Metodo Innovativo Per La Valutazione Delle Prestazioni Di Una Turbina

Total Page:16

File Type:pdf, Size:1020Kb

Metodo Innovativo Per La Valutazione Delle Prestazioni Di Una Turbina Mauro Menegazzo, 1020312 Tesi Magistrale, Aprile 2014 Metodo Innovativo per la Valutazione delle Prestazioni di una Turbina Eolica Darrieus ad Asse Verticale utilizzando Simulazioni Bidimensionali di Fluidodinamica Computazionale (CFD) Relatore: Prof. Ernesto Benini, Ph.D. Dipartimento di Ingegneria Industriale Facoltà di Ingegneria Aerospaziale Indice Prima parte: Energia eolica 1.1 Introduzione .............................................................................................................................. 5 1.2 Storia ........................................................................................................................................ 6 1.2.1 I primi sfruttamenti per generare potenza elettrica ............................................................... 7 1.3 L'energia eolica ......................................................................................................................... 8 1.3.1 Distribuzione della velocità del vento.................................................................................. 9 1.3.2 Venti d’alta quota ............................................................................................................... 9 1.4 Parchi eolici ............................................................................................................................ 10 1.4.1 Eolico on-shore e near-shore ............................................................................................. 11 1.4.2 Eolico off-shore ................................................................................................................ 12 1.4.3 Minieolico e microeolico .................................................................................................. 13 1.4.4 Eolico d'alta quota............................................................................................................. 13 1.5 Turbina eolica ......................................................................................................................... 14 1.5.1 Generatore ad asse orizzontale .......................................................................................... 15 1.5.2 Principali componenti ....................................................................................................... 16 1.5.2.1 Rotore ........................................................................................................................ 16 1.5.2.2 Navicella o gondola .................................................................................................... 16 1.5.2.3 Torre .......................................................................................................................... 17 1.6 Generatore ad asse verticale .................................................................................................... 18 1.7 Eolico magnetico ..................................................................................................................... 18 1.8 Capacità di energia eolica e produzione ................................................................................... 18 1.8.1 Trend di crescita ............................................................................................................... 20 1.8.2 Fattore di capacità ............................................................................................................. 21 1.8.3 Penetrazione ..................................................................................................................... 22 1.8.4 Variabilità ......................................................................................................................... 24 1.8.5 Prevedibilità...................................................................................................................... 25 1.8.6 Affidabilità ....................................................................................................................... 25 1.8.7 Accumulo dell'energia ...................................................................................................... 25 1.8.8 Effetti sull'ambiente .......................................................................................................... 26 1.8.9 Efficienza ......................................................................................................................... 27 1.9 Economia ................................................................................................................................ 27 1 1.9.1 Trend dei costi .................................................................................................................. 28 1.9.2 Incentivi e benefici di comunità ........................................................................................ 29 1.10 Politica .................................................................................................................................. 29 1.10.1 Governi centrali .............................................................................................................. 29 1.10.2 Opinione pubblica ........................................................................................................... 30 1.10.3 Comunità ........................................................................................................................ 31 1.11 Costi mini-eolico ................................................................................................................... 31 1.12 Costi micro-eolico ................................................................................................................. 32 Seconda parte: Turbine eoliche 2.1 Introduzione ............................................................................................................................ 37 2.2 Turbine ad asse orizzontale ..................................................................................................... 38 2.2.1 Legge di Betz .................................................................................................................... 38 2.2.2 Coefficiente di potenza Cp ................................................................................................ 42 2.2.3 Momento torcente medio .................................................................................................. 43 2.3 Turbine ad asse verticale ......................................................................................................... 44 2.3.1 Turbine a resistenza .......................................................................................................... 44 2.3.2 Turbine a portanza ............................................................................................................ 45 2.3.3 Turbina Darrieus ............................................................................................................... 46 2.3.4 Turbina Savonius .............................................................................................................. 47 2.3.5 Turbina Gorlov ................................................................................................................. 48 2.4 Comparazione tra HAWT e VAWT......................................................................................... 48 2.4.1 Meccanismo di Yaw ......................................................................................................... 48 2.4.2 Direzione dell’asse ............................................................................................................ 49 2.4.3 Azionamento diretto ......................................................................................................... 49 2.5 Costruzione ............................................................................................................................. 49 2.6 Meccanica strutturale .............................................................................................................. 50 2.7 Aerogeneratori di piccola potenza ........................................................................................... 50 2.8 Turbine ad asse verticale in ambiente urbano ........................................................................... 51 2.9 Turbina analizzata in questo lavoro ......................................................................................... 51 2.10 Principio di funzionanento di una VAWT .............................................................................. 52 2 Terza parte: Fondamenti di fluidodinamica computazionale 3.1 Introduzione ............................................................................................................................ 57 3.2 La fluidodinamica computazionale .......................................................................................... 57 3.3 Metodi di discretizzazione ....................................................................................................... 58 3.3.1 Procedura di analisi ........................................................................................................... 58 3.4 La strategia della CFD ............................................................................................................. 59 3.5 Metodo delle differenze finite .................................................................................................. 60 3.6 Discretizzazione attraverso il metodo dei volumi finiti ............................................................ 61 3.6.1 Assemblaggio del sistema discreto e applicazione delle
Recommended publications
  • Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File
    SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. Department of Energy - Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File Q1'2015 Q1'2014 State MW CF CF Arizona 227 15.8% 21.0% California 5,182 13.2% 19.8% Colorado 2,299 36.4% 40.9% Hawaii 171 21.0% 18.3% Iowa 4,977 40.8% 44.4% Idaho 532 28.3% 42.0% Illinois 3,524 38.0% 42.3% Indiana 1,537 32.6% 29.8% Kansas 2,898 41.0% 46.5% Massachusetts 29 41.7% 52.4% Maryland 120 38.6% 37.6% Maine 401 40.1% 36.3% Michigan 1,374 37.9% 36.7% Minnesota 2,440 42.4% 45.5% Missouri 454 29.3% 35.5% Montana 605 46.4% 43.5% North Dakota 1,767 42.8% 49.8% Nebraska 518 49.4% 53.2% New Hampshire 147 36.7% 34.6% New Mexico 773 23.1% 40.8% Nevada 152 22.1% 22.0% New York 1,712 33.5% 32.8% Ohio 403 37.6% 41.7% Oklahoma 3,158 36.2% 45.1% Oregon 3,044 15.3% 23.7% Pennsylvania 1,278 39.2% 40.0% South Dakota 779 47.4% 50.4% Tennessee 29 22.2% 26.4% Texas 12,308 27.5% 37.7% Utah 306 16.5% 24.2% Vermont 109 39.1% 33.1% Washington 2,724 20.6% 29.5% Wisconsin 608 33.4% 38.7% West Virginia 583 37.8% 38.0% Wyoming 1,340 39.3% 52.2% Total 58,507 31.6% 37.7% SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S.
    [Show full text]
  • Codesaturne Practical User's Guide
    EDF R&D Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group 6, quai Watier F-78401 Chatou Cedex Tel: 33 1 30 87 75 40 Fax: 33 1 30 87 79 16 JUNE 2017 Code Saturne documentation Code Saturne version 5.0.0 practical user's guide contact: [email protected] http://code-saturne.org/ c EDF 2017 Code Saturne EDF R&D Code Saturne version 5.0.0 practical user's documentation guide Page 1/142 ABSTRACT Code Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax- isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred to as \specific physics", for the treatment of Lagrangian particle tracking, semi-transparent radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec- tric arcs) and compressible flows. Code Saturne relies on a finite volume discretisation and allows the use of various mesh types which may be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging nodes). The present document is a practical user's guide for Code Saturne version 5.0.0. It is the result of the joint effort of all the members in the development team. It presents all the necessary elements to run a calculation with Code Saturne version 5.0.0.
    [Show full text]
  • Analyzing the Energy Industry in United States
    +44 20 8123 2220 [email protected] Analyzing the Energy Industry in United States https://marketpublishers.com/r/AC4983D1366EN.html Date: June 2012 Pages: 700 Price: US$ 450.00 (Single User License) ID: AC4983D1366EN Abstracts The global energy industry has explored many options to meet the growing energy needs of industrialized economies wherein production demands are to be met with supply of power from varied energy resources worldwide. There has been a clearer realization of the finite nature of oil resources and the ever higher pushing demand for energy. The world has yet to stabilize on the complex geopolitical undercurrents which influence the oil and gas production as well as supply strategies globally. Aruvian's R'search’s report – Analyzing the Energy Industry in United States - analyzes the scope of American energy production from varied traditional sources as well as the developing renewable energy sources. In view of understanding energy transactions, the report also studies the revenue returns for investors in various energy channels which manifest themselves in American energy demand and supply dynamics. In depth view has been provided in this report of US oil, electricity, natural gas, nuclear power, coal, wind, and hydroelectric sectors. The various geopolitical interests and intentions governing the exploitation, production, trade and supply of these resources for energy production has also been analyzed by this report in a non-partisan manner. The report starts with a descriptive base analysis of the characteristics of the global energy industry in terms of economic quantity of demand. The drivers of demand and the traditional resources which are used to fulfill this demand are explained along with the emerging mandate of nuclear energy.
    [Show full text]
  • Wind Power Suitability in Worcester, M Assachusetts
    Project Number: IQP JRK-WND1 Wind Power Suitability in Worcester, M assachusetts An Interactive Qualifying Project Report: submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Christopher Kalisz chkalisz@ wpi.edu ______________________________ Calixte M onast cmonast@ wpi.edu ______________________________ M ichael Santoro santron@ wpi.edu ______________________________ Benjamin Trow btrow@ wpi.edu Date: March 14, 2005 Faculty Advisors: _________________________ Professor Scott Jiusto _________________________ Professor Robert Krueger ABSTRACT The goal of this project was to identify criteria needed to determine the suitability of potential wind turbine sites in Worcester, Massachusetts. The report first discusses physical, environmental, economic, and social factors that affect the suitability of potential wind power sites. We then completed a case study for a site in downtown Worcester, directly applying the criteria. Our hope is the project will raise local awareness of renewable energy and illustrate the practicality of a clean energy project. - 1 - TABLE OF CONTENTS ABSTRACT............................................................................................................................... 1 TABLE OF CONTENTS............................................................................................................ 2 TABLE OF FIGURES...............................................................................................................
    [Show full text]
  • Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Steve Goodman
    Hastings Environmental Law Journal Volume 18 Article 4 Number 2 Summer 2012 1-1-2012 Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Steve Goodman Follow this and additional works at: https://repository.uchastings.edu/ hastings_environmental_law_journal Part of the Environmental Law Commons Recommended Citation Steve Goodman, Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid?, 18 Hastings West Northwest J. of Envtl. L. & Pol'y 323 (2012) Available at: https://repository.uchastings.edu/hastings_environmental_law_journal/vol18/iss2/4 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Environmental Law Journal by an authorized editor of UC Hastings Scholarship Repository. For more information, please contact [email protected]. Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Veery Maxwell* I. INTRODUCTION II. THE CURRENT REGULATORY ENVIRONMENT III. AREAS OF CONFLICT A. NIMBY B. Federal Agency Opposition C. Environmental Opposition D. Altamont Pass: Environmental Oppsotion as a Result of Sepcies Mortalitiy E. Cape Wind: NIMBY Combined with Environmental Concerns IV. INTERNATIONAL ADOPTION OF WIND POWER A. Spain B. China V. THE FUTURE OF WIND POWER IN THE UNITED STATES A. Federal Renewable Portfolio Standard B. Long Term Financial Incentive Guarantees C. Cooperative Federalism for Regulatory Process D. Implement Successful Foreign Policies Domestically VI. CONCLUSION Abstract And energy has the potential to completely change the way the world receives electricity. The technology is both clean and green. Generating electricity from wind energy will enable utilities to purchase less power from conventional fossil fuel based sources.
    [Show full text]
  • Developments in the Modeling & Simulation Program at EDF
    Developments in the Modeling & Simulation Program at EDF. Potential Collaboration Topics CASL Industry Council Meeting. Charleston, SC. April 4-5 2017 Didier Banner Presentation outline EDF’s M&S tools and software policy Current trends in numerical simulation -------------------- On-going CASL – CEA –EDF collaboration Potential collaboration on the NESTOR data EDF Key figures • French NPP fleet • 58 operating reactors, from 900 MW to 1450 MW • 157 to 205 fuel assemblies per reactor • Fuel cycles - 12 or 18 months • Fuel assemblies renewal from 1/4th to 1/3rd • Some estimated costs* • One day of outage: ~1 M€ • Total fuel cost: ~5 €/MWh • Major retrofit in France: ~50 b€ Including post-Fukushima program: ~10 b€ EDF R&D KEY FIGURES Use of Modelling &Simulation - examples Resistance to impact Tightness of the (projectiles) Seismic Analysis containment vessel Environmental impacts Behaviour of turbines Dismantling Waste Storage Tightness of the primary loop Control of nuclear Behaviour of the reactions pressure vessel EDF Modeling and Simulation policy Models Specific studies: i.e FSI interaction,irradiation, turbulence,.. Codes i.e CFD (Saturne), Neutronics (Cocagne),Mechanics (Aster) Platforms Interoperability, Users’s experience --------------------- Development Strategy - examples EDF Open-Source CFD (Saturne), Mechanics(Aster), Free Surface Flow EDF developments-not open source Neutronics, Electromagnetics, … Codevelopment/Partnership Two-phase flow (Neptune), Fast transient dynamics,.. Commercial Software: Ansys, Abaqus, EDF Modeling
    [Show full text]
  • Wind Farm Bat Fatalities in Southern Brazil: Temporal Patterns and Influence of Environmental Factors
    Published by Associazione Teriologica Italiana Volume 31 (1): 40–47, 2020 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00256-2019 Research Article Wind farm bat fatalities in southern Brazil: temporal patterns and influence of environmental factors Izidoro Sarmento do Amaral1,2, Maria João Ramos Pereira3, Aurelea Mader2, Marlon R Ferraz1, Jessica Bandeira Pereira1,2, Larissa Rosa de Oliveira1,4,∗ 1Universidade Vale do Rio dos Sinos 2Ardea Consultoria Ambiental, R. Botafogo, 1287, sala 202, Porto Alegre, RS, Brazil, 90150-053 3Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Agronomia, Porto Alegre, RS, Brazil, 91501-970 4Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul Keywords: Abstract environmental monitoring mitigation Energy demand created by the present model of economic growth has transformed the natural land- wind turbines scape. Changes in megadiverse environments should be accompanied by studies that describe and bioacoustics predict the effects of these changes on ecosystems, underpinning the avoidance or at least the re- scavenger removal duction of impacts and species conservation. Wind farm impacts on bats are scarcely known in Tadarida brasiliensis Brazil. To fulfill this gap on spatiotemporal patterns in bat fatalities in a wind complex in southern Brazil were analysed. Monthly surveys were done around 129 wind towers in search for bat car- Article history: casses between 2014 and 2018. The number of specimens found per species was analysed in annual Received: 06/11/2019 sets and also seasonally to understand the influence of land use in the spatial pattern of bat fatalit- Accepted: 21/04/2020 ies.
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Exhibit 4 Environmental Impact
    Empire Offshore Wind LLC Empire Wind 1 Project Article VII Application Exhibit 4 Environmental Impact June 2021 Empire Wind 1 Project Article VII Application Exhibit 4: Environmental Impact TABLE OF CONTENTS EXHIBIT 4: ENVIRONMENTAL IMPACT ..........................................................................................................4-1 4.1 Introduction ........................................................................................................................................4-1 4.1.1 Impact Assessment Methodology ....................................................................................4-4 4.1.2 Impact-Producing Factors - Construction ......................................................................4-6 4.1.3 Impact-Producing Factors – Operations ..................................................................... 4-17 4.1.4 Proposed Avoidance, Minimization and Mitigation Measures ................................. 4-20 4.2 Marine Physical and Chemical Conditions ................................................................................. 4-27 4.2.1 Marine Physical and Chemical Studies and Analysis .................................................. 4-27 4.2.2 Existing Marine Physical Characteristics ...................................................................... 4-28 4.2.3 Existing Marine Chemical Characteristics.................................................................... 4-35 4.2.4 Potential Marine Chemical and Physical Impacts and Proposed Mitigation.......... 4-41 4.3 Topography,
    [Show full text]
  • Desert Exposure
    Wind power Co-op at 40 Surprising creosote exposure page 22 page 26 plant, page 30 Biggest Little Paper in the Southwest FREE Our 19th Year! • July 2014 2 JULY 2014 www.desertexposure.com www.SmithRealEstate.com Call or Click Today! (575) 538-5373 or 1-800-234-0307 505 W. College Avenue • PO Box 1290 • Silver City, NM 88062 Quality People, Quality Service for over 40 years! LIFE IN THE REDUCED GREAT INVESTMENT PROP- FOREST – HIGHLY VISIBLE COMMERCIAL COUNTRY LIVING - NO ERTY! 4-plex with 4 spacious 2BR Surrounded SPACE WITH LIVING QUAR- RESTRICTIONS! 4BR/2BA home apartments on 1ac in Indian Hills. by Mother TERS! Almost 5000 sf on close to on nearly 5ac with good well, Strong income, easy to keep Nature & pines, this 5.4ac one of a an acre with fenced yard and areas for gardens & horses, above rented. $279,000. MLS #30556. Call Becky kind place borders nat’l forest on 1 side. garden. Currently leased $262,000. MLS ground pool, deck w/ super views & much, Smith ext. 11. Shown by appt. Main house, guest house & garage + round #31008. Call Becky Smith ext. 11. much more. $155,000. MLS #31086. Call studio. $59,500. MLS #31305 . Call Becky Becky Smith ext 11. Smith ext. 11. Great views and privacy from this Great get-a-way or fulltime living Log cabin awaiting finishing Spacious 4bdrm, 2-story w/ spacious 4b/2.5 ba on almost 3ac near Lake Roberts. Nice open touches. Nice views, privacy and spectacular views! New carpet, in Indian Hills. All this at a great floor plan, arctic insulation plenty of trees on a little over 3ac, paint, refinished hardwood floors, price! $305,000.
    [Show full text]
  • Modeling and Distributed Computing of Snow Transport And
    Modeling and distributed computing of snow transport and delivery on meso-scale in a complex orography Modelitzaci´oi computaci´odistribu¨ıda de fen`omens de transport i dip`osit de neu a meso-escala en una orografia complexa Thesis dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Programa de Doctorat en Societat de la Informaci´oi el Coneixement Alan Ward Koeck Advisor: Dr. Josep Jorba Esteve Distributed, Parallel and Collaborative Systems Research Group (DPCS) Universitat Oberta de Catalunya (UOC) Rambla del Poblenou 156, 08018 Barcelona – Barcelona, 2015 – c Alan Ward Koeck, 2015 Unless otherwise stated, all artwork including digital images, sketches and line drawings are original creations by the author. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons BY-SA License, version 4.0 or ulterior at the choice of the reader/user. At the time of writing, the license code was available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode Es permet la lliure c`opia, distribuci´oi/o modificaci´od’aquest document segons els termes de la Lic`encia Creative Commons BY-SA, versi´o4.0 o posterior, a l’escollida del lector o usuari. En el moment de la redacci´o d’aquest text, es podia accedir al text de la llic`encia a l’adre¸ca: https://creativecommons.org/licenses/by-sa/4.0/legalcode 2 In memoriam Alan Ward, MA Oxon, PhD Dublin 1937-2014 3 4 Acknowledgements A long-term commitment such as this thesis could not prosper on my own merits alone.
    [Show full text]
  • 1 Repowering 1. Introduction 2. Wind
    Repowering By John Benson March 2019 1. Introduction If your utility had a combined-cycle (CC) plant built 20 years ago, it is still reasonably close to state-of-the-art. However, this not the case with either wind or PV. These technologies are advancing quickly enough to where a 20 year old wind turbine or PV array is really an antique. I know, having lived next to the Altamont Pass, one of the largest wind resource areas in the world for over 30 years. The first wind farm was built there in 1981. By 1985 there were over 25 wind farms, and by the mid-90s there were over 5,000 turbines in the pass. In 2015 NextEra Energy Resources (primary developer in the Altamont) started repowering their projects in the Altamont. Whereas many of the old turbines in the Altamont were in the 100 kW range, these were being replaced with 2 MW turbines at a ratio of one new turbine replacing at approximately 30 old turbines. Photovoltaics (PVs) have also made major improvements in technology in the last 20 years, and repowering older projects is also often justified. Read on to understand how repowering older PV and Wind projects are rapidly becoming some of the largest segments in the renewable marketplace. 2. Wind Repowering a wind farm can either involve completely replacing the turbines (as with the Altamont project described above, called "fully repowering"), or replacing parts of the turbines ("partially repowering"). One popular retrofit in the latter case is replacing the rotors and blades. Retrofits are used to add value to relatively young turbines.
    [Show full text]