Download Special Issue

Total Page:16

File Type:pdf, Size:1020Kb

Download Special Issue Advances in Astronomy The Solar Cycle Guest Editors: J. Javaraiah, J. P. Rozelot, and Luca Bertello The Solar Cycle Advances in Astronomy The Solar Cycle Guest Editors: J. Javaraiah, J. P. Rozelot, and Luca Bertello Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in Astronomy.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Cesare Barbieri, Italy Martin Hardcastle, UK Valery Nakariakov, UK Joshua S. Bloom, USA Dean Hines, USA Jerome Orosz, USA Michael Brotherton, USA Dieter Horns, Germany George Pavlov, USA Giovanni Carraro, Italy Ivan Hubeny, USA Juri Poutanen, Finland Alberto J. Castro-Tirado, Spain John Hughes, USA Somak Raychaudhury, UK Michael Disney, UK Wing Huen Ip, Taiwan William Reach, USA Elmetwally Elabbasy, Egypt Valentina Klochkova, Russia Peter Roming, USA Nye Evans, UK Gregory Laughlin, USA Ata Sarajedini, USA Maurizio Falanga, Switzerland Myung G. Lee, Republic of Korea Regina Schulte-Ladbeck, USA Duncan Forbes, Australia Karen Leighly, USA Ravi Sheth, USA Andrew Fruchter, USA Jeffrey Linsky, USA Roberto Turolla, Italy B. T. Gansicke,¨ UK Mario Mateo, USA Gary Wegner, USA Paul Goldsmith, USA Ronald Mennickent, Chile Glenn J. White, UK Jonathan Grindlay, USA Zdzislaw E. Musielak, USA Paul J. Wiita, USA Contents The Solar Cycle,J.Javaraiah,J.P.Rozelot,andLucaBertello Volume 2012, Article ID 470631, 2 pages The Faint Young Sun Paradox: A Simplified Thermodynamic Approach, F. Angulo-Brown, MarcoA.Rosales,andM.A.Barranco-Jimenez´ Volume 2012, Article ID 478957, 10 pages Tendency of Discreteness of the Solar Amplitude and Intercycle Relatedness, Akio Yoshida and Ryan Sayre Volume 2012, Article ID 519852, 7 pages Rapid Disappearance of Penumbra-Like Features near a Flaring Polarity Inversion Line: The Hinode Observations, B. Ravindra and Sanjay Gosain Volume 2012, Article ID 735879, 9 pages Kinematic Approach to the 24th Solar Cycle Prediction, Vladimir Kaftan Volume 2012, Article ID 854867, 7 pages Probable Values of Current Solar Cycle Peak,V.M.Silbergleit Volume 2012, Article ID 167375, 6 pages Sunspot Cycle 24 and the Advent of Dalton-Like Minimum,H.S.AhluwaliaandR.C.Ygbuhay Volume 2012, Article ID 126516, 5 pages Preliminary Results on Irradiance Measurements from Lyra and Swap, S. T. Kumara, R. Kariyappa, M. Dominique, D. Berghmans, L. Dame,´ J. F. Hochedez, V. H. Doddamani, and Lakshmi Pradeep Chitta Volume 2012, Article ID 623709, 5 pages Observations of Correlated Behavior of Two Light Torsion Balances and a Paraconical Pendulum in Separate Locations during the Solar Eclipse of January 26th, 2009, A. F. Pugach and D. Olenici Volume 2012, Article ID 263818, 6 pages Hindawi Publishing Corporation Advances in Astronomy Volume 2012, Article ID 470631, 2 pages doi:10.1155/2012/470631 Editorial The Solar Cycle J. Javaraiah,1 J. P. Rozelot,2 and Luca Bertello3 1 Sun and Solar System Group, Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034, India 2 Nice Sophia-Antipolis University, OCA-Lagrange, CNRS UMR 7293, Boulevard de l’Observatoire, BP 4229, 06304 Nice Cedex 4, France 3 National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719, USA Correspondence should be addressed to J. Javaraiah, [email protected] Received 28 June 2012; Accepted 28 June 2012 Copyright © 2012 J. Javaraiah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Sun provides variable energetic and magnetic field input solar flares and coronal mass ejections pose a serious hazard to the conditions in the heliosphere which directly affect the to astronauts, satellites, polar air traffic, electric power magnetosphere. In particular, the Sun’s variable magnetic grids, and telecommunications facilities on short time-scales fields constitute a rich source for processes that influence ranging from hours to days, the solar radiative output the Earth’s upper atmosphere and geomagnetism. The Sun affects planetary and global climate on much longer time- follows a periodic cycle of activity. This cycle, called the solar scales (from decades to stellar evolutionary time-scales). We cycle, has its evident manifestation by the periodic recurrence refer the readers to the recent review by David H. Hath- of sunspots, or darker, relatively cool and strong magnetic away (solarphysics. livingreviews.org/Articles/lrsp-2010-1/) regions at the Sun surface. This periodicity was discovered for more information on the solar cycle. first by Samuel Heinrich Schwabe in 1844 when he observed During the last few decades, technological advances have the variation of the number of sunspots over a seventeen- led to the acquisition of a huge amount of high-quality data year period. The solar cycle usually lasts about eleven years on solar magnetic field and solar activity. The development on the average, and there is little doubt that it is magnetic in of helioseismology, the technique of studying solar interior nature and produced by dynamo processes within the Sun. It through the study of its global oscillations, has led to is believed that the 11-year solar cycle results from generation spectacular success in determining Sun’s internal structure of strong toroidal magnetic fields in the Sun, with a main and rotation with increasing accuracy. period of about 22-years, by combined effects of convection We invited authors to contribute this special issue of the and differential rotation in the Sun. journal original research articles as well as review articles that Although most of the characteristics of the solar cycle can stimulate the continuing efforts to understand the solar have been investigated for many years, we still do not cycle and its impact on space weather and global climate. know exactly what causes the 11-year solar cycle. This is Eleven original research articles were received. All these were one of the most important unsolved problems in solar peer-reviewed by a minimum of two referees. Eight of them physics today. Because of the long record of observations, accepted for publications in this special issue. In three of sunspot measurements still constitute a primary source of the papers the predictions for the amplitude and duration of information to better understand the level and nature of solar cycle 24 were presented, mainly from the statistical analyzes activity. Statistical and morphological studies of sunspots of the sunspot data, and in five papers research on basic have significantly improved our knowledge of this field. property of solar cycle and related topics were presented. Other solar activity indicators including the 10.7 cm radio We hope that students and researchers will find this flux, the total and spectral solar irradiance, the magnetic special issue useful. Since the Advance in Astronomy is an field, flares and coronal mass ejections, geomagnetic activity, open-access journal, all of the papers of this special issue are and galactic cosmic ray fluxes have also shown temporal accessible free of charge to anyone with a computer and an properties related to the solar magnetic activity cycle. While Internet connection. 2 Advances in Astronomy Acknowledgments We sincerely thank the authors and referees of the articles submitted to this special issue. We are also thankful to the members of the editorial board of Advances in Astronomy, Hindawi publisher. Without their support and hard work, this special issue would not have come into being. J. Javaraiah J. P. Rozelot Luca Bertello Hindawi Publishing Corporation Advances in Astronomy Volume 2012, Article ID 478957, 10 pages doi:10.1155/2012/478957 Research Article The Faint Young Sun Paradox: A Simplified Thermodynamic Approach F. Angulo-Brown,1 Marco A. Rosales,1 and M. A. Barranco-Jimenez´ 2 1 Departamento de F´ısica, Escuela Superior de F´ısica y Matematicas,´ Instituto Polit´ecnico Nacional, UP Zacatenco, 07738 Mexico, DF, Mexico 2 Departamento de Formacion´ Basica,´ Escuela Superior de Computo,´ Instituto Polit´ecnico Nacional, Avenida Juan de Dios Batiz s/n. Esquina M. Othon´ de Mendizabal UP Adolfo Lopez´ Mateos, 07738 Mexico, DF, Mexico Correspondence should be addressed to M. A. Barranco-Jimenez,´ [email protected] Received 15 December 2011; Revised 16 March 2012; Accepted 15 May 2012 Academic Editor: J. P. Rozelot Copyright © 2012 F. Angulo-Brown et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Classical models of the Sun suggest that the energy output in the early stage of its evolution was 30 percent less than today. In this context, radiative balance alone between The Sun and the Earth was not sufficient to explain the early presence of liquid water on Earth’s surface. This difficulty is called the faint young Sun paradox. Many proposals have been published to solve this paradox. In the present work, we propose an oversimplified finite-time thermodynamic approach that describes the air convective cells in the Earth atmosphere. This model introduces two atmospheric modes of thermodynamic performance: a first mode consisting in the maximization of the power output of the convective cells (maximum power regime) and a second mode that consists in maximizing a functional representing a good trade-off between power output and entropy production (the ecological regime). Within the assumptions of this oversimplified model, we present different scenarios of albedo and greenhouse effects that seem realistic to preserve liquid water on the Earth in the early stage of formation. 1. Introduction to reconcile these facts. Among the evidence for ancient liquid water temperatures at the Earth’s surface is the dating The so-called faint young Sun paradox [1]isakeydrawback of sedimentary rocks, that is, rocks laid down under water.
Recommended publications
  • NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation
    March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S.
    [Show full text]
  • Natural & Unnatural Disasters
    Lesson 20: Disasters February 22, 2006 ENVIR 202: Lesson No. 20 Natural & Unnatural Disasters February 22, 2006 Gail Sandlin University of Washington Program on the Environment ENVIR 202: Lesson 20 1 Natural Disaster A natural disaster is the consequence or effect of a natural phenomenon becoming enmeshed with human activities. “Disasters occur when hazards meet vulnerability” So is it Mother Nature or Human Nature? ENVIR 202: Lesson 20 2 Natural Phenomena Tornadoes Drought Floods Hurricanes Tsunami Wild Fires Volcanoes Landslides Avalanche Earthquakes ENVIR 202: Lesson 20 3 ENVIR 202: Population & Health 1 Lesson 20: Disasters February 22, 2006 Naturals Hazards Why do Populations Live near Natural Hazards? High voluntary individual risk Low involuntary societal risk Element of probability Benefits outweigh risk Economical Social & cultural Few alternatives Concept of resilience; operationalized through policies or systems ENVIR 202: Lesson 20 4 Tornado Alley http://www.spc.noaa.gov/climo/torn/2005deadlytorn.html ENVIR 202: Lesson 20 5 Oklahoma City, May 1999 319 mph (near F6) 44 died, 795 injured 3,000 homes and 150 businesses destroyed ENVIR 202: Lesson 20 6 ENVIR 202: Population & Health 2 Lesson 20: Disasters February 22, 2006 World’s Deadliest Tornado April 26, 1989 1300 died 12,000 injured 80,000 homeless Two towns leveled Where? ENVIR 202: Lesson 20 7 Bangladesh ENVIR 202: Lesson 20 8 Hurricanes, Typhoons & Cyclones winds over 74 mph regional location 500,000 Bhola cyclone, 1970, Bangladesh 229,000 Typhoon Nina, 1975, China 138,000 Bangladesh cyclone, 1991 ENVIR 202: Lesson 20 9 ENVIR 202: Population & Health 3 Lesson 20: Disasters February 22, 2006 U.S.
    [Show full text]
  • Structural Theory of Thermoeconomics - Luis Serra and César Torres Cuadra
    EXERGY, ENERGY SYSTEM ANALYSIS AND OPTIMIZATION – Vol. II - Structural Theory of Thermoeconomics - Luis Serra and César Torres Cuadra STRUCTURAL THEORY OF THERMOECONOMICS Luis Serra and César Torres Cuadra University of Zaragoza, Spain Keywords: thermoeconomics, analysis of energy systems, exergy, average cost, marginal cost, productive structure, structural theory Contents 1. Introduction 2. Marginal Costs 2.1. Characteristic Equations 2.2. General Equation of Marginal Cost 2.3. Generalized Fuel Impact 2.4. Lagrange Multipliers and Marginal Costs 3. Structural Theory of Thermoeconomics 3.1. Linear Model of Characteristic Equations 3.2. Average and Marginal Costs 4. Structural Theory as Standard for Thermoeconomics 4.1. Structural Theory and Exergy Cost Theory 4.1.1. Structural Theory and the Fuel–Product Model 4.2. Structural Theory and Thermoeconomic Functional Analysis 5. Applications 5.1. Local Optimization 6. Closure Glossary Bibliography Biographical Sketches Summary Characteristic equations and average and marginal costs are analyzed in this article. As a consequence the structural theory is a general mathematical formalism either for thermoeconomicUNESCO cost accounting and/or optimization– EOLSS methods, providing a common basis of comparison among the different thermoeconomic methodologies, which could be considered the standard formalism for thermoeconomics. The cost calculationSAMPLE method of the struct CHAPTERSural theory is based on the rules of mathematical derivation applied to a set of characteristic equations that determine the thermoeconomic model. In this way, as more physical and realistic information is contained in the characteristic equations, more physical significance will be contained in the costs obtained. 1. Introduction During the three decades from 1972 to 2002 various thermoeconomic methodologies have been developed.
    [Show full text]
  • A Guide to Space Law Terms: Spi, Gwu, & Swf
    A GUIDE TO SPACE LAW TERMS: SPI, GWU, & SWF A Guide to Space Law Terms Space Policy Institute (SPI), George Washington University and Secure World Foundation (SWF) Editor: Professor Henry R. Hertzfeld, Esq. Research: Liana X. Yung, Esq. Daniel V. Osborne, Esq. December 2012 Page i I. INTRODUCTION This document is a step to developing an accurate and usable guide to space law words, terms, and phrases. The project developed from misunderstandings and difficulties that graduate students in our classes encountered listening to lectures and reading technical articles on topics related to space law. The difficulties are compounded when students are not native English speakers. Because there is no standard definition for many of the terms and because some terms are used in many different ways, we have created seven categories of definitions. They are: I. A simple definition written in easy to understand English II. Definitions found in treaties, statutes, and formal regulations III. Definitions from legal dictionaries IV. Definitions from standard English dictionaries V. Definitions found in government publications (mostly technical glossaries and dictionaries) VI. Definitions found in journal articles, books, and other unofficial sources VII. Definitions that may have different interpretations in languages other than English The source of each definition that is used is provided so that the reader can understand the context in which it is used. The Simple Definitions are meant to capture the essence of how the term is used in space law. Where possible we have used a definition from one of our sources for this purpose. When we found no concise definition, we have drafted the definition based on the more complex definitions from other sources.
    [Show full text]
  • UN Specialized Agencies and Governance for Global Risks
    13 UN Specialized Agencies and Governance for Global Risks For the first time in human history, we have reached a level of scientific knowledge that allows us to develop an enlightened relationship to risks of catastrophic magnitude. Not only can we foresee many of the challenges ahead, but we are in a position to identify what needs to be done in order to mitigate or even eliminate some of those risks. Our enlightened status, however, also requires that we ... collectively commit to reducing them. 1 Allan Dafoe and Anders Sandberg The United Nations has grown far beyond the institutions directly provided for in the UN Charter. This chapter and those immediately following review a number of global issues and risks that have emerged largely since 1945 and the responses through the UN family of specialized agencies, programs and convention secretar- iats. We consider the efforts of the UN to develop more strategic and integrated approaches to the range of interrelated problems in sustainable development facing the world today. We then consider examples of reform in the economic, environ- mental and social dimensions, without attempting to be comprehensive. We first look at governance for the global economy, especially to address the major chal- lenges of growing inequality and the need for a level playing field for business. For the risks of instability in the financial system, we propose reinforcing the role of the International Monetary Fund (IMF) for enhanced financial governance. We then review global environmental governance, including climate change, as well as population and migration as significant global social issues.
    [Show full text]
  • Relation Between Sunspots and Covid19 – a Proof for Panspermia
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072 RELATION BETWEEN SUNSPOTS AND COVID19 – A PROOF FOR PANSPERMIA Janani T1 1Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - The novel viral or the bacterial pandemics and epidemics are not new to this earth. Often these disease-causing pathogens are of unknown origin and often identified as an infection which is transmitted from other animals. They are frequently found as the mutated form of the original strain or completely a newly developed strain. The causes for this mutation are many which comprises of both natural and artificial sources. The time of occurrence of these pandemic and epidemic astonishingly coincides with the sun spot extremum (often minimum). It is observed that whenever there is a sun spot extremum there was a novel microbial pandemic or epidemic. The current COVID19 pandemic is also suggested to be due to such sunspot extremum as the sun cycle is currently at its sun spot minimum. This review aims at providing the facts of relation between sunspots and the novel corona virus pandemic and there by stating this occurrence as a proof for panspermia. Key Words: Pandemic, Epidemic, COVID19, Sunspot, Solar Cycle, Solar minimum, Panspermia 1. INTRODUCTION 1.1 SUNSPOTS: Sunspots are the dark regions in the sun’s surface due to the concentration of magnetic field in that region. These regions are relatively colder to the other regions of the sun’s surface. Hotter region emits more light than the colder region hence these regions appear to be darker and called the spots of the sun.
    [Show full text]
  • Magnetic Storms and Induction Hazards
    News: Report Puts Timeline on Cutting Greenhouse Gas Emissions, p. 446 Meeting: Multidisciplinary Monitoring Experiments at Kawah Ijen Volcano, p. 447 What’s on the Web: Antarctic Expedition, Teaching Professional Skills, and More, p. 447 About AGU: Amazon Hack-A-Thon at Fall Meeting, p. 448 Research Spotlight: Magnetic Field Data, Ocean Acidification, and More, p. 452 VOLUME 95 NUMBER 48 2 DECEMBER 2014 Magnetic Storms and Induction Hazards Magnetic storms are potentially hazard- Electrical conductivity in the Earth’s inte- ous to the activities and technological infra- rior ranges from about 10-4 siemens per structure of modern civilization. This reality meter (S/m) in some parts of the upper man- was dramatically demonstrated during the tle to 3 S/m in the ocean. Generally speak- great magnetic storm of March 1989, when ing, electric power grids are susceptible to surface geoelectric fields, produced by the interference from naturally induced geoelec- interaction of the time-​­varying geomag- tric fields that vary with periods from about netic field with the Earth’s electrically con- 10 to 1000 seconds. Geomagnetic and geo- ducting interior, coupled onto the overlying electric field variation over such periods Hydro-​­Québec electric power grid in Can- plumbs the Earth’s interior across diffusive ada. Protective relays were tripped, the grid depth and length scales of between about 2 collapsed, and about 9 million people were and 3000 kilometers, but localized conduc- temporarily left without electricity [Bolduc, tivity anomalies can reduce the upper length 2002]. scale to about 50 kilometers. A magnetic storm that was, by some mea- As a subject of natural science, estimat- sures, the most intense ever recorded fol- ing the geoelectric field as a function of geo- lowed a solar flare observed by astronomers graphic location is distinct from the engi- Richard Carrington and Richard Hodgson neering subject of electric currents that in September 1859.
    [Show full text]
  • An Alternative Methodological Approach to Value Analysis of Regions, Municipal Corporations and Clusters
    ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LIX 35 Number 4, 2011 AN ALTERNATIVE METHODOLOGICAL APPROACH TO VALUE ANALYSIS OF REGIONS, MUNICIPAL CORPORATIONS AND CLUSTERS M. Sabolovič Received: March 8, 2011 Abstract SABOLOVIČ, M.: An alternative methodological approach to value analysis of regions, municipal corporations and clusters. Acta univ. agric. et silvic. Mendel. Brun., 2011, LIX, No. 4, pp. 295–300 The paper deals with theoretical conception of value analysis of regions, municipal corporations and clusters. The subject of this paper is heterodox approach to sensitivity analysis of fi nite set of variables based on non-additive measure. For dynamic analysis of trajectory of general value are suffi cient robust models based on maximum entropy principle. Findings concern explanation of proper fuzzy integral – Choquet integral. The fuzzy measure is represented by theory of capacities (Choquet, 1953) on powerset. In fi ne, the conception of the New integral for capacities (Lehler, 2005) is discussed. Value analysis and transmission constitutes remarkable aspect of performance evaluation of regions, municipal corporations and clusters. In the light of high ratio of so variables, social behavior, intangible assets and human capital within those types of subjects the fuzzy integral introduce useful tool for modeling. The New integral a erwards concerns considerable characteristic of people behavior – risk averse articulated concave function and non-additive operator. Results comprehended tools enabling observation of synergy, redundancy and inhibition of value variables as consequence of non-additive measure. In fi ne, results induced issues for future research. powerset, fuzzy integral, Choquet integral, New intergral for capacities, non-additive measure A general theoretical approach to value analysis of value is assigned to thermoeconomics in of particular crisp set of discrete value variables of general.
    [Show full text]
  • TEACHING MODULE for ENGLISH for SPECIFIC PURPOSES
    TEACHING MODULE for ENGLISH FOR SPECIFIC PURPOSES Compiled By Bertaria Sohnata Hutauruk Only for our classroom instructions (Very restricted use) FKIP UHN PEMATANGSIANTAR 2015 ACKNOWLEDGEMENT This binding is a result of compilation from the authentic material from the webs. It is a result of short browsing. The aim is to provide a suitable module for our ESP classroom sessions in the first semester of the 2011/2012 academic year in our study program. This module consists of some lessons for the concept of ESP, some lessons for ESP lesson plans used abroad and in Indonesia, ESP for some school levels, and ESP for Academic Purposes and for Occupational Purposes. The main teaching objective in our classroom is to provide the students with the competence on designing a good lesson plan to teach ESP for academic purposes and occupational purposes at any level according to its context. We fully intend that this binding is only to facilitate some compiled authentic materials from the webs for our ESP Classroom instructions. By this opportunity, we would like to extend our sincere thanks all the authors of the materials and the websites which publish them. May God the Almighty bless them all! Medan-Pematangsiantar, September 2015 The Authors, Bertaria Sohnata Hutauruk TABLE OF CONTENTS ACKNOWLEDGEMENT…………………………………………………………… TABLE OF CONTENTS…………………………………………………………….. Lesson 1 Introduction………………………………………………………………………….. Lesson 2 ESP AND ESL………………………………………………………………………. Leson 3 ESP Course at Technical Secondary Vocational School for Construction and Building Trade students………………………………………. Lesson 4 ESP Vocabulary Teaching at the Vocational Secondary School of Furniture Industry………………………….. Lesson 5 ESP International Sample lesson plan........................................................................... Lesson 6 ESP Lesson Plan in Indonesia………………………………………………………..
    [Show full text]
  • Extreme Solar Eruptions and Their Space Weather Consequences Nat
    Extreme Solar Eruptions and their Space Weather Consequences Nat Gopalswamy NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Abstract: Solar eruptions generally refer to coronal mass ejections (CMEs) and flares. Both are important sources of space weather. Solar flares cause sudden change in the ionization level in the ionosphere. CMEs cause solar energetic particle (SEP) events and geomagnetic storms. A flare with unusually high intensity and/or a CME with extremely high energy can be thought of examples of extreme events on the Sun. These events can also lead to extreme SEP events and/or geomagnetic storms. Ultimately, the energy that powers CMEs and flares are stored in magnetic regions on the Sun, known as active regions. Active regions with extraordinary size and magnetic field have the potential to produce extreme events. Based on current data sets, we estimate the sizes of one-in-hundred and one-in-thousand year events as an indicator of the extremeness of the events. We consider both the extremeness in the source of eruptions and in the consequences. We then compare the estimated 100-year and 1000-year sizes with the sizes of historical extreme events measured or inferred. 1. Introduction Human society experienced the impact of extreme solar eruptions that occurred on October 28 and 29 in 2003, known as the Halloween 2003 storms. Soon after the occurrence of the associated solar flares and coronal mass ejections (CMEs) at the Sun, people were expecting severe impact on Earth’s space environment and took appropriate actions to safeguard technological systems in space and on the ground.
    [Show full text]
  • A BRIEF HISTORY of CME SCIENCE 1. Introduction the Key to Understanding Solar Activity Lies in the Sun's Ever-Changing Magnetic
    A BRIEF HISTORY OF CME SCIENCE 1 2 DAVID ALEXANDER , IAN G. RICHARDSON and THOMAS H. ZURBUCHEN3 1Department of Physics and Astronomy, Rice University, 6100 Main St., Houston, TX 77005, USA 2 The Astroparticle Physics Laboratory, NASA GSFC, Greenbelt, MD 20771, USA 3 Department of AOSS, University of Michigan, Ann Arbor, M148109, USA Received: 15 July 2004; Accepted in final form: 5 May 2005 Abstract. We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections. 1. Introduction The key to understanding solar activity lies in the Sun's ever-changing magnetic field. The potential role played by the magnetic field in the solar atmosphere was first suggested by Frank Bigelow in 1889 after noting that the structure of the solar minimum corona seen during the eclipse of 1878 displayed marked equatorial extensions, called 'streamers '. Bigelow(1 890) noted th at the coronal streamers had a strong resemblance to magnetic lines of force and proposed th at the Sun must, in fact, be a large magnet. Subsequently, Hen ri Deslandres (1893) suggested that the forms and motions of prominences seen during so lar eclipses appeared to be influenced by a solar magnetic field. The link between magnetic fields and plasma emitted by the Sun was beginning to take shape by the turn of the 20th Century. The epochal discovery of magnetic fields on the Sun by American astronomer George Ellery Hale (1908) signalled the birth of modem solar physics.
    [Show full text]
  • SOLAR FLARES and THEIR IMPACT on HUMANITY H. Brynkevich, O
    Nowadays the territory of the city and his suburban area are the leading form of the territorial and socio- economic organization of modern society. The components of environment of the city such as relief, atmosphere, ecotopes with artificial soil are changing because of urbanization process and household activities. It’s very im- portant to save the ecology of the city according to sustainable socio-economic development. Plants are one of the main components in environment of urbanization area and they do some important ecological functions. Plants are important sanitary-hygienic, town-planic and aesthetic element of landscape architecture of the city; they are re- ducing a harmful effect on working, living and rest conditions; we can use urban plants like bioindicators for de- termination anthropogenic contamination. Natural processes and anthropogenic activity like chemical contamination of air and soil, groundwater pollution are impact for the growth of urban plants. According to this impact flora and vegetation changes in the city, the stability of natural biocoenosis is reduced, new artificial bio- coenosis are created, the temperature in the city is increased because of process of desertification. In this reason it’s important to research natural and ruderal communities of plants. An analysis of the current state of the flora in Zhodino city will make it possible to identify species that have adapted to the conditions of the urbanized environment, which can later be used to optimize the vegetation cover and improve the hygienic
    [Show full text]