Historical and Critical Review on Biophysical Economics 1

Total Page:16

File Type:pdf, Size:1020Kb

Historical and Critical Review on Biophysical Economics 1 July 21, 2016 9:55 WSPC/S1793-0480 204-BRL 1630001 Biophysical Reviews and Letters Vol. 11, No. 2 (2016) 63–86 c World Scientific Publishing Company DOI: 10.1142/S1793048016300012 Historical and Critical Review on Biophysical Economics Yekbun Adig¨uzel Department of Biophysics, School of Medicine Istanbul Kemerburgaz University Kartaltepe Mah. Incirli Cad. No:11 Bakirkoy, Istanbul, Turkey [email protected] Received 18 March 2016 Revised 25 April 2016 Accepted 3 May 2016 Published 21 July 2016 Biophysical economics is initiated with the long history of the relation of economics with ecological basis and biophysical perspectives of the physiocrats. It inherently has social, economic, biological, environmental, natural, physical, and scientific grounds. Biological entities in economy like the resources, consumers, populations, and parts of production systems, etc. could all be dealt by biophysical economics. Considering this wide scope, current work is a “biophysical economics at a glance” rather than a comprehensive review of the full range of topics that may just be adequately covered in a book-length work. However, the sense of its wide range of applications is aimed to be provided to the reader in this work. Here, modern approaches and biophysical growth theory are pre- sented after the long history and an overview of the concepts in biophysical economics. Examples of the recent studies are provided at the end with discussions. This review is also related to the work by Cleveland, “Biophysical Economics: From Physiocracy to Ecological Economics and Industrial Ecology” [C. J. Cleveland, in Advances in Bioeconomics and Sustainability: Essay in Honor of Nicholas Gerogescu-Roegen,eds. J. Gowdy and K. Mayumi (Edward Elgar Publishing, Cheltenham, England, 1999), pp. 125–154.]. Relevant parts include critics and comments on the presented concepts in a parallelized fashion with the Cleveland’s work. Keywords: Biophysical economics; thermoeconomics; ecological economics; laws of thermodynamics; energy; entropy; exergy; energy quality; embodied energy; resources’ depletion; energy scarcity; sustainability. 1. Introduction Economy is part of civilization and takes role in its functioning. Material and energy always persisted as a part of the economy and they always will, despite that they were ignored by the economists at certain times in history. Economy is currently accepted mainly as a social science. For certain reasons, the early economists focused not only on the social but on the biophysical aspects of economics as well. Before the 63 July 21, 2016 9:55 WSPC/S1793-0480 204-BRL 1630001 64 Y. Adig¨uzel 19th century, economists were questioning the source of wealth. The French Phys- iocrats were the first formal economics school and their work could be accounted as also the first biophysical economics studies. This could be accounted as a difference of biophysical economics from thermoeconomics, which is commonly considered to be the same as biophysical economics. Physiocrats focused on land and agriculture as the origin of wealth. Later, Thomas Malthus studied on population and pre- sumed its exponential growth. Malthus suggested that population size is required to be controlled due to the noncompliance with the linear increase in the agricultural production. Adam Smith focused on land and labor, as do the classical economists of the day. In the end, wealth was admitted to be an outcome mainly of these two factors. Afterwards, David Ricardo recognized inverse relation of the quality of the lands that were used in general and the population growth. Karl Marx further noted the decrease in the quality of agricultural land with time. In 1870s, Jevons, Menger, and Walras performed abstractions and ignored material and energy as the physical inputs and outputs. This consumption-focused, socially oriented approach wastermedastheneoclassical economics, which was barely mentioning the natu- ral resources. Use of a theoretical, mathematical language or utilization of physics without a biophysical perspective was not exceptions to this view. Besides ignoring the finite resources of the world and inconsistency with the thermodynamic princi- ples, treating humans as rational and the presentation of hypotheses that were not prone to testing were some other problems. The emergence of biophysical economics relied on recognition and formulation of the physical principles and reinvention of the energy and material dependent nature of the economy. Several academics and intellectuals contributed to this progress with their invaluable works. Facilitated information flow of the present century contributed the recognition despite the hardness of bringing together several disciplines in the views of sole individual scholars, who are generally coming from distinct fractionated disciplines of their research fields. Biophysical economics may be criticized for having a passive stance by not presenting solutions to the resource scarcity but rather alarming for possible depletion of the resources. However, proper political actions of course are not guar- anteed by, but may be realized with the help of such right theoretical frameworks through the precise understanding of economic systems. In addition, evolution of the current approaches in biophysical economics is bringing the field as a much broader one to the extent that it can be about explaining citizens’ views and deci- sions, flow of people between workplaces and other locations of economic relation, and about the flow of wealth and the control on the flow of wealth, underpinned by the political systems, finance, and the democratic measures (see Sec. 3.4). This review attempts to highlight this transition, as well as providing an overall insight on the concept. Section 2 of the manuscript gives a historical outline with a chrono- logical order and brief comments, wherever possible. Section 3 discusses selected examples and tries to elaborate the concept while presenting further discussions. Section 4 is the conclusion. July 21, 2016 9:55 WSPC/S1793-0480 204-BRL 1630001 Historical and Critical Review on Biophysical Economics 65 2. Biophysical Economics at a Glance Stemming of biophysical economics from classical approaches was not unexpected since the criticisms of the standard views focused on their ignorance of some obvi- ous facts like energy dependency and environment-sourced resources’ contribution to economics. This ignorance can partly be explained by the success of the classical approaches in meeting the requirement of theoretical ground for making reliable estimations and predictions. Conditional earlier success of the classic view also explains the source of stimulus in developing explanations of advanced and more comprehensive economic theories since standard theories did not meet the expectan- cies later due to the changing conditions of resources’ availability. So, the stimulus for new theories was the energy dependency (“increased reliance on imported oil”) after Industrial Revolution. That made the recognition of energy scarcity in the long run, which revealed itself by the energy price shocks.2,3 These were around 70s and 80s. Yet, maybe the earliest form of biophysical models is far earlier, dating back to 1750s. It was the physiocrats. 2.1. Physiocrats Physiocrats emanated in 1750s, before the Industrial Revolution. Francois Qesnay4 and his disciplines (Mirabeau, Dupont) led this first scientific economic thought school.1,5 This thought carried the natural resources to the center of the first disciplined approach. Preliminary to this advancement is the scientific progresses, which brought the era to the level that intellects could establish the first systematic thought of the first social discipline, namely economics. Agricultural society found its place in this thought through the means of wealth. Material wealth was sourced by fertile lands. So, agriculture was supposed to be the ultimate occupation and economy was believed to rely on the ‘Natural Law’, which had no grounds of human free will as long as the human acts in the moral order, compatible with the physical laws. Although they were not announced prominently later, Physiocrats belief in nature as the source of wealth has commons with the biophysical economics. As mentioned in the introduction, Physiocrats may be accounted as the point of dis- tinction between biophysical economics and thermoeconomics, which is regarded usually as the same as biophysical economics. What we see in relation to the rel- evant terminology that there is generally close intimacy together with deviation under certain circumstances. 2.2. Laws of thermodynamics Industrial Revolution came afterwards. It was based on the formalization of the laws of thermodynamics.6,7 This formalization relies on the immense efforts of sci- entists like Joule, Clausius, Thomson (Lord Kelvin), Maxwell, and Boltzmann, who took primary roles in the introduction of the heat concept, the first law of ther- modynamics, absolute temperature, dynamic theory, entropy, the second law of July 21, 2016 9:55 WSPC/S1793-0480 204-BRL 1630001 66 Y. Adig¨uzel thermodynamics, and energies’ distribution. Carnot’s explanation on the steam engines was published in 1824.8 This was important for explaining how much useful work can be obtained from an energy transformation, which is of direct relevance to economics.1 In this sense, the type and efficiencies of transformations that are of interest by both economic and physical means are those that end up in conversion into useful goods or services
Recommended publications
  • Economic-Environmental Indicators to Support Investment Decisions: a Focus on the Buildings’ End-Of-Life Stage
    buildings Article Economic-Environmental Indicators to Support Investment Decisions: A Focus on the Buildings’ End-of-Life Stage Elena Fregonara *, Roberto Giordano ID , Diego Giuseppe Ferrando and Sara Pattono Architecture and Design Department, Politecnico di Torino, 10125 Turin, Italy; [email protected] (R.G.); [email protected] (D.G.F.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +39-011-090-6432 Received: 29 May 2017; Accepted: 18 July 2017; Published: 21 July 2017 Abstract: The aim of this paper is to propose a methodology for supporting decision making in design activities; in case of new projects or retrofitting of existing buildings. A multidisciplinary approach is adopted; involving Real Estate Appraisal and Economic Evaluation of Project and Building Environmental Design. It is proposed a methodology for selecting the preferable solutions among technological options; considering both economic and environmental aspects; in terms of global performance. Assuming the principles of Life Cycle Thinking and Circular Economy focus is posed at the end-of-life stage. Attention is paid on disposal costs and residual value as relevant items enable to orient investment decisions. This is done through an approach for quantifying environmental indicators related to Life Cycle Assessment (Standard ISO 14040:2006); and economic indicators adopting the Life Cycle Costing (Standard ISO 15686:2008). The paper proposes a conjoint “economic-environmental indicator”. An application of Global Cost calculation is illustrated; including monetized environmental impacts (Embodied energy and Embodied carbon); disposal/dismantling costs and residual value. The result of the Global Cost calculation is expressed through a “synthetic economic-environmental indicator” in order to select; between two different technologies; the most viable solution for a multifunctional building glass façade project; in Northern Italy.
    [Show full text]
  • Measuring Progress in the Degrowth Transition to a Steady State Economy
    ECOLEC-03966; No of Pages 11 Ecological Economics xxx (2011) xxx–xxx Contents lists available at ScienceDirect Ecological Economics journal homepage: www.elsevier.com/locate/ecolecon Measuring progress in the degrowth transition to a steady state economy Daniel W. O'Neill ⁎ Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK Center for the Advancement of the Steady State Economy, 5101 S. 11th Street, Arlington, VA 22204, USA article info abstract Article history: In order to determine whether degrowth is occurring, or how close national economies are to the concept of a Received 27 January 2011 steady state economy, clear indicators are required. Within this paper I analyse four indicator approaches that Received in revised form 16 April 2011 could be used: (1) Gross Domestic Product, (2) the Index of Sustainable Economic Welfare, (3) biophysical Accepted 27 May 2011 and social indicators, and (4) a composite indicator. I conclude that separate biophysical and social indicators Available online xxxx represent the best approach, but a unifying conceptual framework is required to choose appropriate indicators and interpret the relationships between them. I propose a framework based on ends and means, Keywords: Indicators and a set of biophysical and social indicators within this framework. The biophysical indicators are derived Degrowth from Herman Daly's definition of a steady state economy, and measure the major stocks and flows in the Steady state economy economy–environment system. The social indicators are based on the stated goals of the degrowth Conceptual framework movement, and measure the functioning of the socio-economic system, and how effectively it delivers well- being.
    [Show full text]
  • Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM
    sustainability Case Report Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM Christina Kiamili 1, Alexander Hollberg 2 and Guillaume Habert 1,* 1 Chair of Sustainable Construction, Institute of Construction and Infrastructure Management, Swiss Federal Institute of Technology (ETH), Stefano Franscini Platz 5, 8093 Zurich, Switzerland; [email protected] 2 Research Group Sustainable Building, Division of Building Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; [email protected] * Correspondence: [email protected] Received: 2 March 2020; Accepted: 16 April 2020; Published: 21 April 2020 Abstract: The global shift towards embodied carbon reduction in the building sector has indicated the need for a detailed analysis of environmental impacts across the whole lifecycle of buildings. The environmental impact of heating, ventilation, and air conditioning (HVAC) systems has rarely been studied in detail. Most of the published studies are based on assumptions and rule of thumb techniques. In this study, the requirements and methods to perform a detailed life cycle assessment (LCA) for HVAC systems based on building information modelling (BIM) are assessed and framed for the first time. The approach of linking external product data information to objects using visual programming language (VPL) is tested, and its benefits over the existing workflows are presented. The detailed BIM model of a newly built office building in Switzerland is used as a case study. In addition, detailed project documentation is used to ensure the plausibility of the calculated impact. The LCA results show that the embodied impact of the HVAC systems is three times higher than the targets provided by the Swiss Energy Efficiency Path (SIA 2040).
    [Show full text]
  • The Real Leaders Guide to Understanding Sustainability
    THE REAL LEADERS GUIDE TO UNDERSTANDING SUSTAINABILITY Real-Leaders.com So, what is sustainability? Sustainability is the capacity to endure. In ecology the word describes how biological systems remain diverse and productive over time. Long-lived and healthy wetlands and forests are examples of sustainable biological systems. For humans, sustainability is the potential for long-term maintenance of well being, which has ecological, economic, political and cultural dimensions. Healthy ecosystems and environments are necessary to the survival and flourishing of humans and other organisms. There are a number of major ways of reducing negative human impact. The first of these is environmental management that is based largely on information gained from earth science, environmental science and conservation biology. The second approach is management of human consumption of resources, which is based largely on information gained from economics. A third more recent approach adds cultural and political concerns into the sustainability matrix. Sustainability interfaces with economics through the social and environmental consequences of economic activity. The economics of sustainability involves ecological economics – where social aspects, including cultural, health-related and monetary/financial aspects are integrated. Moving towards sustainability is also a social challenge that entails international and national law, urban planning and transport, local and individual lifestyles and ethical consumerism. Different ways of living more sustainably can take many forms, from reorganising living conditions (e.g., ecovillages, eco-municipalities and sustainable cities), reappraising economic sectors (permaculture, The Real Leaders Guide To Understanding Sustainability / Real-Leaders.com green building, sustainable agriculture), or work practices (sustainable architecture), using science to develop new technologies (green technologies, renewable energy and sustainable Fission and Fusion power), to adjustments in individual lifestyles that conserve natural resources.
    [Show full text]
  • Structural Theory of Thermoeconomics - Luis Serra and César Torres Cuadra
    EXERGY, ENERGY SYSTEM ANALYSIS AND OPTIMIZATION – Vol. II - Structural Theory of Thermoeconomics - Luis Serra and César Torres Cuadra STRUCTURAL THEORY OF THERMOECONOMICS Luis Serra and César Torres Cuadra University of Zaragoza, Spain Keywords: thermoeconomics, analysis of energy systems, exergy, average cost, marginal cost, productive structure, structural theory Contents 1. Introduction 2. Marginal Costs 2.1. Characteristic Equations 2.2. General Equation of Marginal Cost 2.3. Generalized Fuel Impact 2.4. Lagrange Multipliers and Marginal Costs 3. Structural Theory of Thermoeconomics 3.1. Linear Model of Characteristic Equations 3.2. Average and Marginal Costs 4. Structural Theory as Standard for Thermoeconomics 4.1. Structural Theory and Exergy Cost Theory 4.1.1. Structural Theory and the Fuel–Product Model 4.2. Structural Theory and Thermoeconomic Functional Analysis 5. Applications 5.1. Local Optimization 6. Closure Glossary Bibliography Biographical Sketches Summary Characteristic equations and average and marginal costs are analyzed in this article. As a consequence the structural theory is a general mathematical formalism either for thermoeconomicUNESCO cost accounting and/or optimization– EOLSS methods, providing a common basis of comparison among the different thermoeconomic methodologies, which could be considered the standard formalism for thermoeconomics. The cost calculationSAMPLE method of the struct CHAPTERSural theory is based on the rules of mathematical derivation applied to a set of characteristic equations that determine the thermoeconomic model. In this way, as more physical and realistic information is contained in the characteristic equations, more physical significance will be contained in the costs obtained. 1. Introduction During the three decades from 1972 to 2002 various thermoeconomic methodologies have been developed.
    [Show full text]
  • Ecological Economics and Sustainable Development, Selected Essays of Herman Daly ADVANCES in ECOLOGICAL ECONOMICS Series Editor:Jeroen C.J.M
    Ecological Economics and Sustainable Development, Selected Essays of Herman Daly ADVANCES IN ECOLOGICAL ECONOMICS Series Editor:Jeroen C.J.M. van den Bergh, ICREA Professor, Universitat Autònoma de Barcelona, Spain and Professor of Environmental and Resource Economics, Vrije Universiteit, Amsterdam, The Netherlands Founding Editor:Robert Costanza, Director, University of Maryland Institute for Ecological Economics and Professor, Center for Environmental and Estuarine Studies and Zoology Department, USA This important series makes a significant contribution to the development of the principles and practices of ecological economics, a field which has expanded dra- matically in recent years. The series provides an invaluable forum for the publica- tion of high quality work and shows how ecological economic analysis can make a contribution to understanding and resolving important problems. The main emphasis of the series is on the development and application of new original ideas in ecological economics. International in its approach, it includes some of the best theoretical and empirical work in the field with contributions to funda- mental principles, rigorous evaluations of existing concepts, historical surveys and future visions. It seeks to address some of the most important theoretical questions and gives policy solutions for the ecological problems confronting the global village as we move into the twenty-first century. Titles in the series include: Economic Growth, Material Flows and the Environment New Applications of Structural Decomposition Analysis and Physical Input–Output Tables Rutger Hoekstra Joint Production and Responsibility in Ecological Economics On the Foundations of Environmental Policy Stefan Baumgärtner, Malte Faber and Johannes Schiller Frontiers in Ecological Economic Theory and Application Edited by Jon D.
    [Show full text]
  • Download the Course
    Architecture Climate Change & Society Buell Center 2020 Course Development Prize Sara Stevens, Adam Rysanek, and Kees Lokman University of British Columbia CHANGING MINDS FOR A CHANGING CLIMATE Co-taught by a historian, a landscape architect, and a building scientist, this course proposes that design thinking has the potential to reframe the wicked problem of climate change. Weekly structured debates will pose provocations based on a set of historical and contemporary episodes and contested landscapes that position the designer in relation to societal change. Students assignments (Debate, Review, Conceive, and Impact) will analyze case studies in order to reimagine the relationship between design and climate change. Divided into modules that highlight different perspectives, the class will include lectures, workshops, and collective assignments intended to produce a small exhibition. Columbia University’s Temple Hoyne Buell Center for the Study of American Architecture Association of Collegiate Schools of Architecture Changing Minds for a Changing Climate Proposal for a graduate course in architecture, landscape architecture, and urban design Sara Stevens / Adam Rysanek / Kees Lokman School of Architecture and Landscape Architecture, University of British Columbia, Vancouver “If you care about the planet, and about the people and animals who live on it, there are two ways to think about [climate change]. You can keep on hoping that catastrophe is preventable, and feel ever more frustrated or enraged by the world’s inaction. Or you can accept that disaster is coming, and begin to rethink what it means to have hope.” — Jonathan Franzen, “What If We Stopped Pretending?” New Yorker, 8 September 2019 Franzen frames the problem of the climate apocalypse by pointing out the misalignment of rhetoric (stop climate change!) and evidence (it’s unstoppable!).
    [Show full text]
  • Krugman's Growthism
    World Economics Association BOOK SERIES Essays against growthism by Herman Daly 2 WEA Book series Essays against growthism by Herman Daly Copyright © 2015 Herman Daly All rights reserved. ISBN: 978-1-911156-27-7 Published by World Economics Association http://www.worldeconomicsassociation.org/ Cover artwork taken from Tree Nursery by Paul Klee 1929. __________________ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission, in writing, from the publisher. Herman Daly About the book When I worked at the World Bank, I often heard the statement, “There is no conflict between economics and ecology. We can and must grow the economy and protect the environment at the same time.” I still hear that a lot today. Is it true? Is it possible? Although it is a comforting idea, I fear that it is at most half true. The “true” part comes from a confusion of reallocation with aggregate growth. There are generally always possibilities of better allocation – more of something desired in exchange for a reduction in something less desired. This is the domain of microeconomics. Aggregate growth, by contrast, means more of everything as measured by GDP – it is the domain of macroeconomics, and is the meaning of growth in this discussion. The economy is an open subsystem of the larger ecosphere that is finite, non- growing, and materially closed, although open to a continual, but non-growing, throughput of solar energy. When the economy grows in physical dimensions it incorporates matter and energy from the rest of the ecosystem into itself.
    [Show full text]
  • Beyond Growth Herman E. Daly 1996
    Beyond Growth The Economics of Sustainable Development Herman E. Daly 1996 1 CONTENTS Introduction. The Shape of Current Thought on Sustainable Development Part I. Economic Theory and Sustainable Development Introduction Chapter 1 Moving to a Steady-State Economy Chapter 2 Elements of Environmental Macroeconomics Chapter 3 Consumption: Value Added, Physical Transformation, and Welfare Part II. Operational Policy and Sustainable Development Introduction Chapter 4 Operationalizing Sustainable Development by Investing in Natural Capital Chapter 5 Fostering Environmentally Sustainable Development: Four Parting Suggestions for the World Bank Part III. National Accounts and Sustainable Development Introduction Chapter 6 Toward a Measure of Sustainable Net National Product Chapter 7 On Sustainable Development and National Accounts Part IV. Population and Sustainable Development Introduction Chapter 8 Carrying Capacity As a Tool of Development Policy: The Ecuadoran Amazon and the Paraguayan Chaco Chapter 9 Marx and Malthus in Northeast Brazil: A Note on the World's Largest Class Difference in Fertility and Its Recent Trends Part V. International Trade and Sustainable Development Introduction Chapter 10 Free Trade and Globalization Vs. Environment and Community Chapter 11 From Adjustment to Sustainable Development: The Obstacle of Free Trade Part VI. Two Pioneers in the Economics of Sustainable Development Introduction Chapter 12 The Economic Thought of Frederick Soddy Chapter 13 On Nicholas Georgescu-Roegen's Contributions to Economics: An Obituary
    [Show full text]
  • 46 Post-Growth Economics
    46 POST-GROWTH ECONOMICS Niko Paech Introduction Today’s sustainability concepts are mostly based on ecological modernisation. Modern societies follow this trend and tend to shift the necessity of changing their consumption habits to a point later in time, or even deny the necessity of change completely. This is based on the hope that technological progress can solve the sustainability problem without having to go through difficult changes in lifestyle and a moderation of consumption habits. However, many of those ‘Green’ innovations intensify material and energy overexploitation by making use of previously unspoilt landscapes and untouched resources. As long as decoupling by technological means turns out to be impossible, sustainable development can only be understood as a programme for economic reduction rather than conjuring Green Growth solutions. In this chapter I will explore an alternative to this popularised approach. That is a world that no longer clings to the growth imperative and makes the post-growth economy its goal. I start by defining what is meant by post-growth economics and how it has developed. This is followed by an exploration of the case for limits to growth and why decoupling runs into problems, including the rebound effect. I then outline some key aspects of a post-growth economy, before briefly identifying future directions and finishing with some concluding remarks. The development and meaning of post-growth economics Development of post-growth economics The terms post-growth economics (as an analytical framework) and post-growth economies (as a concrete draft for the future) arose in debates over sustainability held at Carl von Ossietzky University in Oldenburg during 2006.
    [Show full text]
  • The Ecological Economics of Boulding's Spaceship Earth
    Institut für Regional- und Umweltwirtschaft Institute for the Environment and Regional Development Clive L. Spash The Ecological Economics of Boulding's Spaceship Earth SRE-Discussion 2013/02 2013 The Ecological Economics of Boulding’s Spaceship Earth1 Clive L. Spash Abstract The work of Kenneth Boulding is sometimes cited as being foundational to the understanding of how the economy interacts with the environment and particularly of relevance to ecological economists. The main reference made in this regard is to his seminal essay using the metaphor of planet Earth as a spaceship. In this paper that essay and related work is placed both within historical context of the environmental movement and developments in the thought on environment-economy interactions. The writing by Boulding in this area is critically reviewed and discussed in relationship to the work of his contemporaries, also regarded as important for the ecological economics community, such as Georegescu-Roegen, Herman Daly and K. William Kapp. This brings out the facts that Boulding did not pursue his environmental concerns, wrote little on the subject, had a techno-optimist tendency, disagreed with his contemporaries and preferred to develop an evolutionary economics approach. Finally, a sketch is offered of how the ideas in the Spaceship Earth essay relate to current understanding within social ecological economics. The essay itself, while offering many thought provoking insights within the context of its time, also has flaws both of accuracy and omission. The issues of power, social justice, institutional and social relationships are ones absent, but also ones which Boulding, near the end of his life, finally recognised as key to addressing the growing environmental crises.
    [Show full text]
  • Paul Burkett Entropy in Ecological Economics: a Marxist Intervention
    HIMA 13,1_265_f6_117-152 3/14/05 2:50 PM Page 117 Paul Burkett Entropy in Ecological Economics: A Marxist Intervention Introduction One of the liveliest debates in ecological economics concerns the significance of the second law of thermodynamics, also known as the entropy law. This article critically surveys this debate and develops a Marxist perspective on the economy-entropy relationship. Entropy is a measure of the total disorder, randomness or chaos in a system: increased entropy implies greater disorder. The second law says that the entropy of an isolated thermodynamic system is strictly non-decreasing, that is, that energy is only transformed from more ordered to less ordered forms. Heat, for example, can only dissipate: it will not flow spontaneously from a cold to a hot object or area in an isolated system.1 If one interprets the orderliness of energy as a measure of its availability or usefulness to humans, then the entropy law implies that all energy transformations convert energy into less available and less useful forms. Energy cannot be transformed into work without some of the energy 1 Fermi 1956, p. 30; Van Ness 1983, p. 54. Historical Materialism, volume 13:1 (117–152) © Koninklijke Brill NV, Leiden, 2005 Also available online – www.brill.nl HIMA 13,1_265_f6_117-152 3/14/05 2:50 PM Page 118 118 • Paul Burkett being dissipated as unrecoverable heat. An engine cannot operate at one hundred per cent efficiency, that is, on a cycle whose only effect is to convert energy into work: a refrigerator will not operate unless it is plugged in.
    [Show full text]