Weld Residual Stress Finite Element Analysis Validation Introduction and Overview June 14-15, 2011, Rockville, MD Paul Crooker EPRI

Total Page:16

File Type:pdf, Size:1020Kb

Weld Residual Stress Finite Element Analysis Validation Introduction and Overview June 14-15, 2011, Rockville, MD Paul Crooker EPRI Weld Residual Stress Finite Element Analysis Validation Introduction and Overview June 14-15, 2011, Rockville, MD Paul Crooker EPRI Howard Rathbun U.S. Nuclear Regulatory Commission Introduction • Welcome • Introduction by meeting attendees – Names and affiliations • Agenda – Revised since Public Meeting Announcement – Hardcopy available • Review revised agenda © 2010 Electric Power Research Institute, Inc. All rights reserved. 2 This is a Category 2 Public Meeting • Category 1 – Discussion of one particular facility or site • Category 2 – Issues that could affect multiple licensees • Category 3 – Held with representatives of non-government organizations, private citizens or interested parties, or various businesses or industries (other than those covered under Category 2) to fully engage them in a discussion on regulatory issues © 2010 Electric Power Research Institute, Inc. All rights reserved. 3 Program Overview •Scientific Weld Specimens •Fabricated Prototypic Nozzles •Phase 1A: Restrained Plates (QTY 4) •Type 8 Surge Nozzles (QTY 2) •Phase 1B: Small Cylinders (QTY 4) •Purpose: Prototypic scale under controlled NRC EPRI - - •Purpose: Develop FE models. conditions. Validate FE models. Phase 2 Phase Phase 1 Phase •Plant Components •Plant Components •WNP-3 S&R PZR Nozzles (QTY 3) •WNP-3 CL Nozzle (QTY 1) •Purpose: Validate FE models. •RS Measurements funded by NRC EPRI EPRI - - •Purpose: Effect of overlay on ID. Phase 3 Phase Phase 4 Phase © 2010 Electric Power Research Institute, Inc. All rights reserved. 4 Goals of the Meeting • Focus on finite element modeling techniques – What works well, what doesn’t • Allow meeting participants to express their views • Day 1: Present modeling and measurement results • Day 2: Discuss the implications of the findings • Present plans for documentation • Future work opportunities © 2010 Electric Power Research Institute, Inc. All rights reserved. 5 Welding Residual Stress Validation Program Phase 1 Summary Presented To: Welding Residual Stress Validation Experts Meeting Presented By: John Broussard Dominion Engineering, Inc. June 14, 2011 12100 Sunrise Valley Dr. #220 Reston, VA 20191 703.657.7300 www.domeng.com Phase 1 Weld Specimen Design Phase 1A Phase 1B Restrained Plates Cylinders . Fabricate and measure RS in simple Geometry 0.6" Thk, 0.4" Groove, 14" Long 6.51" OD x 0.47" Thick experimental specimens in order to Simplest Geometry Increasing Specimen Complexity develop and refine FE models Base Metal: 304L SS Base Metal: 304L SS, CS . Scientific Design Approach: Material Weld Metal: Alloy 82 Weld Metal: Alloy 82 – Investigate how weld parameters and Buttering: Alloy 82 Fix Geometry Fix Weld Parameters geometry affect RS distribution Variables – Representative weld configurations Vary Weld Parameters Vary Configuration – Controlled fabrication P-3: Base Case - 11 passes C-1: SS to SS – Maximize region of fully-developed stress P-4: Incr. Heat Input - 7 passes C-3: Buttered CS to SS w/ PWHT Specimens – Facilitate multiple RS measurements P-5: Incr. Heat Input - 7 passes C-4: Buttered CS to SS w/o PWHT . Investigate influence on RS state of: P-6: Decr. Heat Input - 23 passes C-5: Add SE and Repair to C-4 Aluminum backing plate is fairly Machine beam windows allow – Phase 1A: weld parameter variation Allow ND transparent to neutrons measurement of hoop strain • Current and wire feed rate Fixture design preserves original C-6 has manual 90° 75% TW ID • Torch speed Misc. – Phase 1B: weld configuration stress state. Repair Weld. Groove machined. • Buttering • Post-Weld Heat Treatment (PWHT) • Safe-End and SS weld • Repair Weld 2 Phase 1 Analysis Summary Measurements Performed Phase 1A Plates Measured Specimens RS Measurement Method Vendor Location Directions Measured P-3 P-4 P-5 P-6 Longitudinal Neutron Diffraction: ORNL 45 Point Grid on Cross-section Plane Transverse XXXX Basic Measurements Normal Neutron Diffraction: 7 Depths down Weld Centerline ORNL 6 Directions X Full Strain Tensor 2 Depths in Base Metal Longitudinal Neutron Diffraction: 8 Longitudinal Locations, ORNL Transverse X Longitudinal Traverse 3 Depth in WM & 3 Depths in BM Normal Longitudinal U of Deep Hole Drilling 1 Hole through Centerline of Weld Transverse X Bristol In-plane Shear 7 Surface Points Across Weld Longitudinal X-ray Diffraction TEC XXXX On Topside of Specimen Transverse Longitudinal 7 Surface Points Across Weld Surface Hole Drilling LTI Transverse XX X On Topside of Specimen In-plane Shear 2 Longitudinal Positions, Longitudinal Ring-Core LTI Both down Weld Centerline Transverse XX on Topside of Specimen In-plane Shear Slotting Hill Eng. 4 Transverse Measurement Slots Transverse X 1 Longitudinal Measurement Slice Longitudinal Contour Hill Eng. X 1 Transverse Measurement Slice Transverse ORNL: Oak Ridge National Laboratory TEC: Technology for Energy Corporation LTI: Lambda Technology, Inc. Hill Eng: Hill Engineering, LLC 3 Phase 1 Analysis Summary Plate RS Measurement Locations General Plate Arrangement (P-4 Shown) Contour Transverse - one plate Contour Longitudinal - full cross section - one plate ND Locations - all plate specimens - longitudinal, transverse, normal directions 4 Phase 1 Analysis Summary Measurements Performed Phase 1B Cylinders Measured Specimens RS Measurement Method Vendor Location Directions Measured C-1 C-3 C-4 C-5 C-5R Hoop Neutron Diffraction: ORNL 80 Point Grid on Cross-section Plane Axial XXXXX Basic Measurements Radial Neutron Diffraction: Stepped every 5° for 90° in Normal Weld ORNL Axial Strain X Axisymmetry Study Stepped every 5° for 70° in Repair Weld Hoop Deep Hole Drilling VEQTER 1 Hole through Centerline of Weld Axial XX XX In-plane Shear EPRI-CLT 10-11 Surface Points Across Weld Hoop X X X X-ray Diffraction & on OD & ID of Specimen Axial (EPRI) (EPRI) (TEC) TEC 2 Longitudinal (Hoop) Meas. Slices Hoop Contour Hill Eng. X 2 Transverse (Axial) Meas. Slices Axial ORNL: Oak Ridge National Laboratory TEC: Technology for Energy Corporation LTI: Lambda Technology, Inc. EPRI-CLT: EPRI Charlotte Hill Eng: Hill Engineering, LLC 5 Phase 1 Analysis Summary Cylinder RS Measurement Locations General Cylinder Arrangement (C-3 Shown) Contour Hoop Contour Axial Contour Axial - full cross section - one cylinder - one cylinder - one cylinder OD ID ND Locations DHD and iDHD - all cylinder specimens - all cylinder specimens - hoop, axial, radial directions 6 Phase 1 Analysis Summary Surface Stress Measurement Results Plate P-4, Weld Centerline 500 200 XRD 400 HD 100 300 0 RC Slitting 200 -100 100 RC -200 HD 0 Transverse Stresses (MPa) Stresses Transverse Longitudinal Stresses (MPa) Stresses Longitudinal XRD X-ray Diffraction -300 Ring-Core -100 X-ray Diffraction Ring-Core Surface Hole Drilling Surface Hole Drilling Slitting -200 -400 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 Depth from Plate Top Surface (mm) Depth from Plate Top Surface (mm) 7 Phase 1 Analysis Summary Stress Measurements and FEA Predictions . Results from Plate P-4 and Cylinder C-3 presented . Four sets of model results compared identified “A” through “D” – All models two dimensional plane strain (plate) or axisymmetric (cylinder) – Modeler’s best judgment for mesh, thermal inputs based on fabrication data – All models apply power generation as a function of time for thermal model • Roughly same amount of total energy input consistent with weld process – Model A: ANSYS, elastic perfectly-plastic hardening – Model B: ABAQUS, isotropic hardening law – Model C: ABAQUS, isotropic hardening law – Model D: ABAQUS, kinematic hardening law . Measurements performed at facilities identified “A” through “C” – No correlation between modelers “A” through “D” and facilities “A” through “C” – Facility A: contour method only – Facility B: neutron diffraction only – Facility C: contour method and neutron diffraction 8 Phase 1 Analysis Summary Plate P-4 Measurement and FEA Results FEA Model A FEA Model B FEA Model A FEA Model B FEA Model C FEA Model D FEA Model C FEA Model D Contour, Facility A Contour, Facility C Contour, Facility A Neutron Diff, Facility B Neutron Diff, Facility B Neutron Diff, Facility C Neutron Diff, Facility C 600.0 300.0 500.0 200.0 400.0 100.0 300.0 0.0 200.0 -100.0 100.0 Longitudinal Mpa Stress, Longitudinal -200.0 0.0 Stress, Mpa Transverse -100.0 -300.0 -200.0 -400.0 -4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 -4.00 1.00 6.00 11.00 16.00 Distance from Plate Top Surface, mm Distance from Plate Top Surface, mm 9 Phase 1 Analysis Summary Cylinder C-3 Measurement and FEA Results FEA Model A FEA Model B FEA Model C FEA Model A FEA Model B FEA Model C Contour - A DHD / iDHD Neutron Diff, Facility B Contour - A DHD / iDHD Neutron Diff, Facility B 400.0 600.0 300.0 500.0 200.0 400.0 100.0 300.0 0.0 200.0 -100.0 100.0 Mpa Stress, Axial Hoop Stress, Stress, Mpa Hoop -200.0 0.0 -100.0 -300.0 -200.0 -400.0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Distance from OD, mm Distance from OD, mm 10 Phase 1 Analysis Summary Three Dimensional Plate Model . Three dimensional model prepared for Plate P-4 . Progressive block dump for thermal model, five blocks lengthwise for each weld pass . Results are identical for the 2D/3D in the weld, with some differences far field in the longitudinal stresses 11 Phase 1 Analysis Summary Conclusions . Surface stress measurements from the plates demonstrate that additional investigation is needed into surface measurements of welded locations . Bead geometry arrangements played a role in scatter among cylinder model stress results – Plate weld cavity did not change shape during welding consistent beads among modelers – Cylinder weld cavity changed shape during welding modelers assumptions for bead shape varied .
Recommended publications
  • Codesaturne Practical User's Guide
    EDF R&D Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group 6, quai Watier F-78401 Chatou Cedex Tel: 33 1 30 87 75 40 Fax: 33 1 30 87 79 16 JUNE 2017 Code Saturne documentation Code Saturne version 5.0.0 practical user's guide contact: [email protected] http://code-saturne.org/ c EDF 2017 Code Saturne EDF R&D Code Saturne version 5.0.0 practical user's documentation guide Page 1/142 ABSTRACT Code Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax- isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred to as \specific physics", for the treatment of Lagrangian particle tracking, semi-transparent radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec- tric arcs) and compressible flows. Code Saturne relies on a finite volume discretisation and allows the use of various mesh types which may be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging nodes). The present document is a practical user's guide for Code Saturne version 5.0.0. It is the result of the joint effort of all the members in the development team. It presents all the necessary elements to run a calculation with Code Saturne version 5.0.0.
    [Show full text]
  • Developments in the Modeling & Simulation Program at EDF
    Developments in the Modeling & Simulation Program at EDF. Potential Collaboration Topics CASL Industry Council Meeting. Charleston, SC. April 4-5 2017 Didier Banner Presentation outline EDF’s M&S tools and software policy Current trends in numerical simulation -------------------- On-going CASL – CEA –EDF collaboration Potential collaboration on the NESTOR data EDF Key figures • French NPP fleet • 58 operating reactors, from 900 MW to 1450 MW • 157 to 205 fuel assemblies per reactor • Fuel cycles - 12 or 18 months • Fuel assemblies renewal from 1/4th to 1/3rd • Some estimated costs* • One day of outage: ~1 M€ • Total fuel cost: ~5 €/MWh • Major retrofit in France: ~50 b€ Including post-Fukushima program: ~10 b€ EDF R&D KEY FIGURES Use of Modelling &Simulation - examples Resistance to impact Tightness of the (projectiles) Seismic Analysis containment vessel Environmental impacts Behaviour of turbines Dismantling Waste Storage Tightness of the primary loop Control of nuclear Behaviour of the reactions pressure vessel EDF Modeling and Simulation policy Models Specific studies: i.e FSI interaction,irradiation, turbulence,.. Codes i.e CFD (Saturne), Neutronics (Cocagne),Mechanics (Aster) Platforms Interoperability, Users’s experience --------------------- Development Strategy - examples EDF Open-Source CFD (Saturne), Mechanics(Aster), Free Surface Flow EDF developments-not open source Neutronics, Electromagnetics, … Codevelopment/Partnership Two-phase flow (Neptune), Fast transient dynamics,.. Commercial Software: Ansys, Abaqus, EDF Modeling
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Modeling and Distributed Computing of Snow Transport And
    Modeling and distributed computing of snow transport and delivery on meso-scale in a complex orography Modelitzaci´oi computaci´odistribu¨ıda de fen`omens de transport i dip`osit de neu a meso-escala en una orografia complexa Thesis dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Programa de Doctorat en Societat de la Informaci´oi el Coneixement Alan Ward Koeck Advisor: Dr. Josep Jorba Esteve Distributed, Parallel and Collaborative Systems Research Group (DPCS) Universitat Oberta de Catalunya (UOC) Rambla del Poblenou 156, 08018 Barcelona – Barcelona, 2015 – c Alan Ward Koeck, 2015 Unless otherwise stated, all artwork including digital images, sketches and line drawings are original creations by the author. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons BY-SA License, version 4.0 or ulterior at the choice of the reader/user. At the time of writing, the license code was available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode Es permet la lliure c`opia, distribuci´oi/o modificaci´od’aquest document segons els termes de la Lic`encia Creative Commons BY-SA, versi´o4.0 o posterior, a l’escollida del lector o usuari. En el moment de la redacci´o d’aquest text, es podia accedir al text de la llic`encia a l’adre¸ca: https://creativecommons.org/licenses/by-sa/4.0/legalcode 2 In memoriam Alan Ward, MA Oxon, PhD Dublin 1937-2014 3 4 Acknowledgements A long-term commitment such as this thesis could not prosper on my own merits alone.
    [Show full text]
  • (OSCAE.Initiative) at Universiti Teknologi Malaysia
    Open Source Computer Aided Engineering Inititive (OSCAE.Initiative) at Universiti Teknologi Malaysia Abu Hasan Abdullah Faculty of Mechanical Engineering Universiti Teknologi Malaysia March 1, 2017 Abstract Open Source Computer Aided Engineering Initiative (OSCAE.Initiative) is a public statement of principles relating to open source software for Computer Aided Engineering. It aims to pro- mote the use of open source software in engineering discipline with a goal that within the next five years, open source software will become very common tools for conducting CAE analyses. Towards this end, a small OSCAE.Initiative lab to be used for familiarizing and developmental testing of related software packages has been setup at the Marine Technology Centre, Universiti Teknology Malaysia. This paper describes the infrastructure setup, computing hardware components, multiplat- form operating environments and various categories of software packages offered at this lab which has already been identified as a blueprint for another two labs sharing a kindred spirit. 1 Overview The OSCAE.Initiative lab at Universiti Teknologi Malaysia, is located on the second floor of the Marine Technology Centre (MTC). It was established to promote the use of open source software in engineering discipline with a goal that open source software will become the tools of choice for conducting CAE analyses and simulations. Currently, the lab provides • general purpose computing facilities for educational and academic use, and • specialized (CAE) lab environments, software, and support for students, researchers and staff of MTC. Access is by terminals throughout the lab. While users are not required to have their own computers, it is recognized that many do, and facilities are provided to transfer data to and from the OSCAE.Initiative systems so that personal computers and workstations at OSCAE.Initiative lab can complement each other.
    [Show full text]
  • An Open Source Engineering Platform
    CAELinux : an open source engineering platform Joël Cugnoni, www.caelinux.com Joël Cugnoni, www.caelinux.com 19.02.2015 1 What is CAELinux ? A CAE workstation on a disk CAELinux in brief CAELinux is a « Live» Linux distribution pre-packaged with the main open source Computer Aided Engineering software available today. CAELinux is free and open source, for all usage, even commercial (*) It is based on Ubuntu LTS (12.04 64bit for CAELinux 2013) It covers all phases of product development: from mathematics, CAD, stress / thermal / fluid analysis, electronics to CAM and 3D printing How to use CAELinux: Boot : Installation Complete Live Trial, on your workstation satisfied? computer ready for use ! Or CAELinux virtual Machine Running a server in Amazon EC2 installation in OSX, Windows cloud computing (on demand, charge or other Linux per hour) Joël Cugnoni, www.caelinux.com (* except for Tetgen mesher) CAELinux: History and present Past and present: CAELinux started in 2005 as a personal project for my own use Motivation was to promote the use of scientific open source software in engineering by avoiding the complexities of code compilation and configuration. And also, I wanted to have a reference installation of Code- Aster and Salome that I could install for my own use. Until now, 11 versions have been released in ~9 years. One release per year (except 2014). Today, the latest version, CAELinux 2013, has reached 63’000 downloads in 1 year on sourceforge.net. CAELinux is used for teaching in universities, in SME’s for analysis and by many occasional users, hobbyists, hackers and Linux enthusiasts.
    [Show full text]
  • Ubercloud HPC Experiment Compendium of Case Studies
    Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies. Progress can only be achieved by educating our engineers, especially those in the “missing middle,” and making HPC easier to access and use for everyone who can benefit from this advanced technology. The UberCloud HPC Experiment actively promotes the wider adoption of digital manufacturing technology. It is an example of a grass roots effort to foster collaboration among engineers, HPC experts, and service providers to address challenges at scale. The UberCloud HPC Experiment started in mid-2012 with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. In the meantime, the UberCloud HPC Experiment has achieved the participation of 500 organizations and individuals from 48 countries. Over 80 teams have been involved so far. Each team consists of an industry end-user and a software provider; the organizers match them with a well-suited resource provider and an HPC expert. Together, the team members work on the end-user’s application – defining the requirements, implementing the application on the remote HPC system, running and monitoring the job, getting the results back to the end-user, and writing a case study. Intel decided to sponsor a Compendium of 25 case studies, including the one you are reading, to raise awareness in the digital manufacturing community about the benefits and best practices of using remote HPC capabilities.
    [Show full text]
  • A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle
    A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle Tomáš Vogeltanz Department of Informatics and Artificial Intelligence Tomas Bata University in Zlín, Faculty of Applied Informatics nám. T.G. Masaryka 5555, 760 01 Zlín, CZECH REPUBLIC [email protected] Abstract—The objective of this paper is to analyze free contribute to their high performance maneuverability, wide software for the design, analysis, modelling, and simulation of an range of use, ease of control and command. [35] [50] [52] unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, The majority of missions are ideally suited to small UAVs the quality of free software may vary. This paper probably does which are either remotely piloted or autonomous. not include all of the free software, but tries to describe or Requirements for a typical low-altitude small UAV include mention at least the most interesting programs. The first part of long flight duration at speeds between 20 and 100 km/h, cruise this paper summarizes the essential knowledge about UAVs, altitudes from 3 to 300 m, light weight, and all-weather including the fundamentals of flight mechanics and capabilities. Although the definition of small UAVs is aerodynamics, and the structure of a UAV system. The second somewhat arbitrary, vehicles with wingspans less than section generally explains the modelling and simulation of a approximately 6 m and weight less than 25 kg are usually UAV. In the main section, more than 50 free programs for the considered in this category.
    [Show full text]
  • Codesaturne Practical User's Guide
    EDF R&D Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group 6, quai Watier F-78401 Chatou Cedex Tel: 33 1 30 87 75 40 Fax: 33 1 30 87 79 16 MARCH 2013 Code Saturne documentation Code Saturne version 2.0.7 practical user's guide contact: [email protected] http://www.code-saturne.org/ c EDF 2013 Code Saturne EDF R&D Code Saturne version 2.0.7 practical user's documentation guide Page 2/185 ABSTRACT Code Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym- metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred to as \specific physics", for the treatment of lagrangian particle tracking, semi-transparent radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs) and compressible flows. The code also includes an engineering module, Matisse, for the simulation of nuclear waste surface storage. Code Saturne relies on a finite volume discretisation and allows the use of various mesh types which may be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging nodes). The present document is a practical user's guide for Code Saturne version 2.0.7. It is the result of the joint effort of all the members in the development team.
    [Show full text]
  • Codesaturne Installation Guide
    EDF R&D Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group 6, quai Watier F-78401 Chatou Cedex Tel: 33 1 30 87 75 40 Fax: 33 1 30 87 79 16 SEPTEMBER 2019 Code Saturne documentation Code Saturne version 6.0.0 installation guide contact: [email protected] http://code-saturne.org/ c EDF 2019 Code Saturne EDF R&D Code Saturne version 6.0.0 installation guide documentation Page 1/21 Code Saturne EDF R&D Code Saturne version 6.0.0 installation guide documentation Page 2/21 TABLE OF CONTENTS 1 Code Saturne Automated or manual installation.................. 3 2 Installation basics................................... 3 3 Compilers and interpreters.............................. 3 4 Loading an environment............................... 4 5 Third-Party libraries................................. 4 5.1 Installing third-party libraries for Code Saturne ................ 4 5.2 List of third-party libraries usable by Code Saturne .............. 5 5.3 Notes on some third-party tools and libraries................. 7 5.3.1 Python and PyQt............................... 7 5.3.2 Scotch and PT-Scotch............................ 7 5.3.3 MED....................................... 8 5.3.4 libCCMIO.................................... 8 5.3.5 freesteam.................................... 9 5.3.6 CoolProp.................................... 9 5.3.7 Paraview or Catalyst............................ 10 6 Preparing for build.................................. 11 6.1 Source trees obtained through a source code repository.......... 11 7 Configuration...................................... 11 7.1 Debug builds...................................... 12 7.2 Shared or static builds............................... 12 7.3 Relocatable builds.................................. 12 7.4 Compiler flags and environment variables................... 13 7.5 MPI compiler wrappers............................... 13 7.6 Environment Modules................................ 13 7.7 Remarks for very large meshes.........................
    [Show full text]
  • CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems
    1 Introduction to CFD modelling of source terms and local-scale atmospheric dispersion (Part 2 of 2) Atmospheric Dispersion Modelling Liaison Committee (ADMLC) meeting 15 May 2018 Simon Gant, Fluid Dynamics Team © Crown Copyright, HSE 2018 2 Outline . Concepts: domain, grid, boundary conditions, finite-volume method . Turbulence Modelling Part 1 – Reynolds-Averaged Navier Stokes (RANS): steady and unsteady – Large Eddy Simulation (LES) . Atmospheric boundary layers . CFD Software Part 2 . Case studies – Source terms: flashing jets, overfilling tanks – Local-scale atmospheric dispersion: Jack Rabbit II © Crown Copyright, HSE 2018 3 Turbulence Modelling (just to recap) What is Steady/Unsteady RANS and LES? © Crown Copyright, HSE 2018 4 Turbulence Modelling (just to recap) What is Steady/Unsteady RANS and LES? Next slides focus on modelling atmospheric boundary layers with RANS © Crown Copyright, HSE 2018 5 Modelling Atmospheric Boundary Layers Task: to model air flow over flat, open terrain Boundary layer “Slip” conditions, prescribed shear-stress or profiles specified prescribed wind speed on the top boundary Constant pressure on inlet boundary conditions applied on for velocity, outflow boundary temperature (needs to account for and density variation with turbulence Height height if air is treated as parameters an ideal gas or temperature variations are modelled) Wind speed A few km Air velocity set to zero on the ground boundary: wall functions © Crown Copyright, HSE 2018 6 Modelling Atmospheric Boundary Layers Problem: Atmospheric boundary layer profiles change along the domain Height Height Wind speed Wind speed A few km © Crown Copyright, HSE 2018 7 Modelling Atmospheric Boundary Layers Cause: . Standard k-ε turbulence model tuned to produced reasonable predictions in range of engineering flows (e.g.
    [Show full text]
  • Open Source Tools for Programming Open
    Open Source Software (List compiled by Mr. S. Baskar, CEO, LinuXpert Systems, Chennai) OPEN SOURCE TOOLS FOR PROGRAMMING * Git - Version Control System * Eclipse - C/C++/Java/PHP IDE * IntelliJ - Platform Developer Tools * NetBeans - C/C++/Java/HTML5 IDE * .NET Core - A Free Cross Platform * Ruby on Rails - For Web Applications * Node.js® - JavaScript Runtime * Bootstrap - Toolkit for HTML, CSS & JS * TensorFlow - Machine Learning Lib * Ansible - Automation for Everyone OPEN SOURCE TOOLS FOR SECURITY * Nmap - Free Security Scanner * OpenVAS - Vulnerability Scanner * Metasploit - Penetration Testing * Wireshark Network Protocol Analyser * Snort - Network Intrusion Detection * OSSEC - Intrusion Detection System * Kali - Advanced Penetration Testing * Nikto2 - Web Server Scanner * Nessus - Vulnerability Assessment * John the Ripper Password Cracker OPEN SOURCE TOOLS FOR EMBEDDED SYSTEMS * Yocto Project - Make Embedded Linux * FreeRTOS™ - X Platform RTOS Kernel * GNU Embedded Toolchain for ARM * uClibc - C library for Embedded Linux Page 1 Open Source Software (List compiled by Mr. S. Baskar, CEO, LinuXpert Systems, Chennai) * BusyBox - For use in Embedded Linux * Buildroot - Embedded Linux Easy now * STM32CubeIDE - Multi-OS Dev Tool * PSoC® Creator™ - PSoC Design IDE * OpenEmbedded - Frmwork for e-Linux * ARM Mbed OS for Internet of Things OPEN SOURCE DATABASES * MySQL Relational Database * PostgreSQL Relational Database * MariaDB Relational Database * SQLite Embedded Database * Apache Cassandra Database * Timescale Database for IoT * Neo4J - Leader in Graph Databases * MongoDB Non-Relational Database * CouchDB - from Big Data to Mobile * RethinkDB for the Realtime Web * CockroachDB - Ultra-resilient SQL OPEN SOURCE TOOLS FOR MODELLING (1) * StarUML3 - Agile & Concise Modelling * ArgoUML - UML Modelling Tool * BOUML - Free UML 2 Toolbox * Eclipse UML Generators * Dia - Draw Structured Diagrams * GenMyModel - Online Modeling * Umbrello - The UML Modeller * Papyrus - Modeling Environment Page 2 Open Source Software (List compiled by Mr.
    [Show full text]