The Polycons: the Sphericon (Or Tetracon) Has Found Its Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Computation of Foldings
On the Computation of Foldings The process of determining the development (or net) of a polyhedron or of a developable surface is called unfolding and has a unique result, apart from the placement of different components in the plane. The reverse process called folding is much more complex. In the case of polyhedra it H. Stachel leads to a system of algebraic equations. A given development can Professor emeritus Institute of Discrete Mathematics correspond to several or even to infinitely many incongruent polyhedra. and Geometry The same holds also for smooth surfaces. In the paper two examples of Vienna University of Technology such foldings are presented. Austria In both cases the spatial realisations bound solids, for which mathe- matical models are required. In the first example, the cylinders with curved creases are given. In this case the involved curves can be exactly described. In the second example, even the ruling of the involved developable surface is unknown. Here, the obtained model is only an approximation. Keywords: folding, curved folding, developable surfaces, revolute surfaces of constant curvature. 1. UNFOLDING AND FOLDING surface Φ is unique, apart from the placement of the components in the plane. The unfolding induces an In Descriptive Geometry there are standard procedures isometry Φ → Φ 0 : each curve c on Φ has the same available for the construction of the development ( net length as its planar counterpart c ⊂ Φ . Hence, the or unfolding ) of polyhedra or piecewise linear surfaces, 0 0 i.e., polyhedral structures. The same holds for development shows in the plane the interior metric of developable smooth surfaces. -
On the Motion of the Oloid Toy
On the motion of the Oloid toy On the motion of the Oloid toy Alexander S. Kuleshov Mont Hubbard Dale L. Peterson Gilbert Gede [email protected] Abstract Analysis and simulation are performed for the commercially available toy known as the Oloid. While rolling on the fixed horizontal plane the Oloid moves very swinging but smooth: it never falls over its edges. The trajectories of points of contact of the Oloid with the supporting plane are found analytically. 1 Introduction Let us consider the motion of the Oloid on a fixed horizontal plane. The Oloid is a developable surface comprises of two circles of radius R whose planes of symmetry make a right angle between each other with the distance between the centers of the circles equals to their radius R. The resulting convex hull is called Oloid. The Oloid have been constructed for the first time by Paul Schatz [2,3]. The geometric properties of the surface of the Oloid have been discussed in the paper [1]. The Oloid is also used for technical applications. Special mixing-machines are constructed using such bodies [4]. In our paper we make the complete kinematical analysis of motion of this object on the horizontal plane. Further we briefly describe basic facts from Kinematics and Differential Geometry which we will use in our investigation. The Frenet - Serret formulas. Consider a particle which moves along a continuous differentiable curve in three - dimensional Euclidean Space 3. We can introduce the R following coordinate system: the origin of this system is in the moving particle, τ is the unit vector tangent to the curve, pointing in the direction of motion, ν is the derivative of τ with respect to the arc-length parameter of the curve, divided by its length and β is the cross product of τ and ν: β = [τ ν]. -
The Extended Oloid and Its Inscribed Quadrics
The extended oloid and its inscribed quadrics Uwe B¨asel and Hans Dirnb¨ock Abstract The oloid is the convex hull of two circles with equal radius in perpen- dicular planes so that the center of each circle lies on the other circle. It is part of a developable surface which we call extended oloid. We determine the tangential system of all inscribed quadrics Qλ of the extended oloid O where λ is the system parameter. From this result we conclude parameter equations of the touching curve Cλ between O and Qλ, the edge of regression R of O, and the asymptotes of R. Properties of the curves Cλ are investigated, including the case that λ ! ±∞. The self-polar tetrahedron of the tangential system Qλ is obtained. The common generating lines of O and any ruled surface Qλ are determined. Furthermore, we derive the curves which are the images of Cλ and R when O is developed onto the plane. Mathematics Subject Classification: 51N05, 53A05 Keywords: oloid, extended oloid, developable, tangential system of quadrics, touching curve, edge of regression, self-polar tetrahedron, ruled surface 1 Introduction The oloid was discovered by Paul Schatz in 1929. It is the convex hull of two circles with equal radius r in perpendicular planes so that the center of each circle lies on the other circle. The oloid has the remarkable properties that it develops its entire surface while rolling, and its surface area is equal to 4πr2. The surface of the oloid is part of a developable surface. [2], [8] In the following this developable surface is called extended oloid. -
Line Geometry for 3D Shape Understanding and Reconstruction
Line Geometry for 3D Shape Understanding and Reconstruction Helmut Pottmann, Michael Hofer, Boris Odehnal, and Johannes Wallner Technische UniversitÄat Wien, A 1040 Wien, Austria. fpottmann,hofer,odehnal,[email protected] Abstract. We understand and reconstruct special surfaces from 3D data with line geometry methods. Based on estimated surface normals we use approximation techniques in line space to recognize and reconstruct rotational, helical, developable and other surfaces, which are character- ized by the con¯guration of locally intersecting surface normals. For the computational solution we use a modi¯ed version of the Klein model of line space. Obvious applications of these methods lie in Reverse Engi- neering. We have tested our algorithms on real world data obtained from objects as antique pottery, gear wheels, and a surface of the ankle joint. Introduction The geometric viewpoint turned out to be highly successful in dealing with a variety of problems in Computer Vision (see, e.g., [3, 6, 9, 15]). So far mainly methods of analytic geometry (projective, a±ne and Euclidean) and di®erential geometry have been used. The present paper suggests to employ line geometry as a tool which is both interesting and applicable to a number of problems in Computer Vision. Relations between vision and line geometry are not entirely new. Recent research on generalized cameras involves sets of projection rays which are more general than just bundles [1, 7, 18, 22]. A beautiful exposition of the close connections of this research area with line geometry has recently been given by T. Pajdla [17]. The present paper deals with the problem of understanding and reconstruct- ing 3D shapes from 3D data. -
Vector Calculus
MA 302: Selected Course notes CONTENTS 1. Revisiting Calculus 1 and 2 with a view toward Vector Calculus 3 2. Some Linear Algebra 10 2.1. Linear and Affine Functions 10 2.2. Matrix Multiplication 11 3. Differentiation 13 3.1. The derivative 13 3.2. Differentiability 16 3.3. The chain rule 16 4. Parameterized Curves 20 4.1. Some important examples 20 4.2. Velocity and Acceleration 21 4.3. Tangent space coordinates 23 4.4. Intrinsic vs. Extrinsic 26 4.5. Arc length 31 4.6. Curvature and the Moving Frame 38 5. Integrating Vector Fields and Scalar Fields over Curves 42 5.1. Path Integrals of Scalar Fields 42 5.2. Path Integrals of Vector Fields 44 6. Vector Fields 45 6.1. Gradient 49 6.2. Curl 54 6.3. Divergence 59 6.4. From Vector Calculus to Cohomology 61 1 2 7. Review: Double Integrals 62 7.1. Integrating over rectangles 62 7.2. Integrating over non-rectangular regions 63 8. Interlude: The Fundamental Theorem of Calculus and generalizations 71 8.1. 0 and 1 dimensional integrals 71 8.2. Green’s theorem 72 8.3. Stokes’ Theorem 73 8.4. The Divergence Theorem 74 8.5. Generalized Stokes’ Theorem 74 9. Basic Examples of Green’s Theorem in Action 75 10. The proof of Green’s Theorem 78 11. Applications of Green’s Theorem 80 11.1. Finding Areas 80 11.2. Conservative Vector Fields 82 11.3. Planar Divergence Theorem 84 12. Surfaces: Topology and Calculus 85 12.1. Topological Surfaces 85 12.2. -
United States Patent (11) 3,572,646 72 Inventor Heinz Kocher 390,533 8/1965 Switzerland
United States Patent (11) 3,572,646 72 Inventor Heinz Kocher 390,533 8/1965 Switzerland.................. 18/12(SF) Centralstrasse 41, Neuhausen, Switzerland 21 Appl. No. 721,816 Primary Examiner-William I. Price 22 Filed Apr. 16, 1968 Attorneys-Ralph E. Bucknam, Jesse D. Reingold, Robert R. 45 Patented Mar. 30, 1971 Strack and Henry A. Marzullo, Jr. (32) Priority Apr. 17, 1968 (33) Austria 31 A-3592/67 54 APPARATUS FORTRANSFORMING AND MXNG ABSTRACT: Apparatus for transforming and mixing DEFORMABLE MEDIA deformable media, such as plastics, comprises a cylindrical 11 Claims, 11 Drawing Figs. Casing having a rotor mounted for coaxial driven rotation in 52) U.S. Cl..................................................... 259/25 the cylinder which is provided with an inlet for the medium. 5 i Int. Cl................ ... B01f 7/02 The rotor is provided with a conveyor screw for the medium, and following the screw in the direction of flow the rotor com 50) Field of Search............................... ... 25917, 9, prises diverging diffusor portions alternating with cylindrical 10, 25, 26; 18/12 (SF), 12 (SE) rotor portions. The end of the rotor adjacent the outlet of the 56 References Cited cylinder is formed as a converging diffusor. The different rotor UNITED STATES PATENTS portions coact with surrounding wall portions of the cylinder having portions with a surface finish differing from that of the 2,810,159 10/1957 Teichmann................... 18/12(SE) rotor portions to subject the medium flowing in the space 3,239,882 3/1966 Yokana........................ 18/12(SE) between the rotor and the surrounding casing wall to differing FOREIGN PATENTS frictional resistance along the external and internal layers 1,007, 140 10/1965. -
||||||||||||III USOO540.8598A United States Patent (19) 11 Patent Number: 5,408,598 Pryor, Jr
||||||||||||III USOO540.8598A United States Patent (19) 11 Patent Number: 5,408,598 Pryor, Jr. 45 Date of Patent: Apr. 18, 1995 54 METHOD FOR FAST GENERATION OF 4,943,935 7/1990 Sate ..................................... 364/518 PARAMETRC CURVES EMPLOYNGA 4,949,281 8/1990 Hillenbrand et al. ... 364/518 CULA NUMB 4,999,789 3/1991 Fiasconaro .......................... 395/127 SEE SEREEE 5,133,052 7/1992 Bier et al. .......... ... 395/133 X 5,214,754 5/1993 Okamoto et al. ................... 395/142 DETERMINED ERROR THRESHOLD saw is is 75 Inventor: Duaine W. Pryor, Jr., Berkeley, OTHER PUBLICATIONS Calif. Computer Science Press, Inc., “Algorithms for Graph s ics and Image Processing', Theo Pavlidis Bell Labora 73 Assignee: tail Rte Mahines tories, pp. 221-231., 1982. is all y o a I. D. Faux et al., "Computational Geometry for Design 21 Appl. No.: 202,678 and Manufacture', Dept. of Mathematics 1979, pp. 127-145. Publisher: E. Horwood Ltd. 22 Fed:e Feb. 25, 1994 Wolfgang Dahmen, “Subdivision Algorithms Con verge Quadratically”, 1988, pp. 145-158, Journal of Related U.S. Application Data Computational and Applied Mathimatics. 63 Continuation of Ser. No. 705,041, May 23, 1991, aban- s doned. Primary Examiner-Almis R. Jankus 51 Int. Cl6 11/00 Attorney, Agent, or Firm-Perman & Green 52 U.S.C.. 395/2,39571.43 (57) ABSTRACT 58 Field of Search ................................ 395/141-143, A method enables the prediction of the number of sub 395/119, 123, 127, 133, -140, 155, 150, 151 divisions of a curve that will be required by control (56) References Cited polygons to assure that a resulting straight line repre sentation of the curve will not exceed a preset error U.S. -
Sphericons and D-Forms: a Crocheted Connection
March 21, 2017 Journal of Mathematics and the Arts sphericonsdformsfeb17arxiv To appear in the Journal of Mathematics and the Arts Vol. 00, No. 00, Month 20XX, 1{14 Sphericons and D-forms: a crocheted connection Katherine A. Seatona∗ aDepartment of Mathematics and Statistics, La Trobe University VIC 3086, Australia (Received 00 Month 20XX; final version received 00 Month 20XX) Sphericons and D-forms are 3D objects created and described by artists, which have separately received attention in the mathematical literature in the last 15 or so years. The attempt to classify a seamed, crocheted form geometrically led to the observation, which appears not to have been previously made explicit, that these objects are related. General results concerning (N; k)-icons and seam-, D- and pita-forms are given. Instructions to crochet such forms are provided in the Appendix. Keywords: sphericon, D-form, pita-form, developable surface, crochet AMS Subject Classification: 51M04; 97M80 1. Introduction In January 2016, a crocheter on the social networking site Ravelry [1] posted images of a coin purse she had made as a Christmas present, and started a discussion thread asking readers of a particular forum if they could help her identify the name of its 3D shape (hereafter termed The Shape). The purse, shown in Figure 1, had been constructed following a pattern [4] by making a flat oval, and attaching a zipper to its edge in such a way that when the zipper closed, the purse was not folded over exactly in half onto itself (flat), but sat up, enclosing an intriguingly- shaped volume. -
The Ubiquitous Parabola
Hartley Hyde • [email protected] The ubiquitous parabola User Service Calculator And Computer Technology very so often someone who once suffered a Less easy to defend has been the teaching of Epoor learning experience, challenges the the parabola as an example of a conic section, inclusion of key topics in the curriculum. When and sadly, a study of conics has often been a an author and a British politician both ques- casualty to the constant erosion of our tioned the teaching of quadratic equations the curriculum time. Conics problems provide an AAMT email list members responded admirably. ideal opportunity to show how simple algebra The list provides a friendly, free and often can be used to model geometry. The topic is sympathetic forum for this type of debate. If you supported by so many interesting applications still have not joined the list, contact the AAMT ranging from the orbits of objects in space to the office today. design of loud speaker systems. I liked the thread seeking 101 uses for a Although the earth’s gravitational field is quadratic equation. A study of quadratics is radial, it is so large that small sections, such as important because a quadratic is the simplest the gravitational field within a room, skate park non-linear function. The importance of non- or cricket pitch can be regarded as parallel. This linear functions in regression modelling will means that any object in free fall, be it a piece become more apparent as a new generation of of chalk, a skate board rider or a ball, will follow students, who have learned to use statistics and a parabolic trajectory. -
Regarding “Space Walk on the Earth” with Ellipsoidal Rolling Plane
Journal for Geometry and Graphics Volume 15 (2011), No. 2, 203–212. The Construction of a Rideable Geometric Object Based on a Conical Form: Regarding “Space Walk on the Earth” With Ellipsoidal Rolling Plane Toshio Muramatsu The University of Yamanashi 4-4-37, Takeda, Kofu, Yamanashi 400-8510 Japan email: [email protected] Abstract. Under the theme “art object rolling smoothly on the floor” the author has thus far created large moving objects using stainless steel pipes from a sculptural perspective. Thus a series of objects has been designed wherein a participatory audience can feel the movement and changes in forms by directly touching the objects with their hands and using their bodies. In this study, the author has constructed a hands-on solid geometric object with an ellipsoidal rolling plane based on conical form. This art form is one that people can sit on, balance, and roll on the ground by providing the driving power to roll it. Key Words: Formative theory, form composition, kinetic art MSC 2010: 00A66, 51N05 1. Introduction There are well-known examples of objects created by focusing on the fact that both roll in a consistent directional manner on planes in three-dimensional space, the “Two-Circle-Roller” (Fig. 1) and the “Sphericon” (Fig. 2) [2, 3]. The Two-Circle-Roller is a special case of the “Oloid” invented by Paul Schatz (1898–1979) that consists of two mutually intruding perfect circular discs in orthogonal planes [7, 1]. The Sphericon was invented by Colin Roberts 1970. These objects roll on planes while moving. -
Movable Thin Glass Elements in Façades
Challenging Glass 6 - Conference on Architectural and Structural Applications of Glass Louter, Bos, Belis, Veer, Nijsse (Eds.), Delft University of Technology, May 2018. 6 Copyright © with the authors. All rights reserved. ISBN 978-94-6366-044-0, https://doi.org/10.7480/cgc.6.2133 Movable Thin Glass Elements in Façades Jürgen Neugebauer, Markus Wallner-Novak, Tim Lehner, Christian Wrulich, Marco Baumgartner University of Applied Sciences, FH-Joanneum, Josef Ressel Center for Thin Glass Technology for Structural Glass Application, Austria, [email protected] Façades play an important role in the control of energy flow and energy consumption in buildings as they represent the interface between the outdoor environment and the indoor occupied space. The option of regulating internal and external conditions acquires great relevance in new approaches to sustainable building solutions. Studies on climate adaptive façades show a very high potential for improved indoor environmental quality conditions and energy savings by moveable façades. A number of movable façades were realized in the past, but the use of thin glass with a thickness of 0.5 mm to 3 mm opens a brand-new field, that allows for playing with the geometry of the outer skin and the opportunity to make it adaptive by movement. Thin glass requires for curved surfaces in order to gain structural stiffness in static use. In kinetic façades the high flexibility of thin glass allows for new options for changes in size and position by bending of elements rather than implementing hinges in a system of foldable rigid panels. The geometry is based on the known theory of developable surfaces for keeping a low stress-level during movement. -
Arxiv:1603.08409V1 [Math.HO] 1 Mar 2016 On-Line Discussion and Brain-Storming About the Shape
October 4, 2021 Journal of Mathematics and the Arts sphericonsdformsarxiv To appear in the Journal of Mathematics and the Arts Vol. 00, No. 00, Month 20XX, 1{9 Sphericons and D-forms: a crocheted connection Katherine A. Seatona∗ aDepartment of Mathematics and Statistics, La Trobe University VIC 3086, Australia (Received 00 Month 20XX; final version received 00 Month 20XX) Sphericons and D-forms are 3D objects created and described by artists, which have separately received attention in the mathematical literature in the last 15 or so years. The attempt to classify a seamed, crocheted form geometrically led to the observation, which appears not to have been previously made explicit, that these objects are related. Instructions to crochet D-forms are given in the Appendix. Keywords: sphericon, D-form, pita form, developable surface, Ravelry, crochet AMS Subject Classification: 51M04; 97M80 1. Introduction In January 2015, a crocheter on the social networking site Ravelry[1] posted images of a coin purse she had made as a Christmas present, and started a discussion thread asking readers of a particular forum if they could help her identify the name of its 3D shape (hereafter termed The Shape). The purse, shown in Figure 1, had been constructed following a pattern[4] by making a flat oval, and attaching a zipper to its edge in such a way that when the zipper closed, the purse was not folded over exactly in half onto itself (flat), but sat up, enclosing an intriguingly-shaped volume. The crocheter had read the German version[19] of an Ian Stewart column on the sphericon[25], and believed that The Shape might be sort-of-but-not-quite a sphericon.