Zootaxa, New Cocalodine Jumping

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, New Cocalodine Jumping Zootaxa 2021: 1–22 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) New cocalodine jumping spiders from Papua New Guinea (Araneae: Salticidae: Cocalodinae) WAYNE P. MADDISON Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada. E-mail: [email protected] Abstract Six new species and three new genera of cocalodine jumping spiders are described. Restricted to New Guinea and nearby areas, the Cocalodinae are basal salticids, outside the major salticid clade Salticoida. The new genera are Yamangalea (type species Y. frewana, new species), Tabuina (type species T. varirata, new species) and Cucudeta (type species C. zabkai, new species). In addition to these type species, described are the new species Tabuina rufa, Tabuina baiteta, Cucudeta uzet, Cucudeta gahavisuka, and Allococalodes madidus. The first description of females of the genus Allococalodes is provided. Natural history observations and photographs of living specimens are provided for all five genera of cocalodines. Key words: Araneae, Salticidae, Cocalodinae, jumping spider Introduction Among the salticid spiders endemic to New Guinea and nearby islands are the unusual genera Cocalodes Pocock and Allococalodes Wanless, notable for having a median apophysis on the male palp, widespread in spiders (Coddington 1990) but rare in salticids. Having a median apophysis indicates these genera are outside both of the two major clades of salticids, the Salticoida (Maddison & Hedin 2003) and the Spartaeinae (Wanless 1984). This puts these two genera among the sparse basal lineages of the family, and raises the possibility that they are an isolated, relictual group with only two body forms (Cocalodes, an elongate foliage dweller, and Allococalodes, more robust but with only two specimens previously described). However, in a recent expedition to Papua New Guinea, several new lineages of apparently-related salticids were found, revealing that Cocalodes and Allococalodes are part of a radiation of basal salticids in Australasia much more diverse than previously recognized. Described here are three new genera, Yamangalea (one species), Tabuina (three species), and Cucudeta (three species). In addition, a new species of Allococalodes is described, including the first known females of the genus. Material and methods Figure 1 shows the localities at which the specimens here described were sampled. All specimens except those of Tabuina baiteta are deposited in the Spencer Entomological Museum of the University of British Columbia (UBC-SEM). Tabuina baiteta is deposited in the Royal Belgian Institute of Natural Sciences (RBINS). Photographs of living specimens were taken with a Pentax Optio 33WR digital camera with a small lens glued to it for macro capability. Preserved specimens were examined under both dissecting microscopes and a compound microscope with reflected light. Drawings were made with a drawing tube on a Nikon ME600L compound microscope. Accepted by C. Muster: 19 Jan. 2009; published: 27 Feb. 2009 1 Terminology is standard for Araneae. All measurements are given in millimeters. Carapace length was measured from the base of the anterior median eyes not including the lenses to the rear margin of the carapace medially; abdomen length to the end of the anal tubercle. The following abbreviations are used: ALE, anterior lateral eyes; PLE, posterior lateral eyes; PME, posterior median eyes (the "small eyes"). FIGURE 1. Papua New Guinea, with collecting localities for cocalodines described here. All localities except the Baiteta Forest were sampled during the 2008 Conservation International expedition. The Baiteta Forest site was sampled by Olivier Missa in 1995 by canopy fogging. Listed are all known cocalodines at each site. Taxonomy Subfamily Cocalodinae Simon A median apophysis on the male palpus is a striking rarity in salticid spiders. When present, it is a sclerite just clockwise from the base of the embolus (in a left palp, ventral view), surrounded by hematodocha, and at least partially surrounded by the tegulum (Wanless 1982, 1985; Maddison 2006; Figs 26, 57, 73). The sperm duct typically approaches it before turning counter-clockwise into the embolus. Wanless (1982) assumed the median apophysis was derived within salticids and thus was evidence that Cocalodes, Allococalodes, and the African Holcolaetis Simon and Sonoita Peckham and Peckham form a monophyletic group. However, the median apophysis is probably ancestral for salticids, based on its widespread presence throughout araneomorph spiders (Coddington 1990), in particular among families related to salticids (e.g. Bosselaers & Jocqué 2002; Ramírez 2003; Silva 2003; Benjamin et al. 2008), and based on its distribution among basal salticids in recent molecular phylogenies (Maddison & Needham 2006, Maddison et al. 2007). If so, then the presence of a median apophysis does not indicate to what clade a salticid belongs, but rather to what clades it 2 · Zootaxa 2021 © 2009 Magnolia Press MADDISON doesn't belong — a salticid with a median apophysis is a member of neither the Salticoida nor the Spartaeinae, both of which have lost it. [The sclerite reported as a "median apophysis" from the salticoid Tarne Simon by Szûts and Rollard (2007) is almost certainly not homologous to that in basal salticids: Tarne's sclerite is counterclockwise from the base of the embolus in the left palp ventral view, and is not cradled by the tegulum.] Wanless (1985) later preferred the hypothesis that Holcolaetis and Sonoita formed a clade with the spartaeines to the exclusion of Cocalodes. The placement of Cocalodes is therefore unresolved. Wunderlich (2004) synonymized the Spartaeinae with the Cocalodinae, choosing Simon's family-group name Cocalodeae because of priority over Wanless's name Spartaeinae. I reject this synonymy primarily because Cocalodes can be excluded from the Spartaeinae in Wanless's strict sense (1984) because it lacks two spartaeine synapomorphies, a tegular furrow and loss of the median apophysis. Even if these cocalodines and the spartaeines were found to be sister groups, we could still retain them as separate, as I do here. Wunderlich's broad sense of Cocalodinae, which includes the Baltic Amber salticids, is united as far as we know only by plesiomorphic character states (presence of conductor and median apophysis, many retromarginal cheliceral teeth, large posterior median eyes). Here I take a much more restricted concept of the Cocalodinae, to include only the five genera discussed below. The Baltic Amber salticids, other than the hisponines, are therefore Salticidae incertae sedis. I will not here attempt to resolve the placement of cocalodines in the phylogeny of the Salticidae, as I have found no morphological synapomorphies that link it with particular subgroups of salticids. Some of the cocalodines I describe here resemble spartaeines closely in habitus, but this observation is insufficiently precise to provide evidence for relationship. However, the three new genera described here are provisionally placed within the Cocalodinae along with Cocalodes and Allococalodes. This group has one proposed synapomorphy, the internal sclerotized spheres of the epigynum first reported by Wanless in Cocalodes. These are, however, also present in at least a few salticoids (see e.g., Galiano 1963, 1970: Tullgrenella morenensis (Tullgren) and Chira gounellei (Simon)). These spheres are visible clearly in the new species Yamangalea frewana, Tabuina varirata, Tabuina baiteta, Tabuina rufa, and Cucudeta zabkai (Figs 30, 43, 50, 61, 78; see arrow in Fig. 43), but were not seen in C. uzet and C. gahavisuka (Figs 82, 86) and are ambiguous in Allococalodes madidus (Fig. 19). Additional evidence for the monophyly of the cocalodines comes from preliminary data from the 28S gene, by which Cocalodes, Allococalodes and the three genera described here are resolved as a monophyletic group (Maddison & Zhang unpublished). Monophyly and limits of genera Justification of the new genera described here is not straightforward. I am reluctant to erect many new genera given the surplus that the Salticidae already has, but some new genera are needed, because body forms and genitalia of cocalodines are at least as diverse as the entire subfamily Spartaeinae. On the other hand, potential synapomorphies among these disparate forms are not obvious. Proposed synapomorphies are as follows: Cocalodes has a unique form of the male palp conductor, and has a more elongate body than any other cocalodine. Allococalodes species have no known synapomorphies, but are united with Cocalodes by the elongate chelicerae and the intercheliceral horn of males. Cucudeta species share the distinctive spination of the first metatarsus, a medial displacement of the posterior median eyes, the copulatory duct entering anteriorly into the spermathecae, and the leaf litter habitat. Tabuina varirata and T. baiteta share median apophyses with a similar small terminal hook, and sclerotized conductors (shared with Cocalodes, but possibly independently derived given the relationship of Cocalodes with Allococalodes). These characters leave the placement of Yamangalea frewana and Tabuina rufa unresolved. Underlying the choice to place them as I have is the preliminary unpublished molecular data cited above. It suggests three clades: (1) Cucudeta, (2) Tabuina varirata
Recommended publications
  • Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
    Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance.
    [Show full text]
  • Zootaxa, New Cocalodine Jumping Spiders From
    Zootaxa 2021: 1–22 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) New cocalodine jumping spiders from Papua New Guinea (Araneae: Salticidae: Cocalodinae) WAYNE P. MADDISON Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada. E-mail: [email protected] Abstract Six new species and three new genera of cocalodine jumping spiders are described. Restricted to New Guinea and nearby areas, the Cocalodinae are basal salticids, outside the major salticid clade Salticoida. The new genera are Yamangalea (type species Y. frewana, new species), Tabuina (type species T. varirata, new species) and Cucudeta (type species C. zabkai, new species). In addition to these type species, described are the new species Tabuina rufa, Tabuina baiteta, Cucudeta uzet, Cucudeta gahavisuka, and Allococalodes madidus. The first description of females of the genus Allococalodes is provided. Natural history observations and photographs of living specimens are provided for all five genera of cocalodines. Key words: Araneae, Salticidae, Cocalodinae, jumping spider Introduction Among the salticid spiders endemic to New Guinea and nearby islands are the unusual genera Cocalodes Pocock and Allococalodes Wanless, notable for having a median apophysis on the male palp, widespread in spiders (Coddington 1990) but rare in salticids. Having a median apophysis indicates these genera are outside both of the two major clades of salticids, the Salticoida (Maddison & Hedin 2003) and the Spartaeinae (Wanless 1984). This puts these two genera among the sparse basal lineages of the family, and raises the possibility that they are an isolated, relictual group with only two body forms (Cocalodes, an elongate foliage dweller, and Allococalodes, more robust but with only two specimens previously described).
    [Show full text]
  • Diversity of Simonid Spiders (Araneae: Salticidae: Salticinae) in India
    IJBI 2 (2), (DECEMBER 2020) 247-276 International Journal of Biological Innovations Available online: http://ijbi.org.in | http://www.gesa.org.in/journals.php DOI: https://doi.org/10.46505/IJBI.2020.2223 Review Article E-ISSN: 2582-1032 DIVERSITY OF SIMONID SPIDERS (ARANEAE: SALTICIDAE: SALTICINAE) IN INDIA Rajendra Singh1*, Garima Singh2, Bindra Bihari Singh3 1Department of Zoology, Deendayal Upadhyay University of Gorakhpur (U.P.), India 2Department of Zoology, University of Rajasthan, Jaipur (Rajasthan), India 3Department of Agricultural Entomology, Janta Mahavidyalaya, Ajitmal, Auraiya (U.P.), India *Corresponding author: [email protected] Received: 01.09.2020 Accepted: 30.09.2020 Published: 09.10.2020 Abstract: Distribution of spiders belonging to 4 tribes of clade Simonida (Salticinae: Salticidae: Araneae) reported in India is dealt. The tribe Aelurillini (7 genera, 27 species) is represented in 16 states and in 2 union territories, Euophryini (10 genera, 16 species) in 14 states and in 4 union territories, Leptorchestini (2 genera, 3 species) only in 2 union territories, Plexippini (22 genera, 73 species) in all states except Mizoram and in 3 union territories, and Salticini (3 genera, 11 species) in 15 states and in 4 union terrioties. West Bengal harbours maximum number of species, followed by Tamil Nadu and Maharashtra. Out of 129 species of the spiders listed, 70 species (54.3%) are endemic to India. Keywords: Aelurillini, Euophryini, India, Leptorchestini, Plexippini, Salticidae, Simonida. INTRODUCTION Hisponinae, Lyssomaninae, Onomastinae, Spiders are chelicerate arthropods belonging to Salticinae and Spartaeinae. Out of all the order Araneae of class Arachnida. Till to date subfamilies, Salticinae comprises 93.7% of the 48,804 described species under 4,180 genera and species (5818 species, 576 genera, including few 128 families (WSC, 2020).
    [Show full text]
  • Zootaxa 1255: 37–55 (2006) ISSN 1175-5326 (Print Edition) ZOOTAXA 1255 Copyright © 2006 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1255: 37–55 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1255 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae) WAYNE P. MADDISON1 & KAREN M. NEEDHAM2 1Departments of Zoology and Botany and Cent re for Biod iversity Resea rch, University of Bri tish Columbia, 6270 University Bouleva rd, Vancouve r, British Columbia , V6T 1Z4, Canada. 2Spencer Entomological Museum , Department of Zoology, Univers ity of British Columbia, 6270 University Boulevard, Vancouve r, British Co lumbia , V6T 1Z4, Can Abstract Increased phylogenetic resolution of the basal lineages of salticid spiders will help us understand their early evolution and provide better outgroups for phylogenetic studies within the major clades. We gathered sequences of nuclear and mitochondrial gene regions (28S, 18S, Histone 3, 16S-ND1, CO1) and used them to reconstruct salticid phylogeny by parsimony, likelihood and Bayesian methods. Our results confirm that lapsiines and hisponines are among the basal salticids, i.e. outside the major clade Salticoida. The lapsiines are resolved as sister group to the spartaeines. The precise placement of hisponines is unclear, but they may represent a deep-branching lineage independent from the spartaeines. Key words: Araneae, Salticidae, Thrandin a, Galianora, Hispo, Massagris, Tomocyrb a, Goleba, lapsiines, Hisponinae, Spartaeinae, Lyssomaninae, jumping spider, basal groups, phylogeny Introduction Morphological and molecular data have begun to resolve the basal phylogenetic structure of salticid spiders (Wanless, 1980, 1982, 1984, Rodrigo & Jackson, 1992, Maddison, 1988, 1996, Wijesinghe, 1992, 1997, Maddison & Hedin, 2003). One of the best corroborated clades is the Salticoida (Maddison & Hedin, 2003), within which falls the vast majority of salticids, about 95% of the approximately 5000 described species (Platnick, 2005).
    [Show full text]
  • Junxia Zhang CV 1 University of British Columbia, BC, Canada
    Junxia Zhang CV JUNXIA ZHANG CURRICULUM VITAE Department of Entomology University of California, Riverside [email protected] 900 University Avenue https://www.zoology.ubc.ca/~jxzhang/ Riverside, CA 92521 USA 951-552-5568 HIGHER EDUCATION University of British Columbia, BC, Canada PhD in Zoology, 2012 Thesis: Phylogeny and systematics of the jumping spider subfamily Euophryinae (Araneae: Salticidae), with consideration of biogeography and genitalic evolution (available at https://circle.ubc.ca/handle/2429/42354) Hebei University, Hebei, China M.S. in Zoology, 2002 Thesis: A review of the Chinese nursery-web spiders (Araneae: Pisauridae) Hebei Normal University, Hebei, China B.S. in Biological Education, 1999 RESEARCH INTERESTS Phylogeny, phylogenomics, biodiversity, historical biogeography and systematics; evolutionary biology with emphasis on genitalic evolution, sexual selection and sociality evolution. RESEARCH EXPERIENCE Postdoctoral Fellow, University of California, Riverside, Department of Entomology, USA, 2015.10-2016.11 (PI: Dr. Jessica Purcell) Postdoctoral Fellow, University of California, Riverside, Department of Entomology, USA, 2013.11-2015.10 (PI: Dr. Christiane Weirauch) Collections Technician, Entomology, University of British Columbia, Beaty Biodiversity Museum, Canada, 2013.01-2013.04 (Supervisor: Karen Needham) Postdoctoral Fellow, University of British Columbia, Department of Zoology, Canada, 2012.08-2012.12, 2013.05-2013.10 (PI: Dr. Wayne P. Maddison) TEACHING EXPERIENCE Graduate Teaching Assistant, University of British Columbia, Department of Zoology, Canada, 2006-2012 Lecturer, Hebei University, College of Life Sciences, China, 2002-2005 1 Junxia Zhang CV PEER-REVIEWED PUBLICATIONS Zhang, J., Gordon, E. R. L., Forthman, M., Hwang, W. S., Walden, K., Swanson, D. R., Johnson, K. P., Meier, R., Weirauch, C. 2016.
    [Show full text]
  • The Deep Phylogeny of Jumping Spiders (Araneae, Salticidae)
    A peer-reviewed open-access journal ZooKeys 440: 57–87 (2014)The deep phylogeny of jumping spiders( Araneae, Salticidae) 57 doi: 10.3897/zookeys.440.7891 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The deep phylogeny of jumping spiders (Araneae, Salticidae) Wayne P. Maddison1,2, Daiqin Li3,4, Melissa Bodner2, Junxia Zhang2, Xin Xu3, Qingqing Liu3, Fengxiang Liu3 1 Beaty Biodiversity Museum and Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada 2 Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada 3 Centre for Behavioural Ecology & Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China 4 Department of Biological Sciences, National University of Singa- pore, 14 Science Drive 4, Singapore 117543 Corresponding author: Wayne P. Maddison ([email protected]) Academic editor: Jeremy Miller | Received 13 May 2014 | Accepted 6 July 2014 | Published 15 September 2014 http://zoobank.org/AFDC1D46-D9DD-4513-A074-1C9F1A3FC625 Citation: Maddison WP, Li D, Bodner M, Zhang J, Xu X, Liu Q, Liu F (2014) The deep phylogeny of jumping spiders (Araneae, Salticidae). ZooKeys 440: 57–87. doi: 10.3897/zookeys.440.7891 Abstract In order to resolve better the deep relationships among salticid spiders, we compiled and analyzed a mo- lecular dataset of 169 salticid taxa (and 7 outgroups) and 8 gene regions. This dataset adds many new taxa to previous analyses, especially among the non-salticoid salticids, as well as two new genes – wingless and myosin heavy chain. Both of these genes, and especially the better sampled wingless, confirm many of the relationships indicated by other genes.
    [Show full text]
  • 94358881006.Pdf
    Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 Sociedad Geológica Mexicana, A.C. García-Villafuerte, Miguel Ángel Primer registro fósil de un lapsino (Araneae, Salticidae) en el ámbar de Chiapas, México Boletín de la Sociedad Geológica Mexicana, vol. 70, núm. 3, 2018, pp. 689-708 Sociedad Geológica Mexicana, A.C. DOI: https://doi.org/10.18268/BSGM2018v70n3a6 Disponible en: https://www.redalyc.org/articulo.oa?id=94358881006 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Boletín de la Sociedad Geológica Mexicana / 2018 / 689 Primer registro fósil de un lapsino (Araneae, Salticidae) en el ámbar de Chiapas, México Miguel Ángel García-Villafuerte RESUMEN Miguel Ángel García-Villafuerte RESUMEN ABSTRACT [email protected] Museo de Paleontología “Eliseo Palacios Agui- lera”. Dirección de Paleontología. Secretaría Se reporta el primer lapsino (Salticidae: The first lapsine jumping spider (Salticidae: de Medio Ambiente e Historia Natural. Cal- Spartaeinae) fosilizado en ámbar de Spartaeinae) is recorded from Chiapas amber, zada de los hombres Ilustres s/n. C.P. 29000. Chiapas, México. Este espécimen es una Mexico. This specimen is a new fossil species Antiguo Parque Madero. Tuxtla Gutiérrez, nueva especie del actual género Galianora, belonging to the extant genus Galianora, with Chiapas; México. con una edad de 23 Ma (Mioceno- an age of 23 My (Miocene-Aquitanian). Aquitaniano). Este es el primer lapsino en el registro fósil, el grupo aún no se ha This is the first lapsine in the the fossil registrado en la actual araneofuna chia- record, a group not previously recorded in the paneca.
    [Show full text]
  • Aranei: Salticidae)
    Arthropoda Selecta 29(1): 87–96 © ARTHROPODA SELECTA, 2020 A contribution to the knowledge of jumping spiders from Thailand (Aranei: Salticidae) Ê ïîçíàíèþ ïàóêîâ-ñêàêóí÷èêîâ Òàèëàíäà (Aranei: Salticidae) R.R. Seyfulina1, G.N. Azarkina2*, V.M. Kartsev3 Ð.Ð. Ñåéôóëèíà1, Ã.Í. Àçàðêèíà2*, Â.Ì. Êàðöåâ3 1 Prioksko-Terrasnyi State Biosphere Reserve, Danki, Moscow Area 142200, Russia. E-mail: [email protected] Приокско-Террасный государственный природный биосферный заповедник, Московская область, м. Данки 142200, Россия. 2 Laboratory of Systematics of Invertebrate Animals, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Frunze street 11, Novosibirsk 630091, Russia. Лаборатория систематики беспозвоночных животных, Институт систематики и экологии животных СО РАН, ул. Фрунзе, 11, Новосибирск 630091, Россия. 3 Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia. Кафедра энтомологии Биологического факультета Московского государственного университета имени М.В. Ломоносова, Ленин- ские Горы, Москва 119234, Россия. * Corresponding author KEY WORDS: Araneae, Arachnida, fauna, Oriental Region, Tarutao National Park. КЛЮЧЕВЫЕ СЛОВА: Araneae, Arachnida, фауна, Ориентальная область, Национальный парк Тару- тао. ABSTRACT. Jumping spiders of 10 species col- brachygnathus (Thorell, 1887), Plexippus paykulli lected from Satun, Sukhotai and Kanchanaburi Prov- (Audouin, 1826) и P. setipes Karsch, 1879 — отмече- inces of Thailand are studied. Six species are reported ны самые южные точки распространения в Таилан- from the country for the first time: Evarcha bulbosa де, для Stenaelurillus abramovi Logunov, 2008 — Żabka, 1985, Phintella vittata (C.L. Koch, 1846), Phin- самая южная точка ареала. Приводятся фотогра- telloides versicolor (C.L. Koch, 1846), and Portia la- фии живых особей для восьми видов, для H.
    [Show full text]
  • Araneae: Salticidae)
    Doctoral Thesis Taxonomic revision of Vietnamese species of the genus Phintella Strand (Araneae: Salticidae) Phung Thi Hong Luong Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami–Osawa 1–1, Hachioji, Tokyo 192–0397, Japan September in 2017 1 首都大学東京 博士(理学)学位論文(課程博士) 論 文 名 ベトナム産ヤマトハエトリグモ属(クモ目:ハエトリグモ科) の分類学的再検討 (英文) 著 者 フオン テイ ホン ロン 審査担当者 主 査 委 員 委 員 委 員 上記の論文を合格と判定する 平成 年 月 日 首都大学東京大学院理工学研究科教授会 研究科長 DISSERTATION FOR A DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE TOKYO METROPOLITAN UNIVERSITY TITLE:Taxonomic revision of Vietnamese species of the genus Phintella Strand (Araneae: Salticidae) AUTHOR:Phung Thi Hong Luong EXAMINED BY Examiner in chief Examiner Examiner Examiner QUALIFIED BY THE GRADUATE SCHOOL OF SCIENCE AND ENGINEERING TOKYO METROPOLITAN UNIVERSITY Dean Date 0 Summary Spiders (the order Araneae) are dominant predatory arthropods in terrestrial ecosystems. The family Salticidae (jumping spiders) is the largest family of spiders; it is known throughout the world, and consists of nearly 6,000 described species belonging to 625 genera, holding 13% of all species of spiders (Foelix, 1996; Jackson et al., 2001). Salticids usually show distinct sexual dimorphism in morphology of the adults. As a result, the male-female complementarity remains unclear for many nominal species in this family. This means that more than a few synonymies are likely hidden in the current classification of the family. Furthermore, due to insufficient sampling efforts in tropical and subtropical zones, it is likely that many species are yet to be discovered. The genus Phintella Strand in Bösenberg and Strand (1906) is one of the most speciose genera in the family Salticidae, and is thought to have diversified in the Oriental and Palearctic regions.
    [Show full text]
  • Araneae: Salticidae: Spartaeini), a New Record for the Andaman Islands
    Peckhamia 213.1 Phaeacius in the Andaman Islands 1 PECKHAMIA 213.1, 12 July 2020, 1―6 ISSN 2161―8526 (print) LSID urn:lsid:zoobank.org:pub:A87F4AB1-7C21-430D-A91B-DBAAFAC50830 (registered 11 JUL 2020) ISSN 1944―8120 (online) Hunting and brooding behaviour in Phaeacius sp. indet. (Araneae: Salticidae: Spartaeini), a new record for the Andaman Islands Samuel J. John 1 1 DIVEIndia Scuba and Resort, Beach no. 5, Havelock Island, 744211, email [email protected] Abstract. This paper documents the first record of Phaeacius (Simon 1900) from the Andaman Islands, as well as observations of their behaviour in nature over a period of two months. Observations included predation and feeding on both ants (Technomyrmex albipes) and a salticid ant mimic (Myrmarachne plataleoides), and the maintenance of long, vertical silk lines above an attended egg-sac covered with debris. Introduction Phaeacius (Simon 1900) is a genus of jumping spiders in the subfamily Spartaeinae (Wanless 1984). Many spartaeines are known to be araneophagic (Li 2000) and differ from other salticids in their use of silk to build platforms and simple web structures that aid them in prey capture. Spiders in the genera Portia and Spartaeus, for example, build prey-capture webs while most other salticid spiders typically only build silken retreats to rest, moult and oviposit. Spiders in the genus Phaeacius are not known to build webs or silken retreats, but lay down small, thin sheets of silk above the substrate when moulting or ovipositing (Jackson 1990). Unlike other genera of Salticidae that actively move about in search of prey, Phaeacius is an ambush predator that waits stealthily on the trunks of trees.
    [Show full text]
  • A New Lapsiine Jumping Spider from North America, with a Review of Simon’S Lapsias Species (Araneae, Salticidae, Spartaeinae)
    A peer-reviewed open-access journal ZooKeys 891: 17–29 (2019) New lapsiine jumping spider 17 doi: 10.3897/zookeys.891.38563 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new lapsiine jumping spider from North America, with a review of Simon’s Lapsias species (Araneae, Salticidae, Spartaeinae) Wayne P. Maddison1 1 Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada Corresponding author: Wayne P. Maddison ([email protected]) Academic editor: J. Miller | Received 26 July 2019 | Accepted 27 September 2019 | Published 21 November 2019 http://zoobank.org/26724E9C-ABBB-41E9-85A2-87021244E574 Citation: Maddison WP (2019) A new lapsiine jumping spider from North America, with a review of Simon’s Lapsias species (Araneae, Salticidae, Spartaeinae). ZooKeys 891: 17–29. https://doi.org/10.3897/zookeys.891.38563 Abstract A new spider genus and species from México and Guatemala, Amilaps mayana gen. et sp. nov., is de- scribed, distinct from other members of the jumping spider tribe Lapsiini (subfamily Spartaeinae) by its four retromarginal cheliceral teeth and the large sclerite cradling the embolus. It is the first living lapsiine known outside of South America. This tribe has received attention recently for new species and genera in Ecuador and Brazil, but Simon’s original four species of Lapsias, described from Venezuela in 1900 and 1901, remain relatively poorly known. Accordingly, new illustrations of Simon’s type material are given, and a lectotype is designated for L. cyrboides Simon, 1900. The three forms of females in Simon’s material from Colonia Tovar, Aragua, are reviewed and illustrated, and they are a tentatively matched with the three male lectotypes of his species from the same location.
    [Show full text]
  • Asemonea Cf. Tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae)
    Peckhamia 172.1 Asemonea cf. tenuipes in Karnataka 1 PECKHAMIA 172.1, 28 October 2018, 1―8 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:F2E27581-540F-45F0-9B20-2CC30398B4EE (registered 26 OCT 2018) ISSN 1944―8120 (online) Asemonea cf. tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae) Abhijith A. P. C.1 and David E. Hill 2 1 Indraprastha Organic Farm, Kalalwadi Village, Udboor Post, Mysuru-570008, Karnataka, India, email [email protected] 2 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] Abstract. Field observations of Asemonea cf. tenuipes in Karnataka are documented. These include a possible case of oophagy by a nesting female as well as corroboration of earlier studies that described the tendency of females to deposit their eggs in straight lines within a simple shelter on the underside of leaves. Changes in colour of the female opisthosoma that include the appearance of a pair of iridescent blue lines are discussed. Key words. Asemonea tenuipes, colour change, India, jumping spider, Lyssomanes viridis, Lyssomaninae, mimicry, nesting, oophagy, organic farming The Afroeurasian salticid subfamily Asemoneinae was recently recognized as the sister group of the Neotropical salticid subfamily Lyssomaninae, both subfamilies comprising a clade that is in turn the sister group of the subfamily Spartaeinae (Maddison et al. 2014; Maddison 2015; Maddison et al. 2017). Within the Asemoneinae the genus Asemonea presently includes 25 species, all from tropical Afroeurasia (Wanless 1980; WSC 2018). Asemonea tenuipes (O. Pickard-Cambridge 1869) is the type species and best-known representative of the genus Asemonea, ranging from India and Sri Lanka to Singapore (Roy et al 2016; WSC 2018).
    [Show full text]