UDC 579.62 hps://doi.org/10.31548/ujvs2020.03.009 TOXIGENCE OF ANTHRAX VACCINE STRAINS

G. A. ZAVIRIYHA, Candidate of Agricultural Sciences hps://.org/0000-0002-46028477 "State Center for Innovave Biotechnology", Kyiv, Ukraine Е-mail: [email protected] U. N. YANENKO, Candidate of Veterinary Sciences hps://orcid.org/ 0000-0001-5678-3356 "State Center for Innovave Biotechnology", Kyiv, Ukraine Е-mail: [email protected], N. I. KOSYANCHUK, Candidate of Veterinary Sciences, Associate Professor Department of Veterinary Hygiene Named Aer Professor A. K. Skorokhodko hps://orcid.org/ 0000-0002- 3055-8107 Naonal University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Е-mail: [email protected]

Abstract. The arcle presents the results of the studying of anthrax strains and Bacillus anthracis-like strains on the formaon of toxins. We found that anthrax vaccine strains acvely produce exotoxins to the culture fluid. The amount of specific protein is different under the same incubaon condions and depends on the individual characteriscs of the microorganism populaon, because of this, different ters of the toxin are registered. Strain B. anthracis K-79 Z (vaccine) with the same number of planng microbial cells and growing on the same culture medium and at the same temperature produces by two orders of magnitude more exotoxin than strains B. anthracis Tsenkovsky II IBM 92Z (virulent), B. anthracis Stern 34F2, (vaccine), B. anthracis 55 (vaccine), B. anthracis SB (vaccine), B. anthracis Tsenkovsky I (vaccine, аpathogenic). The amount of exotoxin may change if the pH of the medium changes. The acvity of exotoxin producon, when the pH changes, depends on the characteriscs of the anthrax strain. Keywords: anthrax, exotoxin, exotoxin producon

Introduction forms spores. The infectious dose of the is only 1–10 spores. They fall Anthrax is a part of the most dan- victim to the blood of a sick animal or a gerous infectious diseases common to corpse. The pathogen forms spores that, humans and animals. This disease is once in the soil, can persist for more than common in all mammals, most often 100 years. After reaching a favourable among cattle (large and small) and hors- environment, the spores become active es. The causative agent is the gram-posi- in 1–6 days, some spores may intensify tive bacterium Bacillus anthracis, which after 60 days or more (Cizauskas et al.,

Vol. 11, № 3, 2020 Ukrainian Journal of Veterinary Sciences ISSN 2663-967X | 85 Г. А. Завірюха, У. М. Яненко, Н. І. Кос’янчук

2014; Hendricks et al., 2014; Shadomy gen causes 45–90 % of mortality even et al., 2016; Chugh, 2019). with timely treatment with antimicrobial For this reason, the area contaminat- drugs (Mourez, 2004). High mortality is ed with anthrax spores is a factor in the associated with the rapid development of transmission of the disease indefinitely. bacterial infection and the action of tri- During its stay in the soil, the an- partite toxin (Crowe et al., 2010). thrax pathogen periodically restores its Both field and vaccine strains of the population, thus maintaining the infec- anthrax pathogen have the ability to pro- tivity of the territory. To reproduce its duce toxins. B. anthracis has two main population and mass, B. anthracis in- virulence factors: poly-γ-D-glutamic fects animals or humans, and with their acid capsule and tripartite toxin (Mock corpses, it re-enters the soil and closes & Fouet, 2001). The capsule plays an the natural cycle of its . antiphagocytic role and allows bacte- Humans can become infected by an- ria to avoid absorption by macrophages thrax via respiratory system (inhalation), (Zwartouw & Smith, 1956). The tripar- gastrointestinal tract, and through the skin tite toxin contains protective antigen, le- (this is the most common form and 95% thal factor, and oedema factor (Stanley manifests as a malignant pustule). The in- et al., 1960: Stanley et al., 1961). These haled form of anthrax is the most severe, toxins act on the innate and adaptive im- as it often causes septicemia and menin- mune system and affect the subsequent gitis with high mortality and the highest consequences of the disease (Tourni- risk of man-made spread. The gastrointes- er et al., 2009; Moayeri et al., 2015). tinal form of anthrax occurs when con- Field and vaccine strains clearly differ suming meat and meat products of poor in the lethality and the amount of tox- quality (Glomski et al., 2007; Hashemi et in production. Field strains produce lit- al., 2015; Owen et al., 2015; Vieira et al., tle toxin during in vitro cultivation, but 2017; Mwakapeje et al., 2018). they are more aggressive (predominate Between 2,000 and 100,000 cas- lethal and oedematous fractions). Vac- es of anthrax are reported worldwide cine strains produce more toxin, which each year. This disease remains a major is dominated by a protective fraction. health threat in Africa, the Middle East, All anthrax vaccines develop anti- South America, Central Asia, and Haiti toxic immunity in a vaccinated animal, (Doğanay & Eşel, 2008; Abboud et al., but the ability of anthrax microbes to 2009; Liu et al., 2020). Anthrax spores produce an exotoxin is not the same. The can be used as a target for bioterrorism. stress and duration of immunity (immune In 2001, spores of the pathogen were protection of vaccinated animals) depend mailed to exceptional individuals in the on this property, so studies of the toxige- United States, which caused 22 cases nicity of anthrax strains are relevant. of cutaneous, inhalation, and meninge- al anthrax and 5 deaths (Abrol, 2016; Analysis of recent sources Walsh et al., 2018). and publications Stability of spores for many years, un- pretentiousness to the conditions of cul- Exotoxins of the anthrax pathogen tivation leads to human disease or death as biotechnological objects are relevant – all this makes anthrax a primary patho- for many scientists in different countries gen of the NIAID category. The patho- (Friebe et al., 2016).

86 | ISSN 2663-967X Український часопис ветеринарних наук Vol. 11, № 3, 2020 Токсигенність вакцинних штамів сибірки

Studying the protective factor of Material and methods of research the antigen and the mechanism of for- mation have shown that the protective To conduct the experiment we took factor may be a new means for con- lyophilized museum cultures of anthrax trolling cytotoxicity (Kintzer et al., vaccine strains and Bacillus anthracis-like 2009) and studying the complex action strains: B. anthracis Tsenkovsky II IBM of exotoxins as toxic complexes (Lacy 92 Z (virulent), B. anthracis K-79 Z, et al., 2002). Studying the mechanism B. anthracis Sterne 34F2, B. An- of action of a protective exotoxin on a thracis 55, B. anthracis SB, B. anthracis cell against the background of the le- Tsenkovsky I, B. anthracoides 67, thal and oedematous toxin are relevant B. Subtilis 17, B. cereus 8035 (virulent), (Chaudhary et al., 2012; Slater et al., which are stored in collection of micro- 2013). The use of protective antigen organisms in the “State Center for Inno- of the anthrax pathogen as an inhibi- vative Biotechnology”. The methods for tor of breast cancer cell development studying vaccine strains described by has shown the prospects for the devel- S. G. Kolesov, generally accepted in mi- opment and application of new thera- crobiological practice, were used (1976). peutic approaches in the fight against The agglutination reaction and the tumours (Felix et al., 2020). concentration of the spore suspension Particular attention is paid to the for each strain were determined in colo- studying of the epizootic situation and ny forming units (CFU) by scientific and disease monitoring worldwide. Cre- methodological recommendations “Lab- ating a unified surveillance system, oratory diagnosis of anthrax in animals, strengthening cross-sectoral coordina- detection of from pathological tion on prevention and control, biolog- and biological material, raw materials ical and social strategies for anthrax of animal origin and environmental ob- prevention focuses scientists’ atten- jects” (Skrypnyk et al., 2015). Statistical tion on endemic regions (Sahoo et al., processing of the obtained research re- 2020). Improving anthrax vaccines for sults was performed using the program humans and animals is an important “Microsoft Excel 2011” for Windows. stage in preventing infection. We are The titer of microorganisms toxige- conducting research to find new ap- nicity in the causative agent of anthrax proaches to the use of antibiotics in the and Bacillus anthracis-like strains was schemes of anthrax vaccines. There is a determined using the disc precipitation question of disposable vaccine creation reaction (DPR) by the method improved (Clark & Wolfe, 2020). by A. I. Zaviryukha (Zaviryukha & Ste- The development of vaccines, which panyuk, 1978). Precipitated anthrax preserve natural antigenic structures serum RP № 3905-14-0403-08, man- that mimic natural infection, and the ufactured by Kherson State Biological studying of the effects of antibodies that Factory, was used for the study. neutralize toxins are an important re- Bacterial cells of vaccine strains search area (Dumas et al., 2020). and Bacillus anthracis-like strains were The purpose is to study the prop- grown on standard culture media: broth erties of toxins formation by anthrax and meat-peptone agar, and injection of pathogens and Bacillus anthracis-like 5 and 10 % gelatine at pH 7.2 – 7.6 and strains. a temperature of 37.0  1.0 0 C.

Vol. 11, № 3, 2020 Ukrainian Journal of Veterinary Sciences ISSN 2663-967X | 87 Г. А. Завірюха, У. М. Яненко, Н. І. Кос’янчук

From microbial colonies grown on agar, Results of the research smears were prepared and stained according and their discussion to Gram, Mikhin, Olt, Rebiger, Romanows- ky-Giemsa, the length and width of micro- Investigated extracellular anthrax bial cells were measured with a micrometre, toxins, which were obtained by the meth- and their shape and the presence of spores od mentioned above. The results of the were determined. The shape and physical examination by the reaction of Ascoli characteristics of the colony were studied. and the DPR are presented in Table 1. Antigens were prepared by autoclav- Our data indicate that the virulent ing from the microbial mass of each strain, strain B. anthracis Tsenkovsky IІ IBM which was investigated in the Ascoli reac- 92Z and the avirulent B. anthracis tion and in the DPR with anthrax serum K-79Z produce extracellular toxin out- for precipitation. We prepared antigens side the cell membrane in a liquid nu- from the culture fluid of vaccine strains, trient medium. The toxin reacts with which were filtered through a bacterial fil- antibodies of the precipitating anthrax ter and examined by the DPR and Ascoli. serum in the precipitation reaction. The control was antigens made from However, the amount of exotoxin in the bacterial mass and sterile filtrate of cul- culture fluid of virulent and avirulent ture fluids of anthracoid microorgan- strains is not the same. We noted the isms B. Anthracoides 67, B. Subtilis 17, ability to produce exotoxin at a titer of B. cereus 8035 (virulent). 1:32 in vaccine strains of anthrax.

1. The results of studying the sterile filtrates of culture fluids of microbes of the genus Bacillus, which were examined by the Ascoli reaction and the disk precipitation reaction Ascoli DPR dilution of culture fluid Strain n n 1:2 1:4 1:8 1:1 1:3 1:6 1:2 1:4 1:8 1:3 1:6 1:16 1:128 1:128 В. аnthracis ++++++++++++++++ К-79 Z В. anthracis Tsenkovsky IІ ++++----++++---- ІВМ-92 Z B. anthracis ++++++- -++++++- - Sterne 34F2 B. anthracis 55 + + ++++- -++++++- - B. anthracis SВ ++++++- -++++++- - B. anthracis +++++- - -+++++- - - Tsenkovsky I В. cereus 8035 ------B. anthracoides 67 ------B. subtilis 17 ------

Note: n – native fluid; + positive reaction; – negative reaction.

88 | ISSN 2663-967X Український часопис ветеринарних наук Vol. 11, № 3, 2020 Токсигенність вакцинних штамів сибірки

Saprophytic spore-forming bacilli of Colonies that grown on agar were B. anthracoides 67, B. subtilis 17, B. ce- seeded in a liquid nutrient medium – reus 8035, and B. subtilis 17 do not pro- meat broth with different pH values – 6.5; duce a specific toxin, and therefore their 8.5; 7.5. They were incubated in a ther- filtrates of culture fluids do not react by mostat for 48 hours at 370 C. Then we fil- precipitation with antibodies of precipi- tered the bacterial mass through bacterial tated anthrax serum. filters type F5. The received filtrates were We investigated the impact of pH on the checked according to DSTU 4483:2005. production of exotoxin by anthrax strains, We performed the DPR with culture which began with the production of bacte- fluid filtrates to determine the anthrax rial masses with an identical number of mi- protein titer. The results of the examina- crobial cells – 30.2–30.8 × 106 CFU. tion are presented in Table 2.

2. Effect of pH on exotoxin production by anthrax vaccine strains, М ± m, n = 10

Number of grown Exotoxin titer № Strain pH of the medium microbial cells, CFU in the DPR 6.5 8 В. аnthracis 7.5 64 1. 30.5 × 106 К-79 Z 8.5 32 M ± m 34.66 ± 16.22** 6.5 4 В. anthracis 7.5 8 2. Tsenkovsky 30.7 × 106 IІ IBM 92 Z 8.5 4 М ± m 5.33 ± 1.33** 6.5 8 B. anthracis 7.5 32 3. 30.2 × 106 Sterne 34F2 8.5 16 М ± m 18.66 ± 7.05** 6.5 8 B. anthracis 7.5 32 4. 30.8 × 106 55 8.5 16 М ± m 18.66 ± 7.05** 6.5 8 B. anthracis 7.5 32 5. 30.5 × 106 SB 8.5 16 М ± m 18.667 ± 7.05** 6.5 8 B. anthracis 7.5 16 6. 30.2 × 106 Tsenkovsky I 8.5 8 М ± m 10.66 ± 2.66** Note: * P < 0.05; ** P < 0.02; *** P < 0.01; **** P < 0.001.

Vol. 11, № 3, 2020 Ukrainian Journal of Veterinary Sciences ISSN 2663-967X | 89 Г. А. Завірюха, У. М. Яненко, Н. І. Кос’янчук

Indicators of Table 2 show that at differ- The Perspective: we plan to continue the ent pH of the medium, the amount of specif- studying of the toxigenic properties of an- ic protein in the strains increased differently thrax strains in order to obtain an exotoxin (1:8–1:64 – B anthracis K-79Z, 1:8–1:32 that will be used in the development of new – B. anthracis Sterne 34F2, B. аnthracis 55, drugs against anthrax in humans and animals. and B. anthracis SB, 1:8–1:16 – B. аnthracis Tsenkovsky I). At the same cultivation conditions, a high titer of specific anthrax References protein showed the exotoxin B. anthracis Abboud, N., De Jesus, M., Nakouzi, A., Cordero, K-79Z – 1:64 at pH 7.5. Strains B. anthracis R. J., Pujato, M., Fiser, A., ... & Casadevall, A. Sterne 34F2, B. anthracis 55, and B. an- (2009). Idenficaon of linear epitopes in thracis SB at pH 7.5 produced exotoxin at Bacillus anthracis protecve angen bound the same level, and it was 1:32. Also, in these by neutralizing anbodies. Journal of Bio- strains, the same amount of exotoxin was ob- logical Chemistry, 284(37):25077-25086. served when cultured in a medium at a pH of doi: 10.1074/jbc.M109.022061. 6.5, which was 1:8. When the pH was raised Abrol, S. (2016). Countering Bioterrorism to 8.5, the exotoxin purge of these strains Threat to India: employing global best was at 1:16. This indicates similar characteris- pracces and technology as force mul- tics of these vaccine strains and the effect of plier. India Quarterly, 72(2):146-162. pH on the production of exotoxin. doi: 10.1177/0974928416637934. Chaudhary, A., Hilton, M. B., & Seaman, S. Conclusions and future (2012). TEM8/ANTXR1 blockade inhibits perspectives of the study pathological angiogenesis and potenates tumoricidal responses against mulple Vaccine strains of anthrax actively cancer types. Cancer Cell, 21(2):212-216. produce exotoxins in the culture fluid. doi: 10.1016/j.ccr.2012.01.004. The amount of specific protein under the Chugh, T. (2019). Bioterrorism: Clinical and same incubation conditions is different public health aspects of anthrax. Current and depends on the individual character- Medicine Research and Pracce, 9(3):110- istics of the microorganism populations. 111. doi: 10.1016/j.cmrp.2019.05.004. The B. anthracis K-79 Z strain with Cizauskas, C. A., Bellan, S. E., Turner, W. C., Vance, R. E., the same number of microbial cells and & Getz, W. M. (2014). Frequent and seasonally under cultivation in the same culture variable sublethal anthrax infecons are accom- medium and temperature conditions pro- panied by short-lived immunity in an endemic duces by two orders of magnitude more system. Journal of Animal Ecology, 83(5):1078- exotoxin than B. anthracis Tsenkovsky 1090. doi: 10.1111/1365-2656.12207. IІ IBM 92Z, B. аnthracis Sterne 34F2, Clark, A., & Wolfe, D. N. (2020). Current State of B. anthracis 55, B. anthracis SB and Anthrax Vaccines and Key R&D Gaps Mov- B. anthracis Tsenkovsky I. ing Forward. Microorganisms. 8(5):651. Vaccine strains of anthrax, which we doi: 10.3390/microorganisms8050651. studied, produce exotoxin when the pH Crowe, S. R., Ash, L. L., & Engler, R. J. M. (2010). of the medium. Its amount varies de- Select human anthrax protecve angen pending on the pH of the medium. The epitope–specific anbodies provide pro- activity of exotoxin production when tecon from lethal toxin challenge. The the pH changes depends on the charac- Journal of Infecous Diseases, 202(2):251- teristics of the anthrax strain. 260. doi: 10.1086/653495.

90 | ISSN 2663-967X Український часопис ветеринарних наук Vol. 11, № 3, 2020 Токсигенність вакцинних штамів сибірки

Doğanay, M., & Eşel, D. (2008). Bacillus anthracis, Journal of biological chemistry, 277(4):3006- and other Bacillus species. In Topçu A. W., 3010. doi: 10.1074/jbc.M109997200. Söyler G., Doğanay M. (Ed.), Infecous Dis- Liu, Y., Li, Y., Wang, Q., Fu, J., & Ji, F. (2020). Sporadic eases and (3nd ed., pp. 2102- human cutaneous anthrax outbreak in Shaanxi 2114). İstanbul: Nobel Tıp Kitabevi. Province, China: report of two cases from Dumas, E. K., Demiraslan, H., & Ingram, R. J. 2018. Brazilian Journal of Infecous Diseases, (2020). Toxin–neutralizing anbodies elicit- 24(1), 81-84. doi: 10.1016/j.bjid.2019.12.002. ed by naturally acquired cutaneous anthrax Moayeri, M., Leppla, S. H., Vrentas, C., Pomer- are elevated following severe disease and antsev, A. P., & Liu, S. (2015). Anthrax appear to target conformaonal epitopes. pathogenesis. Annual review of microbiol- PLoS ONE, 15(4):1-17. doi: 10.1371/journal. ogy, 69:185-208. Retrieved from hps:// pone.0230782. pubmed.ncbi.nlm.nih.gov/26195305. Felix, I., Lomada, S. K., Barth, H., & Wieland, Mock, M., & Fouet, A. (2001). Anthrax. Annu- T. (2020). Bacillus anthracis’ PA63 Delivers al Reviews in Microbiology, 55:647-671. the Tumor Metastasis Suppressor Protein doi: 10.1146/annurev.micro.55.1.647. NDPK-A/NME1 into Breast Cancer Cells. In- Mourez, M. (2004). Anthrax toxins. Reviews of ternaonal Journal of Molecular Sciences, Physiology, and Pharmacology, 21(9):3295. doi: 10.3390/ijms21093295. 152:135-164. doi: 10.1007/s10254-004-0028-2 Friebe S., Gisou van der Goot F., & Bürgi J. (2016). Mwakapeje, E. R., Høgset, S., Fyumagwa, R., The ins and outs of anthrax toxin. Toxins, Nonga, H. E., Mdegela, R. H., & Skjerve, 8(3):69. doi: 10.3390/toxins8030069. E. (2018). Anthrax outbreaks in the hu- Glomski, I. J., Piris-Gimenez, A., Huerre, M., Mock, mans-livestock and wildlife interface areas M., & Goossens, P. L. (2007). Primary involve- of Northern Tanzania: a retrospecve re- ment of pharynx and Peyer’s patch in inha- cord review 2006–2016. BMC Public Health, laonal and intesnal anthrax. PLoS Pathog, 18(1):106. doi: 10.1186/s12889-017-5007-z. 3(6), e76. doi: 10.1371/journal.ppat.0030076. Owen, J. L., Yang, T., & Mohamadzadeh, M. (2015). Hashemi, S. A., Azimian, A., Nojumi, S., Garivani, New insights into gastrointesnal anthrax infec- T., Safamanesh, S., & Ghafouri, M. (2015). on. Trends in molecular medicine, 21(3):154- A Case of Fatal Gastrointesnal Anthrax in 163. doi: 10.1016/j.molmed.2014.12.003 North Eastern . Case Reports in Infecous Sahoo, K. C., Negi, S., Barla, D., Badaik, G., Sa- Diseases, 1-2. doi: 10.1155/2015/875829. hoo, S., Bal, M. ... Bhaacharya, D. (2020). Hendricks, K. A., Wright, M. E., Shadomy, The Landscape of Anthrax Prevenon and S. V., Bradley, J. S., Morrow, M. G., Pavia, A. T. Control: Stakeholders’ Percepve in Odi- & Pesik, N. (2014). Centers for disease con- sha, India. Internaonal Journal of Envi- trol and prevenon expert panel meengs ronmental Research and Public Health, on prevenon and treatment of anthrax 17(9):3094. doi:10.3390/ijerph17093094. in adults. Emerging infecous diseases, Shadomy, S., El Idrissi, A., & Raizman E. (2016). 20(2). doi: 10.3201/eid2002.130687 Anthrax outbreaks: a warning for improved Kintzer, A. F., Thoren, K. L, & Sterling, H. J. (2009). prevenon, control and heightened aware- The protecve angen component of anthrax ness. Empres watch, 37(8). Retrieved from toxin forms funconal octameric complexes. hp://www.fao.org/3/a-i6124e.pdf. Journal of , 392(3):614-629. Skrypnyk, V. H. Rublenko, I. O. Harkavenko, T. doi: 10.1016/j.jmb.2009.07.037Get. O., Holovko, A. M., Zahrebelnyi V. O., & Lacy, D. B., Mourez, M., & Fouassier, A. (2002). Ushkalov, V. O. (2015). Laboratorna diahno- Mapping the anthrax protecve angen styka sybirky tvaryn, indykatsiia zbudnyka z bindings site on the lethal and edema factors. patolohichnoho ta biolohichnoho materi-

Vol. 11, № 3, 2020 Ukrainian Journal of Veterinary Sciences ISSN 2663-967X | 91 Г. А. Завірюха, У. М. Яненко, Н. І. Кос’янчук

alu, syrovyny tvarynnoho pokhodzhennia mantle the host immune defenses. Molec- ta obiekv navkolyshnoho seredovyshcha: ular aspects of medicine, 30(6):456-466. metodychni rekomendatsii [Laboratory di- doi: 10.1016/j.mam.2009.06.002. agnosis of anthrax, indicaon of the patho- Vieira, A. R., Salzer, J. S., Traxler, R. M., Hen- gen from pathological and biological ma- dricks, K. A., Kadzik, M. E., Marston, C. K. ... terial, raw materials of animal origin and Walke, H. T. (2017). Enhancing surveillance environmental objects: methodological and diagnoscs in anthrax-endemic coun- recommendaons]. Kyiv. (in Ukraine) tries. Emerging infecous diseases, 23(Sup- Slater, L. H., He, E. C., Clatworthy, A. E., Mark, pl 1):S147. doi: 10.3201/eid2313.170431 K. G., & Hung, D. T. (2013). CCT chapero- Walsh, M. G., Siobhan, M., & Hossain, S. (2018). nin complex is required for efficient de- The wildlife–livestock interface modulates livery of anthrax toxin into the cytosol of anthrax suitability in India. BioRxiv, 419465. host cells. Proceedings of the Naonal doi: 0.1101/419465. Academy of Sciences, 110(24):9932-9937. Zaviryukha, A. I., & Stepanyuk, O. P. (1978). Differ- doi: 10.1073/pnas.1302257110. encialnaya diagnoska vozbuditelya sibirskoj Stanley, J. L., Sargeant, K., & Smith, H. (1960). Puri- yazvy ot lozhnosibireyazvennyh bacill: dos- ficaon of factors I and II of the anthrax toxin zheniya i perspekvy borby s sibirskoj yazvoj produced in vivo. Microbiology, 22:206-218. v SSSR. [Differenal diagnosis of the anthrax doi: 10.1099/00221287-22-1-206. pathogen from false anthrax bacilli: achieve- Stanley, J. L., Smith, H., & Sargeant, K. (1961). Pu- ments and prospects of anthrax control in the rificaon of factor I and recognion of a third USSR]. Moscow. 130-131. (in Russian). factor of the anthrax toxin. Microbiology, Zwartouw, H. T., & Smith, H. (1956). Polyglu- 26(1):49-66. doi: 10.1099/00221287-26-1-49. tamic acid from Bacillus anthracis grown Tournier, J. N., Paccani, S. R., Quesnel-Hell- in vivo: structure and aggressin acvi- mann, A., & Baldari, C. T. (2009). Anthrax ty. Biochemical Journal, 63(3):437-442. toxins: a weapon to systemacally dis- doi: 10.1042/bj0630437. Russian).

Г. А. Завірюха, У. М. Яненко, Н. І. Кос’янчук (2020). ТОКСИГЕННІСТЬ ВАКЦИН- НИХ ШТАМІВ СИБІРКИ. Ukrainian Journal of Veterinary Sciences, 11(3): 85–92, hps://doi.org/10.31548/ujvs2020.03.009 Анотація. У статті представлені результати дослідження штамів сибірки та антракоїдів щодо утворення токсинів. Ми виявили, що вакцинні штами сибірки активно продукують екзотоксини в культуральну рідину. Кількість специфічного білка різна за однакових умов інкубації й залежить від індивідуальних особливостей популяції мікроорганізмів, через що реєструються різні титри токсину. Штам B. anthracis K-79Z (вакцина) з однаковою кількістю посіяних мікробних клітин і за вирощування на одному й тому ж поживиному середовищі та за однакової температури виробляє на два порядки більше екзотоксину, ніж штами B. anthracis Tsenkovsky II IBM 92Z (вірулентний), B. anthracis Sternе 34F2, (вакцина), B. anthracis 55 (вакцина), B. anthracis SB (вакцина), B. anthracis Tsenkovsky I (вакцина, патогенна). Кількість екзотоксину може змінюватися внаслідок зміни рН середовища. Активність продукування екзотоксину внаслідок зміни рН середовища залежить від характеристик штаму сибірки. Ключові слова: сибірка, екзотоксин, продукція екзотоксину

92 | ISSN 2663-967X Український часопис ветеринарних наук Vol. 11, № 3, 2020