustrialhydrocarbonsyntheses,fromthe 1920'son,havebeenshowntobeabletomakeoiloutofjustaboutanyformoforganicmatter,ina fewhours.Unfortunately, such processes tend to be capital-intensive and the plants typically have high operating costs. However,itisaknown,relativelyhigh material efficiencyprocessformaking“synthetic”oil fromsaygarbageorwoody/herbaceousbiomassorevencoal. xxxi Therewasandcontinuestobeadebateamongtherelevantscientistsonthepreciselinkagesand mechanismsinvolvedinclimateandweathertrends,andonthedegreeofhumanresponsibilityfor currentandprojectedtrends.Inobservingsuchdebates,itiswisetobearinmindthat[1]scienceis inherentlyandinescapablyprovisionalonitsmajorfindings,and[2]computermodelsarejustthat– models,notexperientialreality. xxxii TheBTU,orBritishThermalUnit,isatraditionalengineer'sunitofheat.1BTU=1055J. Similarly,thekWhorkiloWatthour,isatraditionalunitofelectricalenergy:1kWh=3.6millionJ, theenergytoburna100Wlightbulbfor10hours.TheJouleisroughlytheenergyrequiredtolifta 4ozweight[~100g]through3ft.Italsotakes~4.2Jtoheat1gofwater(~1/5teaspoon) through1°C. xxxiii Theupperendofthepricerangedoesnotcreateanarbitrage,asaroughcalculationofthe “substitute”ofbuyingandshippingwood[pulp]tolocationswhereitcanbesequestered “permanently”comestoroughlythesamelevel. xxxiv Aninitial,crudeestimatecouldbe the cost to make steam of comparable quality from fossil fuels. However,onewouldnormallygeneratehigherpressure,cleanersteamandwouldthussave considerablyonthecapitalinvestmentrequiredforthemorestandardisedtypeofsteamplantone wouldusewithsuchhigherqualitysteam.Then,too,attheinitial~5MWpowerlevel,diesel [perhapswithcombinedcycle]wouldprobablybeabetter“standard”option.So in the end a royalty calculation would probably be based on negotiated splitting of the presumable cost savings per kWh of electrical energy produced due to shifting to geothermal, across: [1] reduced cost per kWh to the consumer, [2] profit-enhancing cost savings to the electricity generator, [3] some take-up on the loss in Government revenues due to no longer importing the fossil fuel. However,theeconomicdynamismofshiftingawayfromfossilfuelsandopeningupa potentiallylargeenergyresourcecouldthentriggergrowththatleadstoamuchbiggernational incomepie,sothatanarrowersliceofabiggerpiegivesenhancedincome,opportunitiesand prosperity.Furthertothis,as[especiallyforprospectiveelectricityexports]weareinacompetitive regionalsituationwhenitcomestoattractinginvestors,weshouldreckonwiththeUN,OASand GTZsponsoredGeoCaraibesstandardformdraftgeothermallawforsisterOECSterritories, which proposes royalties in the range 3 – 5% of gross electricity sales , the latter being for export sales. (NB:This rangebracketstheearlier,consultancybasedproposedlevelof4%foracommercialdeveloperin 2006;whichwasstronglydisputedatthattimebysomelocalstakeholdersasbeingplainlytoo small.) xxxv Thus,royaltieswouldapplyevenwherethereisataxholidayoranothersimilarincentive scheme. xxxvi Hance[p.12]citesacirca2005GeothermExregressionmodel;ineffect: Cost, US$ = 240,000 + 689*depth in metres + 0.205*depth 2 (Thisdirectlyappliestofullborewells,giving~US$1.13Mnfor1,000m.Slimholewellsmaycost halfthat.[p.7.]Currenthighoilpricesandassociatedcompetitionfordrillrigswillprobbalybidup thepricerelativetothisregressionlinesummarydatum.) xxxvii Itisnoteworthythat,onquestioningtheWIPLinitiativeinMarch2006,inthecontextofpublic protestsoveranattempttoundertakegeothermaldevelopmentonthe“earlycommercialisation” model,formerChiefMinister(andmemberofthewellknownlocalNGO,CRM)MrP.Austin Bramble,remarked: “Any dealing with any developer should be transparent and subject to public accountability…. The investors must have an established and proven track record and should be well known throughout the geothermal industry.” Inthesamecontext,thenprospectiveChiefMinisterDrLowellLewisobserved: “It was in Britain’s natural interest to finance geothermal exploration in Montserrat.” [Allen,K,March20,2006,ina Caribbean Net News article:“Montserrat’sgovernmentcitedasa‘criminalsellout’.”] xxxviii Wildcatting,giventherelativelyhighrisksinvolved,understandablyrequiresacorrespondingly highprofitrateforsuccessfulprojects(inparttocompensateforunsuccessfulones).Cf.anews reportonrelatedlocalperceptions,issuesandchallengesinthecaseofWIPL: http://www.caribbeannetnews.com/cgiscript/csArticles/articles/000009/000916.htm . xxxix Aselectronicdevicedecayprocessesarequantumbasedactivationlevelstochasticones,the relevantthermodynamicsshowsthatcoolingby~8°Cattypicalroomtemperatures in principle roughlydoublestheexpectedlifetimeofsolidstateelectronicsbasedsystems.Airconditioningalso reducesexposuretodustand,whichcanalsocausedamage. xl Electriccells[“batteries”]thatuseafuelsuchashydrogenorahydrogenrichalcohol. xli Cf. Nanosolar [ http://www.nanosolar.com/technology.htm ]andthe Popular Science Magazine 2007 innovationoftheyearaward. xlii CurrentlyreportedasUS$40,600/km[~EC$180,000/mile],accordingtoMonlec.[CfGreaves, 2007,p.63.] xliii Itrequiresmoreenergytomakehydrogengasthantheenergyextractedfromitinafuelcellor engine.Butitisaportableenergysource. xliv Bothethanolandmethanolcanbetransesterifiedwithvegetableoilstomakebiodiesel. xlv Ithasbeensuggested( Bell ,2008)thatonetonneofwoody/herbaceousbiomassmaybebio digestedtomethanethentransformedintosometwobarrels(84USgallons)ofoil. xlvi FirstpresidentofIsrael. The ABE, corn starch fermentation process he pioneered to make acetone produces twice as much butanol as acetone. ThatacetonehelpedBritainmake cordite ,theBritisharmyandnavy propellantforriflesandartillery;whichwasdesperatelyneededforthefightinginWorldWarI. Weizmannrefusedtoacceptany personal rewardforhiswarwinningsuccess,butinsteadaskedfor therestorationofthehistoricnationalhomelandofhispeople,theJews.Thiswastheunderlying contextoftheBalfourdeclaration,andtheassociated1919WeizmannFeisalHussein(later,Kingof Iraq)sideagreementtotheVersaillestreaty;onjointmutuallysupportivedevelopmentoftheArab andJewishnationsintheMiddleEast.(ThisparallelstheunderlyingVersaillesprincipleofnational selfdetermination,whichunderliesthesubsequentriseofindependentstatesgloballyoutofformer coloniesandprovincesofvariousempires.)Onward,theBalfourDeclarationbasedprocessissued intheLeagueofNationsandUnitedNationsmandatesandresolutionsthatresultedinthe partitioningofPalestine,thelaunchingofaninvasionbyArabarmiestodestroythenascentJewish state,theresultingvictoryandestablishedindependenceofmodernIsrael,andanexchangeof alienatedrefugeepopulations:initially~400–600,00+Arabsand~820,000OrientalJews. Thus, we can see some of the complex roots of the so far irresolvable tensions in the Middle East, which in turn is a major exogenous, accelerating driver of the deep instability in the global oil markets. xlvii Cf.WNDreportbyJeromeCorsi,March20,2008. xlviii ContrastNREL’sobservation: Becausethetemperaturesofmostgeothermalresourcesarelowrelativetothecombustion temperaturesoffossilfuel,thesizeandcostofsurfaceplantequipmentaregreater... Almost all geothermal plants to date have been built specifically for individual sites. Whilethismaypermitoptimalenergycapture,italsopreventstheeconomicgainsfrom massproduction...Furthermore,thechemicallyreactivenatureoftypicalgeothermalfluids requiresprotectivemeasurestopreventequipmentdamagefromscalingandcorrosion. Mitigatingtheseproblemscanbeexpensive...” [NREL, Geothermal Technologies Program Strategic Plan ,2004,p.10.Emphasisadded.]