Wind Power Suitability in Worcester, M Assachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Wind Power Suitability in Worcester, M Assachusetts Project Number: IQP JRK-WND1 Wind Power Suitability in Worcester, M assachusetts An Interactive Qualifying Project Report: submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Christopher Kalisz chkalisz@ wpi.edu ______________________________ Calixte M onast cmonast@ wpi.edu ______________________________ M ichael Santoro santron@ wpi.edu ______________________________ Benjamin Trow btrow@ wpi.edu Date: March 14, 2005 Faculty Advisors: _________________________ Professor Scott Jiusto _________________________ Professor Robert Krueger ABSTRACT The goal of this project was to identify criteria needed to determine the suitability of potential wind turbine sites in Worcester, Massachusetts. The report first discusses physical, environmental, economic, and social factors that affect the suitability of potential wind power sites. We then completed a case study for a site in downtown Worcester, directly applying the criteria. Our hope is the project will raise local awareness of renewable energy and illustrate the practicality of a clean energy project. - 1 - TABLE OF CONTENTS ABSTRACT............................................................................................................................... 1 TABLE OF CONTENTS............................................................................................................ 2 TABLE OF FIGURES................................................................................................................ 3 TABLE OF TABLES ................................................................................................................. 3 CHAPTER 1: INTRODUCTION ............................................................................................... 4 Wind Power in Perspective..................................................................................................... 6 The Opportunity..................................................................................................................... 7 The Vision ............................................................................................................................11 CHAPTER 2: SUITABILITY CRITERIA.................................................................................12 Physical Characteristics.........................................................................................................12 Technical Considerations ......................................................................................................15 Regulations ...........................................................................................................................18 Economics and Financing......................................................................................................24 Societal Concerns..................................................................................................................32 Conclusion............................................................................................................................36 CHAPTER 3: CASE STUDY IN WORCESTER, MA...............................................................39 The Opportunity....................................................................................................................40 Introduction ..........................................................................................................................41 Suitability Analysis ...............................................................................................................42 Turbine Analysis ...................................................................................................................59 Final Turbine Analysis ..........................................................................................................62 APPENDIX A: ALTERNATE WIND POWER SITE DESCRIPTIONS....................................66 Princeton, Massachusetts.......................................................................................................66 Altamont Pass, California......................................................................................................67 Cape Wind ............................................................................................................................68 Top of Iowa Wind Farm........................................................................................................69 Cornwall, England.................................................................................................................70 Hull, Massachusetts...............................................................................................................71 Searsburg, VT .......................................................................................................................72 Comparison Analysis ............................................................................................................75 APPENDIX B: TABLES OF REGULATIONS .........................................................................77 APPENDIX C: PERMITTING FLOWSHEET ..........................................................................78 APPENDIX D: AERODYNAMIC NOISE ................................................................................79 APPENDIX E: TECHNOLOGICAL PRIMER..........................................................................80 APPENDIX F: INTEREST LETTER ........................................................................................82 APPENDIX G: USEFUL RESOURCES ...................................................................................83 APPENDIX H: BIBLIOGRAPHY ............................................................................................85 General .................................................................................................................................85 Environmental.......................................................................................................................86 Economics ............................................................................................................................87 Regulatory ............................................................................................................................88 Case Studies..........................................................................................................................89 Electrical...............................................................................................................................89 Miscellaneous .......................................................................................................................90 FIGURE REFERENCES...........................................................................................................91 - 2 - TABLE OF FIGURES Figure 1: Local Wind Class Regions. .............................................................................................................13 Figure 2: Horizontal Axis Wind Turbines: Upwind and Downwind, respectively .................................17 Figure 3: Vertical Axis Wind Turbines: Giromill, Savonius, and Darrieus, respectively........................17 Figure 4: Wind Farm Capital Cost Breakdown.............................................................................................25 Figure 5: Comparison of Decibel Levels From a Hypothetical Wind Turbine.......................................32 Figure 6: New England wind velocity and Worcester Area wind velocity ...............................................43 Figure 7: Wind Regions of Massachusetts, Connecticut, and Rhode Island............................................44 Figure 8: Initial Return on Investment...........................................................................................................60 Figure 9: Power Output For Different Wind Speeds ..................................................................................61 Figure 10: ROI for Air-X 24V.........................................................................................................................63 Figure 11: ROI for Lakota 900........................................................................................................................64 Figure 12: Princeton Wind Farm.....................................................................................................................66 Figure 13: Altamont Pass Wind Farm ............................................................................................................67 Figure 14: Cape Wind Project Site ..................................................................................................................68 Figure 15: Top of Iowa Wind Farm................................................................................................................69 Figure 16: Cornwall, England Wind Turbines ..............................................................................................70 Figure 17: Wind Turbine at Hull, Massachusetts..........................................................................................71 Figure 18: Map of Hull, Massachusetts ..........................................................................................................72 Figure 19: Searsburg, Vermont Turbines.......................................................................................................73
Recommended publications
  • Analyzing the Energy Industry in United States
    +44 20 8123 2220 [email protected] Analyzing the Energy Industry in United States https://marketpublishers.com/r/AC4983D1366EN.html Date: June 2012 Pages: 700 Price: US$ 450.00 (Single User License) ID: AC4983D1366EN Abstracts The global energy industry has explored many options to meet the growing energy needs of industrialized economies wherein production demands are to be met with supply of power from varied energy resources worldwide. There has been a clearer realization of the finite nature of oil resources and the ever higher pushing demand for energy. The world has yet to stabilize on the complex geopolitical undercurrents which influence the oil and gas production as well as supply strategies globally. Aruvian's R'search’s report – Analyzing the Energy Industry in United States - analyzes the scope of American energy production from varied traditional sources as well as the developing renewable energy sources. In view of understanding energy transactions, the report also studies the revenue returns for investors in various energy channels which manifest themselves in American energy demand and supply dynamics. In depth view has been provided in this report of US oil, electricity, natural gas, nuclear power, coal, wind, and hydroelectric sectors. The various geopolitical interests and intentions governing the exploitation, production, trade and supply of these resources for energy production has also been analyzed by this report in a non-partisan manner. The report starts with a descriptive base analysis of the characteristics of the global energy industry in terms of economic quantity of demand. The drivers of demand and the traditional resources which are used to fulfill this demand are explained along with the emerging mandate of nuclear energy.
    [Show full text]
  • Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Steve Goodman
    Hastings Environmental Law Journal Volume 18 Article 4 Number 2 Summer 2012 1-1-2012 Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Steve Goodman Follow this and additional works at: https://repository.uchastings.edu/ hastings_environmental_law_journal Part of the Environmental Law Commons Recommended Citation Steve Goodman, Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid?, 18 Hastings West Northwest J. of Envtl. L. & Pol'y 323 (2012) Available at: https://repository.uchastings.edu/hastings_environmental_law_journal/vol18/iss2/4 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Environmental Law Journal by an authorized editor of UC Hastings Scholarship Repository. For more information, please contact [email protected]. Wind Energy Development: Can Wind Power Overcome Substantial Hurdles to Reach the Grid? Veery Maxwell* I. INTRODUCTION II. THE CURRENT REGULATORY ENVIRONMENT III. AREAS OF CONFLICT A. NIMBY B. Federal Agency Opposition C. Environmental Opposition D. Altamont Pass: Environmental Oppsotion as a Result of Sepcies Mortalitiy E. Cape Wind: NIMBY Combined with Environmental Concerns IV. INTERNATIONAL ADOPTION OF WIND POWER A. Spain B. China V. THE FUTURE OF WIND POWER IN THE UNITED STATES A. Federal Renewable Portfolio Standard B. Long Term Financial Incentive Guarantees C. Cooperative Federalism for Regulatory Process D. Implement Successful Foreign Policies Domestically VI. CONCLUSION Abstract And energy has the potential to completely change the way the world receives electricity. The technology is both clean and green. Generating electricity from wind energy will enable utilities to purchase less power from conventional fossil fuel based sources.
    [Show full text]
  • Interim Financial Report, Second Quarter 2021
    Company announcement No. 16/2021 Interim Financial Report Second Quarter 2021 Vestas Wind Systems A/S Hedeager 42,8200 Aarhus N, Denmark Company Reg. No.: 10403782 Wind. It means the world to us.TM Contents Summary ........................................................................................................................................ 3 Financial and operational key figures ......................................................................................... 4 Sustainability key figures ............................................................................................................. 5 Group financial performance ....................................................................................................... 6 Power Solutions ............................................................................................................................ 9 Service ......................................................................................................................................... 12 Sustainability ............................................................................................................................... 13 Strategy and financial and capital structure targets ................................................................ 14 Outlook 2021 ................................................................................................................................ 17 Consolidated financial statements 1 January - 30 June .........................................................
    [Show full text]
  • Wind Farm Bat Fatalities in Southern Brazil: Temporal Patterns and Influence of Environmental Factors
    Published by Associazione Teriologica Italiana Volume 31 (1): 40–47, 2020 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00256-2019 Research Article Wind farm bat fatalities in southern Brazil: temporal patterns and influence of environmental factors Izidoro Sarmento do Amaral1,2, Maria João Ramos Pereira3, Aurelea Mader2, Marlon R Ferraz1, Jessica Bandeira Pereira1,2, Larissa Rosa de Oliveira1,4,∗ 1Universidade Vale do Rio dos Sinos 2Ardea Consultoria Ambiental, R. Botafogo, 1287, sala 202, Porto Alegre, RS, Brazil, 90150-053 3Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Agronomia, Porto Alegre, RS, Brazil, 91501-970 4Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul Keywords: Abstract environmental monitoring mitigation Energy demand created by the present model of economic growth has transformed the natural land- wind turbines scape. Changes in megadiverse environments should be accompanied by studies that describe and bioacoustics predict the effects of these changes on ecosystems, underpinning the avoidance or at least the re- scavenger removal duction of impacts and species conservation. Wind farm impacts on bats are scarcely known in Tadarida brasiliensis Brazil. To fulfill this gap on spatiotemporal patterns in bat fatalities in a wind complex in southern Brazil were analysed. Monthly surveys were done around 129 wind towers in search for bat car- Article history: casses between 2014 and 2018. The number of specimens found per species was analysed in annual Received: 06/11/2019 sets and also seasonally to understand the influence of land use in the spatial pattern of bat fatalit- Accepted: 21/04/2020 ies.
    [Show full text]
  • Wind Energy the Competitive Choice
    IN FOCUS Canada Offshore WIND ENERGY THE COMPETITIVE CHOICE PROFILE Hydrogenics SEPTEMBER 2019 windsystemsmag.com The Leader in the field of Friction and Drag Reduction DSX Extra • Reduces wear while delivering faster reaction, cooler running and more power. • Provides shielded protection against wear, corrosion, carbonization and oxidation. DSX Defender II • Supports universal viscosity with all synthetic and • Repels debris, salt, mildew, tar conventional petroleum oils and and insects greases. • Provides ultraviolet screen • Embeds permanently in the metal surface asperities without Long-lasting protection • changing tolerances of bearings, DSX Defender II provides rings or pistons. a measurable reduction in • Contains no hazardous aerodynamic and hydrodynamic hydrocarbons or drag. chlorofluorocarbons (cfc’s). • Environmentally safe to DSX Defender III handle, ship, store and Includes a higher level of dispose of. fluoropolymers for greater protection and longer life. Recommended for the leading DSX Products are based on embedded particle edge of turbine blades and other technology. All DSX Products modify friction. critical areas. Basically, the fluoropolymer particles fill the voids in the surface of the materials creating a better fit and finish. +1-904-744-3400 www.dsxproducts.com CONTENTS 12 PROFILE IN FOCUS Hydrogenics, a leading producer of water electrolyzers and hydrogen fuel cells, has taken its innovative technology to the WIND ENERGY: next level. 22 THE COMPETITIVE CHOICE Affordable, flexible, and clean, wind energy is key to a modernized grid in Canada. OFFSHORE WIND’S WESTWARD EXPANSION As offshore wind eyes the West Coast, project sponsors will need to carefully consider issues that will develop. 16 OFFSHORE WIND IS READY FOR ITS AMERICAN MOMENT CONVERSATION The offshore oil and gas supply chain stands Laura Smith Morton, AWEA’s senior director, Policy & Regulatory Affairs, to benefit in a big way from the coming Offshore Wind, says the U.S.
    [Show full text]
  • Gwec-2006 Final 01.Pdf
    TABLE OF CONTENTS Foreword. 1 Introduction: Booming wind markets put temporary strain on supply chains. 2 Global summary: The Status of the Global Wind Energy Markets . 7 Market forecast for 2007-2010. 12 COUNTRY REPORTS Europe . .16 European Union . 16 Germany. 20 Italy . 22 Poland. 24 Spain . 26 United Kingdom . 28 Americas . .30 United States . 30 Canada. 32 Brazil . 34 Mexico . 36 Asia . .38 India. 38 China. 40 Japan . 42 Korea. 44 Pacifi c. .46 Australia . 46 Africa. .48 Egypt. 48 Iran. 50 Morroco. 52 Conclusions: The need for solid political frameworks. 54 About GWEC . 56 Foreword 2006 was another booming year for the wind industry, The Global Wind Report 2006 is the second annual report with growth in annual installed capacity of 32 % globally, by GWEC on the status of global wind energy markets, and well ahead of our own projections. The market continued it clearly shows that wind energy today is a global business, to broaden, further establishing wind power as the leading with installations in over 70 countries. renewable energy technology – in the vanguard of the 21st century energy industry transformation. Globally, the value While Europe continues to lead the way, with 65 % of the of new generating plant installed in 2006 reached global market, the United States was the leader in new €18 billion, or US$24 billion. installed capacity for the second year running, bringing about 2,500 MW capacity of new plant on line in 2006. Against the backdrop of a growing acknowledgement of the twin crises of global climate change and energy security, The Asian market is also growing at a breathtaking rate, by wind power is the most effective means available now to 53 % in 2006.
    [Show full text]
  • GWEC – Global Wind Report | Annual Market Update 2014
    GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2014 Navigating the global wind power market The Global Wind Energy Council is the international trade association for the wind power industry – communicating the benefits of wind power to national governments, policy makers and international institutions. GWEC provides authoritative research and analysis on the wind power industry in more than 80 countries around the world. Keep up to date with the most recent market insights: Global Wind Statistics 2014 February 2015 Global Wind Report 2014 March 2015 Global Wind Energy Outlook 2014 October 2014 Offshore Wind Policy and Market Assessment – A Global Outlook February 2015 Our mission is to ensure that wind power establishes itself as the answer to today‘s energy challenges, providing substantial venvironmental and economic benefits. GWEC represents the industry with or at the UNFCCC, the IEA, international financial institutions, the IPCC and IRENA. GWEC – opening up the frontiers follow us on TABLE OF CONTENTS Foreword. 4 Making the Commitment to Renewable Energy. 5 Global Status of Wind Power in 2014 . 6 Market Forecast for 2015 – 2019. 16 Green bonds offer exciting opportunities for the wind sector . .22 Emerging Africa . .26 Australia . .30 Brazil . 32 Canada. .34 Chile . .36 PR China . .38 Denmark . .42 The European Union . .44 France . .46 Germany. .48 Global offshore . 52 India . .58 Italy . .60 Japan . .62 Mexico . .64 Poland . .66 South Africa . .68 Sweden . 70 Turkey . 72 United Kingdom. 74 United States . 76 About GWEC . 78 GWEC – Global Wind 2014 Report 3 FOREWORD 014 was a great year for the wind industry, setting a The two big stories in 2014 and going forward continue 2new record of more than 51 GW installed in a single to be the precipitous drop in the price of oil, and growing year, bringing the global total close to 370 GW.
    [Show full text]
  • 1 Repowering 1. Introduction 2. Wind
    Repowering By John Benson March 2019 1. Introduction If your utility had a combined-cycle (CC) plant built 20 years ago, it is still reasonably close to state-of-the-art. However, this not the case with either wind or PV. These technologies are advancing quickly enough to where a 20 year old wind turbine or PV array is really an antique. I know, having lived next to the Altamont Pass, one of the largest wind resource areas in the world for over 30 years. The first wind farm was built there in 1981. By 1985 there were over 25 wind farms, and by the mid-90s there were over 5,000 turbines in the pass. In 2015 NextEra Energy Resources (primary developer in the Altamont) started repowering their projects in the Altamont. Whereas many of the old turbines in the Altamont were in the 100 kW range, these were being replaced with 2 MW turbines at a ratio of one new turbine replacing at approximately 30 old turbines. Photovoltaics (PVs) have also made major improvements in technology in the last 20 years, and repowering older projects is also often justified. Read on to understand how repowering older PV and Wind projects are rapidly becoming some of the largest segments in the renewable marketplace. 2. Wind Repowering a wind farm can either involve completely replacing the turbines (as with the Altamont project described above, called "fully repowering"), or replacing parts of the turbines ("partially repowering"). One popular retrofit in the latter case is replacing the rotors and blades. Retrofits are used to add value to relatively young turbines.
    [Show full text]
  • Usa Wind Energy Resources
    USA WIND ENERGY RESOURCES © M. Ragheb 2/7/2021 “An acre of windy prairie could produce between $4,000 and $10,000 worth of electricity per year.” Dennis Hayes INTRODUCTION Wind power accounted for 6 percent of the USA’s total electricity generation capacity, compared with 19 percent for Nuclear Power generation. A record 13.2 GWs of rated wind capacity were installed in 2012 including 5.5 GWs in December 2012, the most ever for a single month. The total rated wind capacity stands at about 60 GWs. Utilities are buying wind power because they want to, not because they have to, to benefit from the Production Tax Credit PTC incentive. The credit has been extended for a year to cover wind farms that start construction in 2013. Previously it only covered projects that started working by the expiration date. Asset financing for USA wind farms was $4.3 billion in the second-half compared with $9.6 billion in the first six months of 2012. Component makers are the General Electric Company (GE), Siemens AG, Vestas AS, Gamesa Corp Tecnologica SA and Clipper Windpower Ltd., which is owned by Platinum Equity LLC. Equipment prices for wind have dropped by more than 21 percent since 2010, and the performance of turbines has risen. This has resulted in a 21 percent decrease in the overall cost of electricity from wind for a typical USA project since 2010. From 2006 to 2012 USA domestic manufacturing facilities for wind turbine components has grown 12 times to more than 400 facilities in 43 states.
    [Show full text]
  • Wind Power a Victim of Policy and Politics
    NNoottee ddee ll’’IIffrrii Wind Power A Victim of Policy and Politics ______________________________________________________________________ Maïté Jauréguy-Naudin October 2010 . Gouvernance européenne et géopolitique de l’énergie The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-86592-780-7 © All rights reserved, Ifri, 2010 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THERESE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUXELLES – BELGIQUE Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: Ifri.org Executive Summary In December 2008, as part of the fight against climate change, the European Union adopted the Energy and Climate package that endorsed three objectives toward 2020: a 20% increase in energy efficiency, a 20% reduction in GHG emissions (compared to 1990), and a 20% share of renewables in final energy consumption.
    [Show full text]
  • Sgs Reference Projects Wind Power Industry
    WIND TURBINE MANUFACTURERS SGS REFERENCE PROJECTS WIND POWER INDUSTRY CLIENT PROJECT SCOPE OF SERVICE FOCUS EXECUTION YEAR COUNTRY Sany Group Manufacturing Supervision Towers China 2011 QA/QC Fuhrländer AG Loading and Unloading Germany 2009 Supervision, Visual Inspection NN Technical Due Diligence, Turbine Onshore Wind Turbines Korea 2009 Inspection, Wind Turbine Blade 750 kW and 2 MW Inspection, Vibration Measurement of Drive Train, Video-Endoscope Inspection of Gearbox, Thermography Inspection of Electrical Components and Oil Analysis Pioneer Wincon Various Manufacturing Supervision, Nacelle Components India 2009 Quality Audit / Approval of Manufacturers Siemens Loading and Unloading Onshore Wind Turbines Denmark 2009 Windpower Supervision, QA/QC Management and Inspection SGS IS THE WORLD’S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY. © SGS Group Management SA – 2013 – All rights reserved – SGS is a registered trademark of SGS Group Management SA WWW.SGS.COM WIND TURBINE MANUFACTURERS SGS REFERENCE PROJECTS WIND POWER INDUSTRY CLIENT PROJECT SCOPE OF SERVICE FOCUS EXECUTION YEAR COUNTRY Vestas Wind Lac Tukana Wind Regulatory Compliance Project Consultancy Kenya 2009 Systems Farm Saint Nikola Wind HSE Management and Project Consultancy Bulgaria 2009 Farm Project Supervision, Construction Supervision Various Legal Requirement Due Project Consultancy Bulgaria, 2009 Diligence Russia, Romania Gamesa Manufacturing Inspection Shafts and Flanges Korea 2008 NN Blade Inspection and NDT Wind Turbine Blades Germany 2008 Repower Vendor Assessment/ Wind Turbine Towers Korea 2008 Technical Audit Repower Vendor Assessment/ Wind Turbine Blades China, India 2008 Technical Audit WinWinD Various Manufacturing Supervision and Towers India 2008 Power Energy Final Acceptance Inspection Private Limited Design Verification Foundations Germany 2008 SGS IS THE WORLD’S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.
    [Show full text]
  • Vaihdemarkkinoiden Uudet Kasvunlähteet
    Vaihdemarkkinoiden uudet kasvunlähteet Kari Romppanen Pro gradu -tutkielma Liiketoimintalähtöisen osaamisen maisterikoulutus Jyväskylän yliopisto, Fysiikan laitos 1.4.2014 Ohjaajat: Jussi Maunuksela (JYU) Jari Toikkanen (Moventas) Toni Krankkala (Moventas) 1 ESIPUHE Tein muutama vuosi sitten seminaariesitykseksi vaihteiden käyttöä vuorovesivoimaloissa tutkivan seminaarityön. Näin muutaman vuoden jälkeen kyseisiä vuorovesivoimalan vaihteita saattaa tulla nyt Moventaksen tuotantoon lähiaikoina. Tutkielmassa olen pystynyt soveltuvin osin hyödyntämään seminaarityön aikana kertynyttä aineistoa. Seminaarityötä tehdessä ja yliopistolla kurssien muodossa sain myös tietoa muista energiatekniikan aloista ja sovellutuksista. Lueskelin kirjoja, lehtiä ja muita julkaisuja kokoajan, myös muiden alojen mahdollisista vaihteistojen soveltuvuudesta Moventaksen tuotantoon eli taustatietoa aiheeseen oli jo kartoitettu aika paljon ennen työn tekemistä. Kun yliopiston puolesta kursseja oli tarpeeksi tehty ja pro gradu -työn tekeminen alkoi olla ajankohtaista Moventaksella alettiin tehdä uutta strategiaa. Kyselin yhtiön johdolta voisinko tehdä vuorovesivoimala vaihteiden tapaista esitystä ja tutkia mahdollisia, muita aloja mihin vaihteita voitaisiin toimittaa. Ajatukset olivat aikalailla samanlaisia alojen tutkimisen suhteen. Toivon, että työllä olisi merkitystä mahdolliseen Moventaksen tulevaan vaihde tuotantoon ja siitä saataisiin mahdollisesti uusia ideoita tai ajatuksia vaihteistojen tuottamiseen. Erityiskiitokseni annan Toikkasen Jarille, joka toimi valvoja
    [Show full text]