Line Geometry for 3D Shape Understanding and Reconstruction

Total Page:16

File Type:pdf, Size:1020Kb

Line Geometry for 3D Shape Understanding and Reconstruction Line Geometry for 3D Shape Understanding and Reconstruction Helmut Pottmann, Michael Hofer, Boris Odehnal, and Johannes Wallner Technische UniversitÄat Wien, A 1040 Wien, Austria. fpottmann,hofer,odehnal,[email protected] Abstract. We understand and reconstruct special surfaces from 3D data with line geometry methods. Based on estimated surface normals we use approximation techniques in line space to recognize and reconstruct rotational, helical, developable and other surfaces, which are character- ized by the con¯guration of locally intersecting surface normals. For the computational solution we use a modi¯ed version of the Klein model of line space. Obvious applications of these methods lie in Reverse Engi- neering. We have tested our algorithms on real world data obtained from objects as antique pottery, gear wheels, and a surface of the ankle joint. Introduction The geometric viewpoint turned out to be highly successful in dealing with a variety of problems in Computer Vision (see, e.g., [3, 6, 9, 15]). So far mainly methods of analytic geometry (projective, a±ne and Euclidean) and di®erential geometry have been used. The present paper suggests to employ line geometry as a tool which is both interesting and applicable to a number of problems in Computer Vision. Relations between vision and line geometry are not entirely new. Recent research on generalized cameras involves sets of projection rays which are more general than just bundles [1, 7, 18, 22]. A beautiful exposition of the close connections of this research area with line geometry has recently been given by T. Pajdla [17]. The present paper deals with the problem of understanding and reconstruct- ing 3D shapes from 3D data. The data are assumed to be of a surface-like nature | either a cloud of measurement points, or another 3D shape representation such as a triangular mesh or a surface representation in parametric or implicit form | and we assume that we are able to obtain a discrete number of points on the surface and to estimate surface normals there. We are interested in classes of surfaces with special properties: planar, spherical and cylindrical surfaces, sur- faces of revolution and helical surfaces; and the more general surface classes of canal, pipe, and developable surfaces. For applications in CAD/CAM it is essen- tial that such special shapes are not represented by freeform surfaces without regard to their special properties, but treated in a way more appropriate to their `simple' nature. Line geometry enters the problem of object reconstruction from point clouds via the surface normals estimated at the data points. In fact, modern 3D pho- tography and the corresponding software delivers such normals together with 2 Helmut Pottmann et al. the data points. It turns out that the surface classes mentioned above can be characterized in terms of their surface normals in an elegant, simple and compu- tationally e±cient way. Appropriate coordinates for lines (which yield a model of line space as a certain 4-dimensional manifold embedded in R6) will allow to classify point clouds and their normals (i.e., the so-called `normal congruence') by means of tools such as principal component analysis. Previous work There is a vast body of literature on surface reconstruction. Since we are interested in the reconstruction of special surfaces, we do not review the part of literature which deals with the reconstruction of triangular meshes or general freeform representations. In Computer Vision, recognition and recon- struction of special shapes is often performed by methods related to the Hough transform. Originally designed for the detection of straight lines in 2D, it re- ceived much attention and has been generalized so as to be able to detect and reconstruct many other shapes (see, e.g., [11, 14]). Pure Hough transform meth- ods work in `spaces of shapes' and quickly lead to high dimensions and reduced e±ciency. In order to avoid these problems, such tools are sometimes augmented by methods from constructive geometry. This approach is already close to tech- niques invented by the CAD community, which use geometric characterizations of surfaces (e.g. by means of the Gaussian image) for data segmentation and the extraction of special shapes (see the survey [24]). Many papers deal with axis estimation of rotational surfaces, like [25]. See [8] for an overview on the Hough transform, the RANSAC principle, and the least squares approach. In the present paper, however, rotational surfaces occur only as a special case. The use of line geometry for surface reconstruction has been introduced by [20]. There cylinders, surfaces of revolution and helical surfaces are recognized by the fact that their surface normals are contained in a so-called linear line complex. In particular surfaces which can be moved within themselves in more than one way (right circular cylinders, spheres, planes) are detected. The tech- nique is extendable to surfaces which may be locally well approximated by the surface types mentioned above [2, 13, 21]. Contributions of the present paper Inspired by the line geometric work on reverse engineering of special shapes, our paper presents a broader line geometric framework for the solution of problems in 3D shape understanding, segmentation and reconstruction: We discuss a point model for line space, namely a certain 4-dimensional al- ² 4 6 gebraic manifold M of order 4 in R . It is better suited for line geometric approximation problems than the classical Klein model or the model used in [20], which is limited to linear line complexes. This point model makes it possible to perform the basic shape recognition tasks² via principal component analysis (PCA) of a point cloud (contained in M 4), which represents the estimated surface normals of the input shape. This procedure is further improved here and unlike [20] is stable in all special cases. The idea of looking for surface normals which intersect makes it possible to apply² line-geometric methods to the problem of recognition and reconstruction of canal surfaces (which are the envelope of a one-parameter family of spheres), Line Geometry for 3D Shape Understanding and Reconstruction 3 and of moulding surfaces. The latter denotes a certain class of sweep surfaces which contains the developable surfaces and the pipe surfaces. The segmentation of composite surfaces into their `simple' parts is addressed here² in so far as recognition of surface type is essential for segmentation. Our algorithms may be included as a `black box' into a segmentation algorithm. 1 The 4-dimensional manifold of lines in R6 This paragraph discusses a computationally attractive point model of (i.e., co- ordinates in) the 4-dimensional manifold of straight lines in space. It is closely related to the classical Klein quadric (i.e., PlucÄ ker coordinates). We think of an oriented line L as one equipped with a unit vector l indicating the direction of the line | so that there are two oriented lines for each line of space. Then L is determined by l and the moment vector ¹l, which is computed by means of an arbitrary point x on L as ¹l = x l. ¹l is independent of the choice of x on L. The six numbers (l;¹l) are called normalize£ d PluckerÄ coordinates of L. `Normalized' means that l = 1; further, they satisfy the orthogonality condition l ¹l = 0. k k 3 ¢ Conversely, any two vectors l;¹l R which satisfy these two conditions deter- 2 3 mine a unique oriented straight line L in R , which has (l;¹l) as its normalized PluckÄ er coordinates. If we do not distinguish between the two opposite orientations of the same line, we may use all multiples of the pair (l;¹l) as coordinates of a line. Of course, we still have the condition l ¹l = 0. Such homogeneous coordinate vectors of lines represent those points of ¯v¢e-dimensional projective space which are contained 4 4 in the Klein quadric M2 given by the equation (x; x¹) M2 x x¹ = 0. This interpretation of lines is well studied in classical geometry2 , see,[21].¢ The present paper pursues the following approach, which is closely related to the Klein quadric. We use only normalized coordinate vectors, and so we identify an oriented line with the point (l;¹l) in six-dimensional Euclidean space R6. In this way we obtain a mapping ® of oriented lines to points of a 4-dimensional manifold M 4 R6. M 4 is algebraic of degree 4, and is the intersection of the cylinder Z5 and½ the cone ¡ 5 de¯ned by Z5 : x2 = 1; ¡ 5 : x x¹ = 0: ¢ We use the Euclidean distance of points in R6 in order to measure distances between oriented lines G; H: If G® = (g; g¹) and H® = (h; h¹), then d(G; H)2 = (g h)2 + (g¹ h¹)2: (1) ¡ ¡ The reasons why we prefer this distance function are the following: On the one hand, it is quadratic and thus lends itself to minimization. On the other hand, in a neighbourhood of the origin of the coordinate system, (1) models a distance of lines which is in accordance with visualization. The slight drawback that this is no longer the case in regions far away from the origin is in fact not important in most applications, as such applications very often de¯ne a natural region of interest, where we can put the origin of our coordinate system. 4 Helmut Pottmann et al. Remark 1. Another method for introducing coordinates and measuring distances for lines, which has been used in the past, is to ¯x two parallel planes and describe a line by the two intersection points with that plane (cf. [21]). This leads to simpler formulae and a region of interest which is bounded by the two ¯xed planes (in our case, this region is a sphere centered in the origin).
Recommended publications
  • On the Computation of Foldings
    On the Computation of Foldings The process of determining the development (or net) of a polyhedron or of a developable surface is called unfolding and has a unique result, apart from the placement of different components in the plane. The reverse process called folding is much more complex. In the case of polyhedra it H. Stachel leads to a system of algebraic equations. A given development can Professor emeritus Institute of Discrete Mathematics correspond to several or even to infinitely many incongruent polyhedra. and Geometry The same holds also for smooth surfaces. In the paper two examples of Vienna University of Technology such foldings are presented. Austria In both cases the spatial realisations bound solids, for which mathe- matical models are required. In the first example, the cylinders with curved creases are given. In this case the involved curves can be exactly described. In the second example, even the ruling of the involved developable surface is unknown. Here, the obtained model is only an approximation. Keywords: folding, curved folding, developable surfaces, revolute surfaces of constant curvature. 1. UNFOLDING AND FOLDING surface Φ is unique, apart from the placement of the components in the plane. The unfolding induces an In Descriptive Geometry there are standard procedures isometry Φ → Φ 0 : each curve c on Φ has the same available for the construction of the development ( net length as its planar counterpart c ⊂ Φ . Hence, the or unfolding ) of polyhedra or piecewise linear surfaces, 0 0 i.e., polyhedral structures. The same holds for development shows in the plane the interior metric of developable smooth surfaces.
    [Show full text]
  • Descriptive Geometry Section 10.1 Basic Descriptive Geometry and Board Drafting Section 10.2 Solving Descriptive Geometry Problems with CAD
    10 Descriptive Geometry Section 10.1 Basic Descriptive Geometry and Board Drafting Section 10.2 Solving Descriptive Geometry Problems with CAD Chapter Objectives • Locate points in three-dimensional (3D) space. • Identify and describe the three basic types of lines. • Identify and describe the three basic types of planes. • Solve descriptive geometry problems using board-drafting techniques. • Create points, lines, planes, and solids in 3D space using CAD. • Solve descriptive geometry problems using CAD. Plane Spoken Rutan’s unconventional 202 Boomerang aircraft has an asymmetrical design, with one engine on the fuselage and another mounted on a pod. What special allowances would need to be made for such a design? 328 Drafting Career Burt Rutan, Aeronautical Engineer Effi cient travel through space has become an ambi- tion of aeronautical engineer, Burt Rutan. “I want to go high,” he says, “because that’s where the view is.” His unconventional designs have included every- thing from crafts that can enter space twice within a two week period, to planes than can circle the Earth without stopping to refuel. Designed by Rutan and built at his company, Scaled Composites LLC, the 202 Boomerang aircraft is named for its forward-swept asymmetrical wing. The design allows the Boomerang to fl y faster and farther than conventional twin-engine aircraft, hav- ing corrected aerodynamic mistakes made previously in twin-engine design. It is hailed as one of the most beautiful aircraft ever built. Academic Skills and Abilities • Algebra, geometry, calculus • Biology, chemistry, physics • English • Social studies • Humanities • Computer use Career Pathways Engineers should be creative, inquisitive, ana- lytical, detail oriented, and able to work as part of a team and to communicate well.
    [Show full text]
  • 1-1 Understanding Points, Lines, and Planes Lines, and Planes
    Understanding Points, 1-11-1 Understanding Points, Lines, and Planes Lines, and Planes Holt Geometry 1-1 Understanding Points, Lines, and Planes Objectives Identify, name, and draw points, lines, segments, rays, and planes. Apply basic facts about points, lines, and planes. Holt Geometry 1-1 Understanding Points, Lines, and Planes Vocabulary undefined term point line plane collinear coplanar segment endpoint ray opposite rays postulate Holt Geometry 1-1 Understanding Points, Lines, and Planes The most basic figures in geometry are undefined terms, which cannot be defined by using other figures. The undefined terms point, line, and plane are the building blocks of geometry. Holt Geometry 1-1 Understanding Points, Lines, and Planes Holt Geometry 1-1 Understanding Points, Lines, and Planes Points that lie on the same line are collinear. K, L, and M are collinear. K, L, and N are noncollinear. Points that lie on the same plane are coplanar. Otherwise they are noncoplanar. K L M N Holt Geometry 1-1 Understanding Points, Lines, and Planes Example 1: Naming Points, Lines, and Planes A. Name four coplanar points. A, B, C, D B. Name three lines. Possible answer: AE, BE, CE Holt Geometry 1-1 Understanding Points, Lines, and Planes Holt Geometry 1-1 Understanding Points, Lines, and Planes Example 2: Drawing Segments and Rays Draw and label each of the following. A. a segment with endpoints M and N. N M B. opposite rays with a common endpoint T. T Holt Geometry 1-1 Understanding Points, Lines, and Planes Check It Out! Example 2 Draw and label a ray with endpoint M that contains N.
    [Show full text]
  • Machine Drawing
    2.4 LINES Lines of different types and thicknesses are used for graphical representation of objects. The types of lines and their applications are shown in Table 2.4. Typical applications of different types of lines are shown in Figs. 2.5 and 2.6. Table 2.4 Types of lines and their applications Line Description General Applications A Continuous thick A1 Visible outlines B Continuous thin B1 Imaginary lines of intersection (straight or curved) B2 Dimension lines B3 Projection lines B4 Leader lines B5 Hatching lines B6 Outlines of revolved sections in place B7 Short centre lines C Continuous thin, free-hand C1 Limits of partial or interrupted views and sections, if the limit is not a chain thin D Continuous thin (straight) D1 Line (see Fig. 2.5) with zigzags E Dashed thick E1 Hidden outlines G Chain thin G1 Centre lines G2 Lines of symmetry G3 Trajectories H Chain thin, thick at ends H1 Cutting planes and changes of direction J Chain thick J1 Indication of lines or surfaces to which a special requirement applies K Chain thin, double-dashed K1 Outlines of adjacent parts K2 Alternative and extreme positions of movable parts K3 Centroidal lines 2.4.2 Order of Priority of Coinciding Lines When two or more lines of different types coincide, the following order of priority should be observed: (i) Visible outlines and edges (Continuous thick lines, type A), (ii) Hidden outlines and edges (Dashed line, type E or F), (iii) Cutting planes (Chain thin, thick at ends and changes of cutting planes, type H), (iv) Centre lines and lines of symmetry (Chain thin line, type G), (v) Centroidal lines (Chain thin double dashed line, type K), (vi) Projection lines (Continuous thin line, type B).
    [Show full text]
  • On the Motion of the Oloid Toy
    On the motion of the Oloid toy On the motion of the Oloid toy Alexander S. Kuleshov Mont Hubbard Dale L. Peterson Gilbert Gede [email protected] Abstract Analysis and simulation are performed for the commercially available toy known as the Oloid. While rolling on the fixed horizontal plane the Oloid moves very swinging but smooth: it never falls over its edges. The trajectories of points of contact of the Oloid with the supporting plane are found analytically. 1 Introduction Let us consider the motion of the Oloid on a fixed horizontal plane. The Oloid is a developable surface comprises of two circles of radius R whose planes of symmetry make a right angle between each other with the distance between the centers of the circles equals to their radius R. The resulting convex hull is called Oloid. The Oloid have been constructed for the first time by Paul Schatz [2,3]. The geometric properties of the surface of the Oloid have been discussed in the paper [1]. The Oloid is also used for technical applications. Special mixing-machines are constructed using such bodies [4]. In our paper we make the complete kinematical analysis of motion of this object on the horizontal plane. Further we briefly describe basic facts from Kinematics and Differential Geometry which we will use in our investigation. The Frenet - Serret formulas. Consider a particle which moves along a continuous differentiable curve in three - dimensional Euclidean Space 3. We can introduce the R following coordinate system: the origin of this system is in the moving particle, τ is the unit vector tangent to the curve, pointing in the direction of motion, ν is the derivative of τ with respect to the arc-length parameter of the curve, divided by its length and β is the cross product of τ and ν: β = [τ ν].
    [Show full text]
  • A Historical Introduction to Elementary Geometry
    i MATH 119 – Fall 2012: A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • 13 Graphs 13.2D Lengths of Line Segments
    MEP Pupil Text 13-19, Additional Material 13 Graphs 13.2D Lengths of Line Segments In a right-angled triangle the length of the hypotenuse may be calculated using Pythagoras' Theorem. c b cab222=+ a Worked Example 1 Determine the length of the line segment joining the points A (4, 1) and B (10, 9). Solution y (a) The diagram shows the two points and the line segment that joins them. 10 B A right-angled triangle has been 9 drawn under the line segment. The 8 length of the line segment AB (the 7 hypotenuse) may be found by using 6 Pythagoras' Theorem. 5 8 4 AB2 =+62 82 3 2 =+ 2 AB 36 64 A 6 1 AB2 = 100 0 12345678910 x AB = 100 AB = 10 Worked Example 2 y C Determine the length of the line 8 7 joining the points C (−48, ) 6 (−) and D 86, . 5 4 Solution 3 2 14 The diagram shows the two points 1 and a right-angled triangle that can –4 –3 –2 –1 0 12345678 x be used to determine the length of –1 the line segment CD. –2 –3 –4 –5 D –6 12 1 13.2D MEP Pupil Text 13-19, Additional Material Using Pythagoras' Theorem, CD2 =+142 122 CD2 =+196 144 CD2 = 340 CD = 340 CD = 18. 43908891 CD = 18. 4 (to 3 significant figures) Exercises 1. The diagram shows the three points y C A, B and C which are the vertices 11 of a triangle. 10 9 (a) State the length of the line 8 segment AB.
    [Show full text]
  • The Polycons: the Sphericon (Or Tetracon) Has Found Its Family
    The polycons: the sphericon (or tetracon) has found its family David Hirscha and Katherine A. Seatonb a Nachalat Binyamin Arts and Crafts Fair, Tel Aviv, Israel; b Department of Mathematics and Statistics, La Trobe University VIC 3086, Australia ARTICLE HISTORY Compiled December 23, 2019 ABSTRACT This paper introduces a new family of solids, which we call polycons, which generalise the sphericon in a natural way. The static properties of the polycons are derived, and their rolling behaviour is described and compared to that of other developable rollers such as the oloid and particular polysphericons. The paper concludes with a discussion of the polycons as stationary and kinetic works of art. KEYWORDS sphericon; polycons; tetracon; ruled surface; developable roller 1. Introduction In 1980 inventor David Hirsch, one of the authors of this paper, patented `a device for generating a meander motion' [9], describing the object that is now known as the sphericon. This discovery was independent of that of woodturner Colin Roberts [22], which came to public attention through the writings of Stewart [28], P¨oppe [21] and Phillips [19] almost twenty years later. The object was named for how it rolls | overall in a line (like a sphere), but with turns about its vertices and developing its whole surface (like a cone). It was realised both by members of the woodturning [17, 26] and mathematical [16, 20] communities that the sphericon could be generalised to a series of objects, called sometimes polysphericons or, when precision is required and as will be elucidated in Section 4, the (N; k)-icons. These objects are for the most part constructed from frusta of a number of cones of differing apex angle and height.
    [Show full text]
  • The Extended Oloid and Its Inscribed Quadrics
    The extended oloid and its inscribed quadrics Uwe B¨asel and Hans Dirnb¨ock Abstract The oloid is the convex hull of two circles with equal radius in perpen- dicular planes so that the center of each circle lies on the other circle. It is part of a developable surface which we call extended oloid. We determine the tangential system of all inscribed quadrics Qλ of the extended oloid O where λ is the system parameter. From this result we conclude parameter equations of the touching curve Cλ between O and Qλ, the edge of regression R of O, and the asymptotes of R. Properties of the curves Cλ are investigated, including the case that λ ! ±∞. The self-polar tetrahedron of the tangential system Qλ is obtained. The common generating lines of O and any ruled surface Qλ are determined. Furthermore, we derive the curves which are the images of Cλ and R when O is developed onto the plane. Mathematics Subject Classification: 51N05, 53A05 Keywords: oloid, extended oloid, developable, tangential system of quadrics, touching curve, edge of regression, self-polar tetrahedron, ruled surface 1 Introduction The oloid was discovered by Paul Schatz in 1929. It is the convex hull of two circles with equal radius r in perpendicular planes so that the center of each circle lies on the other circle. The oloid has the remarkable properties that it develops its entire surface while rolling, and its surface area is equal to 4πr2. The surface of the oloid is part of a developable surface. [2], [8] In the following this developable surface is called extended oloid.
    [Show full text]
  • Mel's 2019 Fishing Line Diameter Page
    Welcome to Mel's 2019 Fishing Line Diameter page The line diameter tables below offer a comparison of more than 115 popular monofilament, copolymer, fluorocarbon fishing lines and braided superlines in tests from 6-pounds to 600-pounds If you like what you see, download a copy You can also visit our Fishing Line Page for more information and links to line manufacturers. The line diameters shown are compiled from manufacturer's web sites, product catalogs and labels on line spools. Background Information When selecting a fishing line, one must consider a number of factors. While knot strength, abrasion resistance, suppleness, shock resistance, castability, stretch and low spool memory are all important characteristics, the diameter of a line is probably the most important. As long as these other characteristics meet your satisfaction, then the smaller the diameter of the line the better. With smaller diameter lines: more line can be spooled onto the reel, they are usually less visible to the fish, will generally cast better, and provide better lure action. Line diameter measurements provided by manufacturers are expressed in thousandths of an inch (0.001 inch) and its metric system equivalent, hundredths of a millimeter (0.01 mm). However, not all manufacturers provide line diameter information, so if you don't see it in the tables, that's the likely reason why. And some manufacturers now provide line diameter measurements in ten-thousandths of an inch (0.0001 inch) and thousandths of a millimeter (0.001 mm). To give you an idea of just how small this is, one ten-thousandth of an inch is less than 3% of the diameter of an average human hair.
    [Show full text]
  • Vector Calculus
    MA 302: Selected Course notes CONTENTS 1. Revisiting Calculus 1 and 2 with a view toward Vector Calculus 3 2. Some Linear Algebra 10 2.1. Linear and Affine Functions 10 2.2. Matrix Multiplication 11 3. Differentiation 13 3.1. The derivative 13 3.2. Differentiability 16 3.3. The chain rule 16 4. Parameterized Curves 20 4.1. Some important examples 20 4.2. Velocity and Acceleration 21 4.3. Tangent space coordinates 23 4.4. Intrinsic vs. Extrinsic 26 4.5. Arc length 31 4.6. Curvature and the Moving Frame 38 5. Integrating Vector Fields and Scalar Fields over Curves 42 5.1. Path Integrals of Scalar Fields 42 5.2. Path Integrals of Vector Fields 44 6. Vector Fields 45 6.1. Gradient 49 6.2. Curl 54 6.3. Divergence 59 6.4. From Vector Calculus to Cohomology 61 1 2 7. Review: Double Integrals 62 7.1. Integrating over rectangles 62 7.2. Integrating over non-rectangular regions 63 8. Interlude: The Fundamental Theorem of Calculus and generalizations 71 8.1. 0 and 1 dimensional integrals 71 8.2. Green’s theorem 72 8.3. Stokes’ Theorem 73 8.4. The Divergence Theorem 74 8.5. Generalized Stokes’ Theorem 74 9. Basic Examples of Green’s Theorem in Action 75 10. The proof of Green’s Theorem 78 11. Applications of Green’s Theorem 80 11.1. Finding Areas 80 11.2. Conservative Vector Fields 82 11.3. Planar Divergence Theorem 84 12. Surfaces: Topology and Calculus 85 12.1. Topological Surfaces 85 12.2.
    [Show full text]