The Joss Primer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Easyaccess: Enhanced SQL Command Line Interpreter for Astronomical Surveys
easyaccess: Enhanced SQL command line interpreter for astronomical surveys Matias Carrasco Kind1, Alex Drlica-Wagner2, Audrey Koziol1, and Don Petravick1 1 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign. 1205 W Clark St, Urbana, IL USA 61801 2 Fermi National Accelerator Laboratory, P. O. Box 500, DOI: 00.00000/joss.00000 Batavia,IL 60510, USA Software • Review Summary • Repository • Archive easyaccess is an enhanced command line interpreter and Python package created to Submitted: 00 January 0000 facilitate access to astronomical catalogs stored in SQL Databases. It provides a custom Published: 00 January 0000 interface with custom commands and was specifically designed to access data from the License Dark Energy Survey Oracle database, although it can easily be extended to another survey Authors of papers retain copyright or SQL database. The package was completely written in Python and support customized and release the work under a Cre- addition of commands and functionalities. Visit https://github.com/mgckind/easyaccess ative Commons Attribution 4.0 In- to view installation instructions, tutorials, and the Python source code for easyaccess. ternational License (CC-BY). The Dark Energy Survey The Dark Energy Survey (DES) (DES Collaboration 2005; DES Collaboration 2016) is an international, collaborative effort of over 500 scientists from 26 institutions in seven countries. The primary goals of DES are reveal the nature of the mysterious dark energy and dark matter by mapping hundreds of millions of galaxies, detecting thousands of supernovae, and finding patterns in the large-scale structure of the Universe. Survey operations began on on August 31, 2013 and will conclude in early 2019. -
GDOT Signing and Marking Design Guidelines
Signing and Marking Design Guidelines 8/10/2021 Revision 6.1 Atlanta, GA 30308 This document was developed as part of the continuing effort to provide guidance within the Georgia Department of Transportation in fulfilling its mission to provide a safe, efficient, and sustainable transportation system through dedicated teamwork and responsible leadership supporting economic development, environmental sensitivity and improved quality of life. This document is not intended to establish policy within the Department, but to provide guidance in adhering to the policies of the Department. Your comments, suggestions, and ideas for improvements are welcomed. Please send comments to: State Design Policy Engineer Georgia Department of Transportation One Georgia Center 600 West Peachtree Street, N.W., 26th Floor Atlanta, Georgia 30308 DISCLAIMER The Georgia Department of Transportation maintains this printable document and is solely responsible for ensuring that it is equivalent to the approved Department guidelines. Signing and Marking Design Guidelines Revision History Revision Number Revision Date Revision Summary All - Revised and Combined Interstate and Limited Access 2.0 11/2008 Roadway Signing and Marking Design Guidelines and Non- Interstate Signing and Marking Design Guidelines 2.1 1/2011 All - Revised Figures Chapter 2 - Removed section 2.6 Detail Estimate Chapter 3 - Added Bicycle Warning and Share the Road Sign Guidance and Revised Figures Specified 36” for Warning Signs on State Routes Appendix A - Revised Legend and Figures 3.0 12/2013 All – Major Revision 3.1 10/2015 Section 2.4 - Changed General Notes location. Section 2.5 - Changed the Reflective Sheeting Section 3.1- Removed pavement marking plans Section 3.1.2 - Changed “or” to “and/or”. -
2.8.1 the ASCII Table for Computer Braille Input
2.8.1 The ASCII table for computer Braille input PLUS: dots 3-4-6 Comma: dot 6 Dash: dots 3-6 Period: dots 4-6 Slash: dots 3-4 Exclamation mark: dots 2-3-4-6 Quotation mark: dot 5 Number sign: dots 3-4-5-6 Dollar sign: dots 1-2-4-6 Percent: dots 1-4-6 Ampersand: dots 1-2-3-4-6 Apostrophe: dot 3 Left parenthesis: dots 1-2-3-5-6 Right parenthesis: dots 2-3-4-5-6 Asterisk: dots 1-6 Colon: dots 1-5-6 Semi colon: dots 5-6 Less than: dots 1-2-6 Equal: dots 1-2-3-4-5-6 Great than: dots 3-4-5 Question mark: dots 1-4-5-6 At sign: Space-u (dots 1-3-6), dot 4 Left bracket: Space-u (dots 1-3-6), dots 2-4-6 Back slash: Space-u (dots 1-3-6), dots 1-2-5-6 Right bracket: Space-u (dots 1-3-6), dots 1-2-4-5-6 Carat: Space-u (dots 1-3-6), dots 4-5 Underscore: Space-u (dots 1-3-6), dots 4-5-6 Grave accent: dots 4 Left brace: dots 2-4-6 Vertical bar: dots 1-2-5-6 Right brace: dots 1-2-4-5-6 Tilde: dots 4-5 A: Space-u (dots 1-3-6), dot 1 B: Space-u (dots 1-3-6), dots 1-2 C: Space-u (dots 1-3-6), dots 1-4 D: Space-u (dots 1-3-6), dots 1-4-5 E: Space-u (dots 1-3-6), dots 1-5 F: Space-u (dots 1-3-6), dots 1-2-4 G: Space-u (dots 1-3-6), dots 1-2-4-5 H: Space-u (dots 1-3-6), dots 1-2-5 I: Space-u (dots 1-3-6), dots 2-4 J: Space-u (dots 1-3-6), dots 2-4-5 K: Space-u (dots 1-3-6), dots 1-3 L: Space-u (dots 1-3-6), dots 1-2-3 M: Space-u (dots 1-3-6), dots 1-3-4 N: Space-u (dots 1-3-6), dots 1-3-4-5 O: Space-u (dots 1-3-6), dots 1-3-5 P: Space-u (dots 1-3-6), dots 1-2-3-4 Q: Space-u (dots 1-3-6), dots 1-2-3-4-5 R: Space-u (dots 1-3-6), dots 1-2-3-5 S: Space-u (dots -
A Command-Line Interface for Analysis of Molecular Dynamics Simulations
taurenmd: A command-line interface for analysis of Molecular Dynamics simulations. João M.C. Teixeira1, 2 1 Previous, Biomolecular NMR Laboratory, Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain 2 DOI: 10.21105/joss.02175 Current, Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Software Canada • Review Summary • Repository • Archive Molecular dynamics (MD) simulations of biological molecules have evolved drastically since its application was first demonstrated four decades ago (McCammon, Gelin, & Karplus, 1977) and, nowadays, simulation of systems comprising millions of atoms is possible due to the latest Editor: Richard Gowers advances in computation and data storage capacity – and the scientific community’s interest Reviewers: is growing (Hospital, Battistini, Soliva, Gelpí, & Orozco, 2019). Academic groups develop most of the MD methods and software for MD data handling and analysis. The MD analysis • @amritagos libraries developed solely for the latter scope nicely address the needs of manipulating raw data • @luthaf and calculating structural parameters, such as: MDAnalysis (Gowers et al., 2016; Michaud- Agrawal, Denning, Woolf, & Beckstein, 2011); (McGibbon et al., 2015); (Romo, Submitted: 03 March 2020 MDTraj LOOS Published: 02 June 2020 Leioatts, & Grossfield, 2014); and PyTraj (Hai Nguyen, 2016; Roe & Cheatham, 2013), each with its advantages and drawbacks inherent to their implementation strategies. This diversity License enriches the field with a panoply of strategies that the community can utilize. Authors of papers retain copyright and release the work The MD analysis software libraries widely distributed and adopted by the community share under a Creative Commons two main characteristics: 1) they are written in pure Python (Rossum, 1995), or provide a Attribution 4.0 International Python interface; and 2) they are libraries: highly versatile and powerful pieces of software that, License (CC BY 4.0). -
Ed 060 620 Author Title Institution Spons Agency Pub Date
DOCUMENT RESUME ED 060 620 EM 009 626 AUTHOR Bork, Alfred M. TITLE Introduction to Computer Programming Languages. INSTITUTION California Univ., Irvine. Physics Computer Development Project. SPONS AGENCY National Science Foundation, Washington, D-C. PUB DATE Dec 71 NOTE 5p. JOURNAL CIT JCST; P 12-16 December 1971 EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS Computer Assisted Instruction; Computer Science Education; *Guides; *Programing; *Programing Languages ABSTRACT A brief introduction to computer programing explains the basic grammar of ccmputer language as well as fundamental computer techniques. What constitutes a computer program is made clear, then three simple kinds of statements basic to the computational computer are defined: assignment statements, input-output statements, and branching statements. A short description of several available computer languages is given along with an explanation of how the newcomer would make use of basic computer software. Finally, five different versions of a simple program (for solving the harmonic oscillator numerically) are given with comparison. (RB) 74.-E U.S. DEPARTMENT OF HEALTH. F749 EDUCATION & WELFARE erP\ e-"ri". "79' - A ott, Tritl OFFICE OF EDUCATION t,.4 taicta- THIS DOCUMENT HAS BEEN REPRO- DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG- '14r- C-1"?Fig ErtrIgf7t Or>re!9,1 2 INATING IT. POINTS OF VIEW OR OPIN- 616 ti LiS kC..".4 .2) szyj /ONS STATED DO NOT NECESSARILY cp-S.e REPRESENT OFFICIAL OFFICE OF EDU- CATION POSITION OR POLICY. By Affred M. Bork r,9 he digital computer is a powerful, calculating. andwhat the programmer wants it to do. For convenience, L logical device. -
Building Basic Formulas
05 0789731533 CH03 5/18/04 11:12 AM Page 53 Building Basic Formulas A worksheet is merely a lifeless collection of num- bers and text until you define some kind of relation- 3 ship among the various entries. You do this by creating formulas that perform calculations and pro- duce results. This chapter takes you through some formula basics, including constructing simple arith- IN THIS CHAPTER metic and text formulas, understanding the all- Understanding Formula Basics . .53 important topic of operator precedence, copying Understanding Operator Precedence . .57 and moving worksheet formulas, and making for- mulas easier to build and read by taking advantage Controlling Worksheet Calculation . .59 of range names. Copying and Moving Formulas . .61 Displaying Worksheet Formulas . .64 Understanding Formula Basics Converting a Formula to a Value . .65 Most worksheets are created to provide answers to Working with Range Names in Formulas . .66 specific questions: What is the company’s profit? Are expenses over or under budget, and by how Working with Links in Formulas . .70 much? What is the future value of an investment? Formatting Numbers,Dates,and Times . .72 How big will an employee bonus be this year? You can answer these questions, and an infinite variety of others, by using Excel formulas. All Excel formulas have the same general structure: an equals sign (=) followed by one or more operands—which can be a value, a cell reference, a range, a range name, or a function name—sepa- rated by one or more operators—the symbols that combine the operands in some way, such as the plus sign (+) and the greater-than sign (>). -
Computer Braille Code (CBC) Update 2010 Special Symbols Page
Computer Braille Code (CBC) Update 2010 Special Symbols Page 3.3 Standard Computer Braille Code symbols, including any symbols that have been devised by the transcriber, should be listed on a “Special Symbols” page. These symbols must be transcribed in accordance with the rules of the Braille Formats: Principles of Print to Braille Transcription (latest edition). When putting CBC symbols on a special symbols page, the minor heading “Computer Braille Code” should appear before the symbols. The first two symbols on the list should always be the opening and closing computer code symbols. Other symbols listed should occur in the order shown below. Only symbols used within the volume are included in the list.. At the end of the list, insert the following paragraph, if applicable: All numbers in Computer Braille Code appear in the lower part of the cell, without the number sign. --------------------- SPECIAL SYMBOLS USED IN THIS VOLUME Computer Braille Code _+ begin Computer Braille Code _: end Computer Braille Code (End Nemeth Code, End shape indicator, etc.) _ (456) shift indicator _& continuation indicator _== countable spaces indicator _! transcriber’s option symbol [include any other description here] _. (456, 46) transcriber’s option symbol [include any other description here] _* begin emphasis indicator _/ end emphasis indicator _> caps lock indicator _< caps release indicator _% begin Nemeth Code indicator _? half-line shift down indicator _# half-line shift up indicator _$ begin shape indicator & ampersand = equal sign ( left parenthesis ) right parenthesis [ left bracket ] right bracket \ backslash * asterisk < less than sign > greater than sign % percent sign . -
A GTK+ Binding to Build Graphical User Interfaces in Fortran Vincent Magnin, James Tappin, Jens Hunger, Jerry De Lisle
gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran Vincent Magnin, James Tappin, Jens Hunger, Jerry de Lisle To cite this version: Vincent Magnin, James Tappin, Jens Hunger, Jerry de Lisle. gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran. Journal of Open Source Software, Open Journals, 2019, 4 (34), pp.1109. 10.21105/joss.01109. hal-02113675 HAL Id: hal-02113675 https://hal.archives-ouvertes.fr/hal-02113675 Submitted on 29 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License gtk-fortran: a GTK+ binding to build Graphical User Interfaces in Fortran Vincent MAGNIN1, James TAPPIN2, Jens HUNGER3, and Jerry DE LISLE4 1 Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France 2 RAL Space, STFC Rutherford Appleton Laboratory, Harwell Campus ,Didcot,Oxfordshire OX11 0QX, United Kingdom 3 Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany 4 GFortran Team, USA DOI: 10.21105/joss.01109 Software • Review Summary • Repository • Archive Fortran is still much used in research because it is suited by design to scientific computing Submitted: 11 October 2018 and there is a lot of legacy code written in this language. -
UEB Guidelines for Technical Material
Guidelines for Technical Material Unified English Braille Guidelines for Technical Material This version updated October 2008 ii Last updated October 2008 iii About this Document This document has been produced by the Maths Focus Group, a subgroup of the UEB Rules Committee within the International Council on English Braille (ICEB). At the ICEB General Assembly in April 2008 it was agreed that the document should be released for use internationally, and that feedback should be gathered with a view to a producing a new edition prior to the 2012 General Assembly. The purpose of this document is to give transcribers enough information and examples to produce Maths, Science and Computer notation in Unified English Braille. This document is available in the following file formats: pdf, doc or brf. These files can be sourced through the ICEB representatives on your local Braille Authorities. Please send feedback on this document to ICEB, again through the Braille Authority in your own country. Last updated October 2008 iv Guidelines for Technical Material 1 General Principles..............................................................................................1 1.1 Spacing .......................................................................................................1 1.2 Underlying rules for numbers and letters.....................................................2 1.3 Print Symbols ..............................................................................................3 1.4 Format.........................................................................................................3 -
1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B. -
Using GNU Make to Manage the Workflow of Data Analysis Projects
JSS Journal of Statistical Software June 2020, Volume 94, Code Snippet 1. doi: 10.18637/jss.v094.c01 Using GNU Make to Manage the Workflow of Data Analysis Projects Peter Baker University of Queensland Abstract Data analysis projects invariably involve a series of steps such as reading, cleaning, summarizing and plotting data, statistical analysis and reporting. To facilitate repro- ducible research, rather than employing a relatively ad-hoc point-and-click cut-and-paste approach, we typically break down these tasks into manageable chunks by employing sep- arate files of statistical, programming or text processing syntax for each step including the final report. Real world data analysis often requires an iterative process because many of these steps may need to be repeated any number of times. Manually repeating these steps is problematic in that some necessary steps may be left out or some reported results may not be for the most recent data set or syntax. GNU Make may be used to automate the mundane task of regenerating output given dependencies between syntax and data files. In addition to facilitating the management of and documenting the workflow of a complex data analysis project, such automation can help minimize errors and make the project more reproducible. It is relatively simple to construct Makefiles for small data analysis projects. As projects increase in size, difficulties arise because GNU Make does not have inbuilt rules for statistical and related software. Without such rules, Makefiles can become unwieldy and error-prone. This article addresses these issues by providing GNU Make pattern rules for R, Sweave, rmarkdown, SAS, Stata, Perl and Python to streamline management of data analysis and reporting projects. -
Letterlike Symbols Range: 2100–214F
Letterlike Symbols Range: 2100–214F This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation.