Datasheet for Histone H3.2 Human, Recombinant (M2506; Lot 0021312)

Total Page:16

File Type:pdf, Size:1020Kb

Datasheet for Histone H3.2 Human, Recombinant (M2506; Lot 0021312) Source: An E. coli strain that carries a plasmid Mass Spectrometry: The mass of purified double-stranded [3H] E. coli DNA (200,000 cpm/ encoding the cloned human histone H3.2 gene, Histone H3.2 Human, Recombinant is 15257.09 Da µg) for 4 hours at 37°C released < 0.1% of the total Histone H3.2 HIST2H3A or HIST2H3C. (Genbank accession as determined by ESI-TOF MS (Electrospray radioactivity. Human, Recombinant number: BC130637) Ionization-Time of Flight Mass Spectrometry). The average mass calculated from primary sequence Endonuclease Assay: Incubation of a 50 µl 1-800-632-7799 Supplied in: 20 mM Sodium Phosphate (pH 7.0), is 15256.82 Da. This confirms the protein identity reaction containing 10 µg of Histone H3.2 Human, [email protected] 300 mM NaCl, 1 mM EDTA and 1 mM DTT. as well as the absence of any modifications of the Recombinant with 1 µg of φX174 RF I (supercoiled) www.neb.com histone. For a typical example of mass spectrometry plasmid DNA for 4 hours at 37°C resulted in M2506S 002131215121 Note: The protein concentration (1 mg/ml, 66 µM) data, please see the product page at www.neb.com. < 5.0% conversion to RF II form (nicked circle) as is calculated using the molar extinction coefficient determined by agarose gel electrophoresis. M2506S B r for Histone H3.2 (3960) and its absorbance at N-terminal Protein Sequencing: Protein identity was confirmed using Edman Degradation to sequence the Protein Sequence: ARTKQTARKSTGGKAPRKQLA 100 µg 1.0 mg/ml Lot: 0021312 280 nm (4,5). 1.0 A280 units = 3.9 mg/ml intact protein. TKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKS RECOMBINANT Store at –20°C Exp: 12/15 Synonym: Histone H3/m, H3/o TELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEA Enzyme Modification: SET7 Methyltransferase: SEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGE Description: Histone H3 combines with Histone H4 Gene Synonym: H3F2, H3FM After incubation of a 25 µl reaction for 10 minutes RA (Genbank accession number: Q71DI3) to form the H3/H4 tetramer. Two H2A/H2B heterodi- at 37°C, 1 unit of SET7 methyltransferase transfers mers interact with an H3/H4 tetramer to form the Quality Control Assays: 20 pmols of methyl group to Histone H3.2 Human, References: histone octamer (1,2). It is also modified by various SDS-PAGE: 0.5, 1.0, 2.0, 5.0, 10.0 µg of Histone Recombinant. 1. Kornberg, R.D. (1977) Annu. Rev. Biochem. 46, enzymes and can act as a substrate for them. These H3.2 Human, Recombinant were loaded on a 931–954. modifications have been shown to be important in 10–20% Tris-Glycine SDS-PAGE gel and stained Protease Assay: After incubation of 10 µg of Histone 2. van Holde, K.E. (1989) Chromatin, 1–497. gene regulation. with Coomassie Blue. The calculated molecular H3.2 Human, Recombinant with a standard mixture 3. Hake, S.B. et al (2006) J.Biol. Chem. 281, 559- of proteins for 4 hours at 37°C, no proteolytic activity 568. Histone H3.2, an H3 variant that is found in all weight is 15256.82 Da. Its apparent molecular could be detected by SDS-PAGE. 4. Gill, S.C. and von Hippel, P.H. (1989) Anal. eukaryotes except budding yeast, is replication de- weight on 10–20% Tris-Glycine SDS-PAGE gel is ~17 kDa. For a typical example of gel image, please Biochem. 182, 319–326. pendent and is associated with gene silencing (3). Exonuclease Assay: Incubation of a 50 µl see the product page at www.neb.com. 5. Pace, C.N. et al. (1995) Protein Science, 4, reaction containing 10 µg of Histone H3.2 Human, 2411–2423. Recombinant with 1 µg of a mixture of single and CERTIFICATE OF ANALYSIS Source: An E. coli strain that carries a plasmid Mass Spectrometry: The mass of purified double-stranded [3H] E. coli DNA (200,000 cpm/ encoding the cloned human histone H3.2 gene, Histone H3.2 Human, Recombinant is 15257.09 Da µg) for 4 hours at 37°C released < 0.1% of the total Histone H3.2 HIST2H3A or HIST2H3C. (Genbank accession as determined by ESI-TOF MS (Electrospray radioactivity. Human, Recombinant number: BC130637) Ionization-Time of Flight Mass Spectrometry). The average mass calculated from primary sequence Endonuclease Assay: Incubation of a 50 µl 1-800-632-7799 Supplied in: 20 mM Sodium Phosphate (pH 7.0), is 15256.82 Da. This confirms the protein identity reaction containing 10 µg of Histone H3.2 Human, [email protected] 300 mM NaCl, 1 mM EDTA and 1 mM DTT. as well as the absence of any modifications of the Recombinant with 1 µg of φX174 RF I (supercoiled) www.neb.com histone. For a typical example of mass spectrometry plasmid DNA for 4 hours at 37°C resulted in M2506S 002131215121 Note: The protein concentration (1 mg/ml, 66 µM) data, please see the product page at www.neb.com. < 5.0% conversion to RF II form (nicked circle) as is calculated using the molar extinction coefficient determined by agarose gel electrophoresis. M2506S B r for Histone H3.2 (3960) and its absorbance at N-terminal Protein Sequencing: Protein identity was confirmed using Edman Degradation to sequence the Protein Sequence: ARTKQTARKSTGGKAPRKQLA 100 µg 1.0 mg/ml Lot: 0021312 280 nm (4,5). 1.0 A280 units = 3.9 mg/ml intact protein. TKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKS RECOMBINANT Store at –20°C Exp: 12/15 Synonym: Histone H3/m, H3/o TELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEA Enzyme Modification: SET7 Methyltransferase: SEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGE Description: Histone H3 combines with Histone H4 Gene Synonym: H3F2, H3FM After incubation of a 25 µl reaction for 10 minutes RA (Genbank accession number: Q71DI3) to form the H3/H4 tetramer. Two H2A/H2B heterodi- at 37°C, 1 unit of SET7 methyltransferase transfers mers interact with an H3/H4 tetramer to form the Quality Control Assays: 20 pmols of methyl group to Histone H3.2 Human, References: histone octamer (1,2). It is also modified by various SDS-PAGE: 0.5, 1.0, 2.0, 5.0, 10.0 µg of Histone Recombinant. 1. Kornberg, R.D. (1977) Annu. Rev. Biochem. 46, enzymes and can act as a substrate for them. These H3.2 Human, Recombinant were loaded on a 931–954. modifications have been shown to be important in 10–20% Tris-Glycine SDS-PAGE gel and stained Protease Assay: After incubation of 10 µg of Histone 2. van Holde, K.E. (1989) Chromatin, 1–497. gene regulation. with Coomassie Blue. The calculated molecular H3.2 Human, Recombinant with a standard mixture 3. Hake, S.B. et al (2006) J.Biol. Chem. 281, 559- of proteins for 4 hours at 37°C, no proteolytic activity 568. Histone H3.2, an H3 variant that is found in all weight is 15256.82 Da. Its apparent molecular could be detected by SDS-PAGE. 4. Gill, S.C. and von Hippel, P.H. (1989) Anal. eukaryotes except budding yeast, is replication de- weight on 10–20% Tris-Glycine SDS-PAGE gel is ~17 kDa. For a typical example of gel image, please Biochem. 182, 319–326. pendent and is associated with gene silencing (3). Exonuclease Assay: Incubation of a 50 µl see the product page at www.neb.com. 5. Pace, C.N. et al. (1995) Protein Science, 4, reaction containing 10 µg of Histone H3.2 Human, 2411–2423. Recombinant with 1 µg of a mixture of single and CERTIFICATE OF ANALYSIS.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Anti- Histone-H3 Antibody
    anti- Histone-H3 antibody Product Information Catalog No.: FNab03890 Size: 100μg Form: liquid Purification: Immunogen affinity purified Purity: ≥95% as determined by SDS-PAGE Host: Rabbit Clonality: polyclonal Clone ID: None IsoType: IgG Storage: PBS with 0.02% sodium azide and 50% glycerol pH 7.3, -20℃ for 12 months (Avoid repeated freeze / thaw cycles.) Background HIST2H3A,histone cluster 2, H3a.It is the core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. HIST2H3A is Expressed during S phase, then expression strongly decreases as cell division slows down during the process of differentiation. Immunogen information Immunogen: histone cluster 2, H3a Synonyms: H3/n, H3/o, H3F2, H3FM, HIST2H3A, HIST2H3C, HIST2H3D, histone cluster 2, H3a, Histone H3, Histone H3.2, Histone H3/m, Histone H3/o Observed MW: 15-17 kDa Uniprot ID : Q71DI3 Application 1 Wuhan Fine Biotech Co., Ltd. B9 Bld, High-Tech Medical Devices Park, No. 818 Gaoxin Ave.East Lake High-Tech Development Zone.Wuhan, Hubei, China(430206) Tel :( 0086)027-87384275 Fax: (0086)027-87800889 www.fn-test.com Reactivity: Human, Mouse, Rat Tested Application: ELISA, WB, IHC, IF Recommended dilution: WB: 1:500-1:5000; IHC: 1:50-1:200; IF: 1:20-1:200 Image: Immunohistochemistry of paraffin-embedded human breast cancer tissue slide using FNab03890(Histone-H3 Antibody) at dilution of 1:50 Immunofluorescent analysis of HEK-293 cells using FNab03890 (Histone-H3 Antibody) at dilution of 1:50 and Rhodamine-Goat anti-Rabbit IgG 2 Wuhan Fine Biotech Co., Ltd.
    [Show full text]
  • HIST2H3C(27Ac) Antibody Purified Mouse Monoclonal Antibody Catalog # Ao2159a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 HIST2H3C(27Ac) Antibody Purified Mouse Monoclonal Antibody Catalog # AO2159a Specification HIST2H3C(27Ac) Antibody - Product Information Application E, WB, FC, IHC Primary Accession Q71DI3 Reactivity Human Host Mouse Clonality Monoclonal Isotype IgG1 Calculated MW 15.4kDa KDa Description Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the telomeric copy. Immunogen Synthesized peptide of human HIST2H3C (AA: ATKAARK(Ac)SAPATGGV). Formulation Purified antibody in PBS with 0.05% sodium azide HIST2H3C(27Ac) Antibody - Additional Information Gene ID 126961;333932;653604 Dilution E~~1/10000 Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 WB~~1/500 - 1/2000 FC~~1/200 - 1/400 IHC~~1/200 - 1/1000 Storage Maintain refrigerated at 2-8°C for up to 6 months.
    [Show full text]
  • Protein Interactions in the Cancer Proteome† Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG.
    [Show full text]
  • Expression Analysis of Progesterone‑Regulated Mirnas in Cells Derived from Human Glioblastoma
    MOLECULAR MEDICINE REPORTS 23: 475, 2021 Expression analysis of progesterone‑regulated miRNAs in cells derived from human glioblastoma DIANA ELISA VELÁZQUEZ‑VÁZQUEZ1, AYLIN DEL MORAL‑MORALES1, JENIE MARIAN CRUZ‑BURGOS2, EDUARDO MARTÍNEZ‑MARTÍNEZ3, MAURICIO RODRÍGUEZ‑DORANTES2 and IGNACIO CAMACHO‑ARROYO1 1Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología‑Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510; 2Oncogenomics Laboratory, The National Institute of Genomic Medicine; 3Laboratory of Cell Communication and Extracellular Vesicles, The National Institute of Genomic Medicine, Mexico City 14610, Mexico Received August 16, 2020; Accepted February 2, 2021 DOI: 10.3892/mmr.2021.12114 Abstract. Glioblastomas (GBMs) are the most frequent and is characterized by being highly infiltrative, angiogenic and malignant type of brain tumor. It has been reported that resistant to chemotherapy and radiotherapy. The medical progesterone (P4) regulates the progression of GBMs by modi‑ history of patients with GBM is short as few of them survive fying the expression of genes that promote cell proliferation, more than one year (1‑3). GBM is mainly diagnosed in adults migration and invasion; however, it is not fully understood >50 years old, but it can occur at any age and the incidence is how these processes are regulated. It is possible that P4 medi‑ higher in men than in women (3:2) (4). ates some of these effects through changes in the microRNA Studies have focused on the identification of new biomarkers (miRNA) expression profile in GBM cells. The present study and therapeutic agents in GBM. Of particular interest are the investigated the effects of P4 on miRNAs expression profile microRNAs (miRNAs), which are single‑stranded, short, in U‑251MG cells derived from a human GBM.
    [Show full text]
  • Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases
    Journal of Clinical Medicine Review Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases Anna Wajda 1 , Larysa Sivitskaya 2,* and Agnieszka Paradowska-Gorycka 1 1 Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; [email protected] (A.W.); [email protected] (A.P.-G.) 2 Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus * Correspondence: [email protected] Abstract: NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area. Citation: Wajda, A.; Sivitskaya, L.; Keywords: next-generation sequencing; autoimmune diseases; autoimmune connective tissue dis- Paradowska-Gorycka, A. Application eases; HLA; microRNA; microbiome of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J. Clin.
    [Show full text]
  • Pentosan Polysulfate Binds to STRO
    Wu et al. Stem Cell Research & Therapy (2017) 8:278 DOI 10.1186/s13287-017-0723-y RESEARCH Open Access Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis Jiehua Wu1,7, Susan Shimmon1,8, Sharon Paton2, Christopher Daly3,4,5, Tony Goldschlager3,4,5, Stan Gronthos6, Andrew C. W. Zannettino2 and Peter Ghosh1,5* Abstract Background: The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene expression and proteoglycan biosynthesis before and after the cells had been exposed to limited concentrations of PPS and then re-established in culture in the absence of the drug (MPC priming). Methods: Immuno-selected STRO-1+ mesenchymal progenitor stem cells (MPCs) were prepared from human bone marrow aspirates and established in culture. The kinetics of uptake, shedding, and internalization of PPS by MPCs was determined by monitoring the concentration-dependent loss of PPS media concentrations using an enzyme-linked immunosorbent assay (ELISA) and the uptake of fluorescein isothiocyanate (FITC)-labelled PPS by MPCs. The proliferation of MPCs, following pre-incubation and removal of PPS (priming), was assessed using the Wst-8 assay 35 method, and proteoglycan synthesis was determined by the incorporation of SO4 into their sulphated glycosaminoglycans.
    [Show full text]
  • (RABBIT) Antibody - 600-401-M75
    Anti-Histone H3 [methyl Lys27] (RABBIT) Antibody - 600-401-M75 Code: 600-401-M75 Size: 50 µg Product Description: Anti-Histone H3 [methyl Lys27] (RABBIT) Antibody - 600-401-M75 Concentration: 0.83 by UV absorbance at 280 nm PhysicalState: Liquid (sterile filtered) Label Unconjugated Host Rabbit Gene Name HIST2H3C Species Reactivity Human, mouse, rat, C. elegans Buffer 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 Stabilizer None Preservative 0.01% (w/v) Sodium Azide Storage Condition Store vial at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Avoid cycles of freezing and thawing. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use. Synonyms H3.3B, H3 histone, family 3A, H3.3AH3F3H3F3B, histone H3.3, MGC87783, MGC87782, H3R2me1, H3R2me2, H3R2me3 Application Note Anti-Histone H3 K27 methyl Antibody is useful for ELISA and Western Blot. Specific conditions for reactivity should be optimized by the end user. Expect a band approximately ~15.4kDa corresponding to the appropriate cell lysate or extract. Background The nucleosome is comprised of 146 bp of DNA wrapped around a series of histone proteins arranged as an octamer consisting of 2 copies of histone H2A, H2B, H3 and H4. Within the nucleosome core the histone proteins are covalent modified at specific residues predominantly within the N-terminal tail including lysine (acetylation, methylation, SUMOylation, and ubiquitinylation), arginine methylation and citrullination, serine and threonine phosphorylation, as well as proline isomerization.
    [Show full text]
  • HIST2H3A Antibody(C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap19659b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 HIST2H3A Antibody(C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP19659b Specification HIST2H3A Antibody(C-term) - Product Information Application WB,E Primary Accession Q71DI3 Other Accession P02299, P08898, P02302, P02301, Q6NXT2, Q6PI79, P84245, P84246, Q71LE2, P84244, P84243, P84249, Q6PI20, P84247, Q5E9F8, Q10453, P84233, P84228, Q4QRF4, P84229, P84227, Q6LED0, HIST2H3A Antibody (C-term) (Cat. P68433, P68431, #AP19659b) western blot analysis in MCF-7 P68432, Q16695, cell line lysates (35ug/lane).This NP_066403.2, demonstrates the HIST2H3A antibody C0HL66, C0HL67 detected the HIST2H3A protein (arrow). Reactivity Human Predicted Bovine, Mouse, Rat, Chicken, HIST2H3A Antibody(C-term) - Background Zebrafish, Xenopus, Histones are basic nuclear proteins that are C.Elegans, responsible Drosophila, Pig, for the nucleosome structure of the Rabbit Host Rabbit chromosomal fiber in Clonality Polyclonal eukaryotes. This structure consists of Isotype Rabbit Ig approximately 146 bp of DNA Calculated MW 15388 wrapped around a nucleosome, an octamer Antigen Region 108-136 composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin HIST2H3A Antibody(C-term) - Additional Information fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the Gene ID 126961;333932;653604 nucleosomes to form higher order chromatin structures. This gene is Other Names intronless and encodes a Histone H32, Histone H3/m, Histone H3/o, HIST2H3A member of the histone H3 family. Transcripts from this gene lack Target/Specificity polyA tails; instead, they contain a palindromic This HIST2H3A antibody is generated from termination rabbits immunized with a KLH conjugated element.
    [Show full text]
  • Histone H3F3A and HIST1H3B K27M Mutations Define Two Subgroups of Diffuse Intrinsic Pontine Gliomas with Different Prognosis and Phenotypes
    Acta Neuropathol (2015) 130:815–827 DOI 10.1007/s00401-015-1478-0 ORIGINAL PAPER Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes David Castel1,2 · Cathy Philippe1 · Raphaël Calmon3 · Ludivine Le Dret1 · Nathalène Truffaux1 · Nathalie Boddaert3 · Mélanie Pagès7 · Kathryn R. Taylor4 · Patrick Saulnier5 · Ludovic Lacroix5 · Alan Mackay4 · Chris Jones4 · Christian Sainte‑Rose6 · Thomas Blauwblomme6 · Felipe Andreiuolo7 · Stephanie Puget6 · Jacques Grill1,2 · Pascale Varlet7 · Marie‑Anne Debily1,8 Received: 24 June 2015 / Revised: 8 September 2015 / Accepted: 10 September 2015 / Published online: 23 September 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Diffuse intrinsic pontine glioma (DIPG) is the a systematic stereotactic biopsy and were included in most severe paediatric solid tumour, with no significant this observational retrospective study. Histone H3 genes therapeutic progress made in the past 50 years. Recent mutations were assessed by immunochemistry and direct studies suggest that diffuse midline glioma, H3-K27M sequencing, whilst global gene expression profiling and mutant, may comprise more than one biological entity. chromosomal imbalances were determined by microar- The aim of the study was to determine the clinical and bio- rays. A full description of the MRI findings at diagnosis logical variables that most impact their prognosis. Ninety- and at relapse was integrated with the molecular profiling one patients with classically defined DIPG underwent data and clinical outcome. All DIPG but one were found to harbour either a somatic H3-K27M mutation and/or loss of H3K27 trimethylation. We also discovered a novel K27M This work was presented at the International Symposium mutation in HIST2H3C, and a lysine-to-isoleucine substitu- of Pediatric Neuro-Oncology meeting held in June 2014 in tion (K27I) in H3F3A, also creating a loss of trimethyla- Singapore.
    [Show full text]
  • A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response
    A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, Ana Camejo, Pierre-Jean Matteï, Béatrice Regnault, Marie-Anne Nahori, Didier Cabanes, et al. To cite this version: Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, et al.. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, American Association for the Advancement of Science, 2011, 331 (6022), pp.1319-21. 10.1126/sci- ence.1200120. cea-00819299 HAL Id: cea-00819299 https://hal-cea.archives-ouvertes.fr/cea-00819299 Submitted on 26 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lebreton et al. Science 2011 doi:10.1126/science.1200120 A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response Alice Lebreton1,2,3, Goran Lakisic4, Viviana Job5, Lauriane Fritsch6, To Nam Tham1,2,3, Ana Camejo7, Pierre-Jean Matteï5, Béatrice Regnault8, Marie-Anne Nahori1,2,3, Didier Cabanes7, Alexis Gautreau4, Slimane Ait-Si-Ali6, Andréa Dessen5, Pascale Cossart1,2,3* and Hélène Bierne1,2,3* 1.
    [Show full text]
  • Diffuse Midline Gliomas, H3 K27M-Mutant
    Castel et al. Acta Neuropathologica Communications (2018) 6:117 https://doi.org/10.1186/s40478-018-0614-1 RESEARCH Open Access Transcriptomic and epigenetic profiling of ‘diffuse midline gliomas, H3 K27M-mutant’ discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location David Castel1,2*, Cathy Philippe1,12, Thomas Kergrohen1,2, Martin Sill3,4, Jane Merlevede1, Emilie Barret1, Stéphanie Puget5, Christian Sainte-Rose5, Christof M. Kramm6, Chris Jones7, Pascale Varlet8, Stefan M. Pfister3,4,9, Jacques Grill1,2, David T. W. Jones3,10 and Marie-Anne Debily1,11,13* Abstract Diffuse midline glioma (DMG), H3 K27M-mutant, is a new entity in the updated WHO classification grouping together diffuse intrinsic pontine gliomas and infiltrating glial neoplasms of the midline harboring the same canonical mutation at the Lysine 27 of the histones H3 tail. Two hundred and fifteen patients younger than 18 years old with centrally-reviewed pediatric high-grade gliomas (pHGG) were included in this study. Comprehensive transcriptomic (n = 140) and methylation (n = 80) profiling was performed depending on the material available, in order to assess the biological uniqueness of this new entity compared to other midline and hemispheric pHGG. Tumor classification based on gene expression (GE) data highlighted the similarity of K27M DMG independently of their location along the midline. T-distributed Stochastic Neighbor Embedding (tSNE) analysis of methylation profiling confirms the discrimination of DMG from other well defined supratentorial tumor subgroups. Patients with diffuse intrinsic pontine gliomas (DIPG) and thalamic DMG exhibited a similarly poor prognosis (11.1 and 10.8 months median overall survival, respectively).
    [Show full text]