Structure, Function, and Inhibition of Protein Depalmitoylases by Sang

Total Page:16

File Type:pdf, Size:1020Kb

Structure, Function, and Inhibition of Protein Depalmitoylases by Sang Structure, Function, and Inhibition of Protein Depalmitoylases by Sang Joon Won A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Biology) in the University of Michigan 2018 Doctoral Committee: Assistant Professor Brent R. Martin, Chair Professor Philip C. Andrews Associate Professor Jolanta Grembecka Professor John J. G. Tesmer Sang Joon Won [email protected] ORCID iD: 0000-0002-8148-7652 Dedication I dedicate this dissertation to all my teachers and mentors. ii Acknowledgements First, I would like to thank my family for their continuous support throughout my journey so far. They are the best mentors who will always listen to me and give honest advice. I would not have arrived in America without their support and trust in my abilities. Thanks to them, I always felt confident in challenging the new chapters in my life so far. I would like to thank my mentors and teachers at the University of Wisconsin- Madison, who first introduced me to the real science. Professor Michael Cox and Dr. Marielle Gruenig are the people I always admired as scientists and as human being. They became my role models and inspired me to continue my study in graduate school I also thank Dr. Venki Ramakrishnan and Dr. Alexey Amunts for supervising me at the MRC-Laboratory of Molecular Biology, Cambridge. They are the first ones to introduce me to the structural biology. From my two months of experience, I have learned the true dedication of the top-level scientists. I would like to thank my committee members Prof. Philip Andrews, Prof. Jolanta Grembecka, and Prof. John Tesmer for their critical feedback and putting me on the right path to graduation. I rotated in Prof. Tesmer’s lab and with Dr. Alisa Glukhova’s help, I really enjoyed my first lab experience here in Michigan. I have learned a lot from Prof. Tesmer with his ability to provide critical insight into problems. I would like to thank Prof. Brent Martin for being my mentor and advisor. He has impressed me with his knowledge across diverse disciplines in science. His ability to think critically with open-minded attitude has always had positive influence on me. I feel I got trained as a scientist who can be critical of my own data and reach out beyond the comfort-zone of my current abilities. Thanks to him, I got my first experience in many disciplines in science as this dissertation will show. I am very fortunate to be in his lab. I got to experience the true chemical biology, which was my primary reason for coming to this university. iii I would like to thank the Rackham Graduate school providing me with the pre- doctoral fellowship and travel grants. Finally, I would like to acknowledge the past and present lab members of the Martin lab for providing wonderful support. To mention a few, I would like to thank Dr. David Davda for teaching me technical skills in biochemistry and Dr. Chris Tom for the organic synthesis. Dr. Jaimeen Mujmudar for very helpful advice on chemical synthesis as well as proteomic analysis. Melanie Cheng See Kit and Sarah Haynes for their support. These people made my journey in Michigan easier and it will never be forgotten. iv Table of Contents Dedication.......................................................................................................................... ii Acknowledgements ......................................................................................................... iii List of Figures ................................................................................................................. vii List of Tables ..................................................................................................................... x List of Appendices .......................................................................................................... xi Abstract ........................................................................................................................... xii Chapter 1 : Protein Depalmitoylases ............................................................................. 1 Abstract ............................................................................................................................. 1 Introduction ...................................................................................................................... 2 Assays for depalmitoylation ............................................................................................... 4 Palmitoyl protein thioesterase 1 ........................................................................................ 8 Acyl protein thioesterases .................................................................................................. 9 Structural insights to APT enzymes ................................................................................... 16 ABHD17 family thioesterases ........................................................................................... 20 Conclusions...................................................................................................................... 23 Individual contributions ................................................................................................... 25 Chapter 2 : Molecular Mechanism for Isoform-selective Inhibition of Acyl Protein Thioesterases 1 and 2 (APT1 and APT2) ..................................................................... 26 Abstract ........................................................................................................................... 26 Introduction .................................................................................................................... 27 Results ............................................................................................................................. 28 Discussion ........................................................................................................................ 43 Materials and Methods .................................................................................................... 46 Acknowledgements ......................................................................................................... 50 v Individual contributions ................................................................................................... 50 Chapter 3 : Affinity-based Selectivity Profiling of an In-class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2................................................ 52 Abstract ........................................................................................................................... 52 Introduction .................................................................................................................... 53 Results ............................................................................................................................. 55 Discussion ........................................................................................................................ 63 Materials and Methods .................................................................................................... 64 Individual contributions ................................................................................................... 67 Chapter 4 : Temporal Profiling Establishes a Dynamic S-palmitoylation Cycle .... 68 Abstract ........................................................................................................................... 68 Introduction .................................................................................................................... 69 Results ............................................................................................................................. 70 Discussion ........................................................................................................................ 83 Materials and Methods .................................................................................................... 84 Individual Contributions ................................................................................................... 90 Acknowledgments ........................................................................................................... 90 Chapter 5 : Conclusions and Future Directions ......................................................... 95 Conclusions...................................................................................................................... 95 Future directions to analyze APT function ........................................................................ 96 Future directions towards understanding dynamic S-palmitoylation ............................... 100 Appendices ................................................................................................................... 105 References .................................................................................................................... 118 vi List of Figures FIGURE Figure 1.1 Graphical abstract showing depalmitoylation event mediated by a thioesterase. .............................................................................................................. 2 Figure 1.2 Cellular pathways of protein depalmitoylation. ......................................... 4 Figure 1.3 APT inhibitor selectivity index. .................................................................. 13 Figure 1.4 APT2 inhibition restores Scribble plasma
Recommended publications
  • Identification and Dynamics of the Human ZDHHC16-ZDHHC6 Palmitoylation Cascade
    RESEARCH ARTICLE Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade Laurence Abrami1†, Tiziano Dallavilla1,2†, Patrick A Sandoz1, Mustafa Demir1, Be´ atrice Kunz1, Georgios Savoglidis2, Vassily Hatzimanikatis2*, F Gisou van der Goot1* 1Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland; 2Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland Abstract S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly *For correspondence: tune its ZDHHC6 activity. [email protected] DOI: https://doi.org/10.7554/eLife.27826.001 (VH); [email protected] (FGG) †These authors contributed equally to this work Introduction Cells constantly interact with and respond to their environment. This requires tight control of protein Competing interests: The function in time and in space, which largely occurs through reversible post-translational modifica- authors declare that no tions of proteins, such as phosphorylation, ubiquitination and S-palmitoylation.
    [Show full text]
  • Pore Formation: an Ancient Yet Complex Form of Attack ⁎ Ioan Iacovache, F
    Available online at www.sciencedirect.com Biochimica et Biophysica Acta 1778 (2008) 1611–1623 www.elsevier.com/locate/bbamem Review Pore formation: An ancient yet complex form of attack ⁎ Ioan Iacovache, F. Gisou van der Goot , Lucile Pernot Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Station 15, CH 1015 Lausanne, Switzerland Received 13 November 2007; received in revised form 3 January 2008; accepted 4 January 2008 Available online 12 February 2008 Abstract Bacteria, as well as higher organisms such as sea anemones or earthworms, have developed sophisticated virulence factors such as the pore- forming toxins (PFTs) to mount their attack against the host. One of the most fascinating aspects of PFTs is that they can adopt a water-soluble form at the beginning of their lifetime and become an integral transmembrane protein in the membrane of the target cells. There is a growing understanding of the sequence of events and the various conformational changes undergone by these toxins in order to bind to the host cell surface, to penetrate the cell membranes and to achieve pore formation. These points will be addressed in this review. © 2008 Elsevier B.V. All rights reserved. Keywords: Pore-forming toxin; Perforin; Cholesterol-dependent cytolysin; Aerolysin; Actinoporin Contents 1. Introduction..............................................................1611 2. Structural classification of pore-forming toxins............................................1612 2.1. α-PFT .............................................................1612 2.1.1. Colicins........................................................1612 2.1.2. Actinoporins .....................................................1612 2.1.3. Insecticidal pore-forming toxins of the Cry family..................................1615 2.2. The ß-PFTs ..........................................................1615 2.2.1. S. aureus PFTs....................................................1615 2.2.2.
    [Show full text]
  • Toxigence of Anthrax Vaccine Strains
    UDC 579.62 hps://doi.org/10.31548/ujvs2020.03.009 TOXIGENCE OF ANTHRAX VACCINE STRAINS G. A. ZAVIRIYHA, Candidate of Agricultural Sciences hps://orcid.org/0000-0002-46028477 "State Center for Innovave Biotechnology", Kyiv, Ukraine Е-mail: [email protected] U. N. YANENKO, Candidate of Veterinary Sciences hps://orcid.org/ 0000-0001-5678-3356 "State Center for Innovave Biotechnology", Kyiv, Ukraine Е-mail: [email protected], N. I. KOSYANCHUK, Candidate of Veterinary Sciences, Associate Professor Department of Veterinary Hygiene Named Aer Professor A. K. Skorokhodko hps://orcid.org/ 0000-0002- 3055-8107 Naonal University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Е-mail: [email protected] Abstract. The arcle presents the results of the studying of anthrax strains and Bacillus anthracis-like strains on the formaon of toxins. We found that anthrax vaccine strains acvely produce exotoxins to the culture fluid. The amount of specific protein is different under the same incubaon condions and depends on the individual characteriscs of the microorganism populaon, because of this, different ters of the toxin are registered. Strain B. anthracis K-79 Z (vaccine) with the same number of planng microbial cells and growing on the same culture medium and at the same temperature produces by two orders of magnitude more exotoxin than strains B. anthracis Tsenkovsky II IBM 92Z (virulent), B. anthracis Stern 34F2, (vaccine), B. anthracis 55 (vaccine), B. anthracis SB (vaccine), B. anthracis Tsenkovsky I (vaccine, аpathogenic). The amount of exotoxin may change if the pH of the medium changes. The acvity of exotoxin producon, when the pH changes, depends on the characteriscs of the anthrax strain.
    [Show full text]
  • Ubiquitin-Dependent Folding of the Wnt Signaling Coreceptor LRP6
    RESEARCH ARTICLE Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6 Elsa Perrody1†, Laurence Abrami1†, Michal Feldman1, Beatrice Kunz1, Sylvie Urbe´ 2, F Gisou van der Goot1* 1Global Health Institute, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland; 2Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom Abstract Many membrane proteins fold inefficiently and require the help of enzymes and chaperones. Here we reveal a novel folding assistance system that operates on membrane proteins from the cytosolic side of the endoplasmic reticulum (ER). We show that folding of the Wnt signaling coreceptor LRP6 is promoted by ubiquitination of a specific lysine, retaining it in the ER while avoiding degradation. Subsequent ER exit requires removal of ubiquitin from this lysine by the deubiquitinating enzyme USP19. This ubiquitination-deubiquitination is conceptually reminiscent of the glucosylation-deglucosylation occurring in the ER lumen during the calnexin/ calreticulin folding cycle. To avoid infinite futile cycles, folded LRP6 molecules undergo palmitoylation and ER export, while unsuccessfully folded proteins are, with time, polyubiquitinated on other lysines and targeted to degradation. This ubiquitin-dependent folding system also controls the proteostasis of other membrane proteins as CFTR and anthrax toxin receptor 2, two poor folders involved in severe human diseases. DOI: 10.7554/eLife.19083.001 *For correspondence: gisou. [email protected] Introduction † These authors contributed While protein folding may be extremely efficient, the presence of multiple domains, in soluble or equally to this work membrane proteins, greatly reduces the efficacy of the overall process. Thus, a set of enzymes and Competing interests: The chaperones assist folding and ensure that a sufficient number of active molecules reach their final authors declare that no destination (Brodsky and Skach, 2011; Ellgaard et al., 2016).
    [Show full text]
  • 2515256420945820 Reticulum–Lipid Droplet Nexus Journals.Sagepub.Com/Home/Ctc
    Revisiting the Gregarious Lipid Droplet: Maintaining contacts to regulate energy homeostasis in the cell and beyond-Review Contact Volume 3: 1–16 Seipin-Mediated Contacts as Gatekeepers ! The Author(s) 2020 Article reuse guidelines: of Lipid Flux at the Endoplasmic sagepub.com/journals-permissions DOI: 10.1177/2515256420945820 Reticulum–Lipid Droplet Nexus journals.sagepub.com/home/ctc Veijo T. Salo1,2 , Maarit Holtt€ a-Vuori€ 1,2 and Elina Ikonen1,2 Abstract Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments. Keywords seipin, endoplasmic reticulum–lipid droplet contacts, lipid droplet biogenesis Lipid droplets (LDs) are intracellular storage organelles mutations in seipin also result in hereditary spastic para- composed of a core of hydrophobic neutral lipids (NLs), plegias (Windpassinger et al., 2004) and a severe form of mainly triglycerides (TAG) and sterol esters, surrounded encephalopathy (Guillen-Navarro et al., 2013). Seipin is by a phospholipid (PL) monolayer (Henne et al., 2018).
    [Show full text]
  • EMBO Facts & Figures
    excellence in life sciences young investigators|courses,workshops,conference series & symposia|installation grantees|long-term fellows|short-term fellows|policy, science & society|the EMBO Journal|EMBO reports|molecular systems biology|EMBO molecular medicine|global exchange|gold medal|the EMBO meeting|women in science| EMBO reports|molecular systems biology|EMBO molecular medicine|global exchange|gold medal|the EMBO meeting|women in science|young investigators|courses,workshops,conference series & symposia|installation grantees|long-term fellows|short-term fellows|policy, science & society|the EMBO Journal| global exchange|gold medal|the EMBO meeting|women in science|young investigators|long-term fellows|short-term fellows|policy, science & society|the EMBO Journal|courses,workshops,conference series & symposia|EMBO reports|molecular systems biology|EMBO molecular medicine|installation grantees| EMBO molecular medicine|installation grantees|long-term fellows|gold medal|molecular systems biology|short-term fellows|the EMBO meeting|womenReykjavik in science|young investigators|courses,workshops,conference series & symposia|global exchange|EMBO reports|policy, science & society|the EMBO Journal| gold medal|the EMBO meeting|women in science|young investigators|courses,workshops,conference series & symposia|global exchange|policy, science & society|the EMBO Journal|EMBO reports|molecular systems biology|EMBO molecular medicine|installation grantees|long-term fellows|short-term fellows| courses,workshops,conference series & symposia|global
    [Show full text]
  • Mitogen-Activated Protein Kinase Pathways Defend Against Bacterial Pore-Forming Toxins
    Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins Danielle L. Huffman*, Laurence Abrami†‡, Roman Sasik‡§, Jacques Corbeil¶ʈ, F. Gisou van der Goot†, and Raffi V. Aroian*,** *Section of Cell and Developmental Biology, §Department of Pathology, and ¶Veterans Medical Research Foundation Genomics Core Laboratory, Center for AIDS Research, University of California at San Diego, La Jolla, CA 92093; †Department of Genetics and Microbiology, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland; and ʈLaval University, Laval, QB, Canada G1K 7P4 Communicated by R. John Collier, Harvard Medical School, Boston, MA, June 10, 2004 (received for review May 14, 2004) Cytolytic pore-forming toxins are important for the virulence of certed responses (1–4). However, the functional significance of many disease-causing bacteria. How target cells molecularly re- these responses is uncertain; they could promote pathogenesis or spond to these toxins and whether or not they can mount a cellular defenses or promote both or neither. Responses to PFTs defense are poorly understood. By using microarrays, we demon- at the molecular level, e.g., activation of targets through signal strate that the nematode Caenorhabditis elegans responds ro- transduction cascades, and the roles of these responses in coping bustly to Cry5B, a member of the pore-forming Crystal toxin family with PFTs also are poorly understood. made by Bacillus thuringiensis. This genomic response is distinct Here, we use microarrays to characterize the genomic re- from that seen with a different stressor, the heavy metal cadmium. sponse of Caenorhabditis elegans to Cry5B toxin, a member of the A p38 mitogen-activated protein kinase (MAPK) kinase and a c-Jun three-domain ␣-helical pore-forming Cry toxin family.
    [Show full text]
  • Article (Published Version)
    Article TFAP2 transcription factors are regulators of lipid droplet biogenesis SCOTT, Cameron Christopher, et al. Abstract How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation. In the present paper, we report that Wnt-induced lipid droplet biogenesis does not depend on the canonical TCF/LEF transcription factors. Instead, we find that TFAP2 family members mediate the pro-lipid droplet signal induced by Wnt3a, leading to the notion that the TFAP2 transcription factor may function as a ‘master’ regulator of lipid droplet biogenesis. Reference SCOTT, Cameron Christopher, et al. TFAP2 transcription factors are regulators of lipid droplet biogenesis. eLife, 2018, vol. 7, no. e36330 DOI : 10.7554/eLife.36330 Available at: http://archive-ouverte.unige.ch/unige:150999 Disclaimer: layout of this document may differ from the published version. 1 / 1 RESEARCH ARTICLE TFAP2 transcription factors are regulators of lipid droplet biogenesis Cameron C Scott1, Stefania Vossio1, Jacques Rougemont2, Jean Gruenberg1,2* 1Department of Biochemistry, University of Geneva, Geneva, Switzerland; 2Department of Theoretical Physics, University of Geneva, Geneva, Switzerland Abstract How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation.
    [Show full text]
  • Systems Biology Success Stories In
    SUCCESS STORIES IN SYSTEMS BIOLOGY Project funded by the European Comission under the Seventh Framework Programme for Research and Technological Development Contents Welcome 2 Research 3 A model that gets to the heart of systems biology 3 Denis Noble, Oxford University Taking a systems-eye view of cancers in children 5 Walter Kolch, Systems Biology Ireland Systems biology study points to Turing model of finger formation 7 James Sharpe, Centre for Genomic Regulation Balancing flavour and texture in tomatoes - with systems biology 9 Stuart Dunbar, Syngenta Systems X.ch: Swiss bank on systems biology 11 Daniel Vonder Muehll, SystemsX, Gisou van der Goot, EPF Lausanne, Cris Kuhlemeier, University of Bern Answering big questions with a small bug 13 Luis Serrano, Centre for Genomic Regulation Blueprints for life 15 Bas Teusink, Netherlands Platform for Systems Biology Merrimack: Following a systems path to drug discovery 17 Peter Sorger, Massachusetts Institute of Technology, and Birgit Schoeberl, Merrimack Pharmaceuticals Beating the conundrum of variability in cardiac simulations 19 Blanca Rodriguez, Oxford University Stats and modelling – a Belgian diagnostic tool for arthritis 21 Thibault Helleputte, DNAlytics Virtual Liver Network: a collaborative solution to hepatic diseases 23 Adriano Henney, Virtual Liver Network Tools and Resources 25 SBML: A lingua franca for systems biology 25 Michael Hucka, California Institute of Technology Model Support: JWS Online and BioModels Database 27 Jacky Snoep, Stellenbosch University, and Henning Hermjakob,
    [Show full text]
  • Getting the Opportunity to Fly on Your Own
    862 CHIMIA 2009, 63, No. 12 THE 450TH ANNIVERSARYOFTHE ACADÉMIE ET UNIVERSITÉ DE GENÈVE doi:10.2533/chimia.2009.862 Chimia 63 (2009) 862–863 © Schweizerische Chemische Gesellschaft Getting the Opportunity to Fly on your own F. Gisou van der Goot* Abstract: The author describes the beginning of her independent scientific career in the Department of Biochem- istry of the University of Geneva, at a time when Assistant Professor positions did not exist there and female group leaders in the Section of Chemistry were a rare species. Good timing, strong support and an excellent atmosphere are what she remembers. Her stay there was absolutely crucial to her success. Keywords: Department of Biochemistry · Section of Chemistry · University of Geneva After being trained fully resolved. The success of my post- the official supervisor of my PhD students. as a polytechnical doc projects combined with the extremely But this was only a very minor annoyance engineer in France, stimulating and international environment since my colleagues within the department I performed a PhD of EMBL convinced me that academic and the section fully acknowledged me as in Biophysics at the research was what I wanted to do in the an independent investigator, supporting me University of Paris coming years. as they could. VI. From there I In Heidelberg I met my future husband When I joined the Department, I was moved on for a post- who was offered a professor position at fortunate to benefit from additional finan- doctoral stay at the the Faculty of Sciences of the University cial support in the form of a salary for a European Molecular of Geneva.
    [Show full text]
  • Pathogenicity from a Microbial Diet on Immunity and Longevity in Caenorhabditiselegans
    -4 Influences of nutrition and pathogenicity from a microbial diet on immunity and longevity in Caenorhabditiselegans by Marissa Fletcher B.S. Biochemistry University of Washington, 2012 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2018 K2018 Marissa Fletcher. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Signature redacted I Department of Biology Signature redacted Certified by: Dennis H. Kim Professor of Biology Signature redacted Thesis Supervisor Accepted by: Amy___________ MASSACHUSES INSTITUTE Amy E. KeBing OF TECHNOLOGY C)Professor of Biology Chair, Biology Graduate Committee OCT 2 4 2018] LIBRARIES Influences of nutrition and pathogenicity from a microbial diet on immunity and longevity in Caenorhabditis elegans by Marissa Fletcher Submitted to the Department of Biology on August 31s, 2018 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Interactions with the environment play a critical role in animal physiology and evolution. Animals alter their cellular functions and organismal behavior to maximize survival in a given setting, or make the decision to seek out a new environment that is more compatible with life. Responses to external conditions can be carried out via sensory perception of environmental cues, or as a result to decreased cellular energy or tissue damage. Both modes of modification present complex biological questions as to how animals recognize the need to adapt, make the decision to adapt, and relay that decision into a physical outcome.
    [Show full text]
  • Novel Lipidomic Approaches to Analyse
    NOVEL LIPIDOMIC APPROACHES TO ANALYSE GLYCEROPHOSPHOLIPIDS AND SPHINGOLIPIDS IN COMPLEX MIXTURES USING MASS SPECTROMETRY GUAN XUE LI NATIONAL UNIVERSITY OF SINGAPORE 2008 NOVEL LIPIDOMIC APPROACHES TO ANALYSE GLYCEROPHOSPHOLIPIDS AND SPHINGOLIPIDS IN COMPLEX MIXTURES USING MASS SPECTROMETRY GUAN XUE LI (B.Sc. (Hons.), National University of Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgements Very sincerely, I thank my supervisor, Markus R. Wenk, for being a mentor with a very unique style and for paving the way and filling it with immense support, unceasing patience, many deep insights and stimulating ideas. And with utmost appreciation, thank you very much for firmly believing in me. I thank Howard Riezman, not only for his contribution to a major focus in my thesis, and the opportunity to work in his laboratory, but his unceasing enthusiasm and engagement in science is inspirational. And for making a difference during this journey, to both Howard and Isabelle Riezman, I express my heartfelt gratitude. To Shui Guanghou, Anne K. Bendt, Chua Gek Huey and Aaron Fernandis, thank you for the encouragement, the stimulation to find a better person in me, the knowledge shared, the support during those dark moments, for everything. To Sashi Kesavapany and Maxey Chung, thank you for being in my thesis committee and providing all the constructive feedback. To Lim Tit Meng, thank you for all the support through these years. To Gisou van der Goot, thank you for the helpful discussions, and the enthusiasm and immense support, particularly for the Swiss exchange which had been an invaluable experience.
    [Show full text]